
1

Impact of Stripe Unit Size on Performance and
Endurance of SSD-Based RAID Arrays

Farzaneh Rajaei Salmasi Hossein Asadi Majid GhasemiGol
rajaei@ce.sharif.edu asadi@sharif.edu ghasemigol@ce.sharif.edu

Department of Computer Engineering
Sharif University of Technology

Tehran, Iran

Abstract—Over the past decades,Redundant Array of indepen-
dent Disks (RAIDs) have been configured based on mechanical
characteristics of Hard Disk Drives (HDDs). With the advent of
Solid-State Drives (SSDs), such configurations such as stripe unit
size can be far from the characteristics of SSDs. In this paper,
we investigate the effect of stripe unit size on the endurance
and the overall I/O performance of an SSD-based RAID array
and compare the optimal stripe unit size with the suggested
stripe unit sizes for HDD-based RAID. To this end, we first
examine the number of extra page reads and writes imposed by
write requests and then observe the corresponding impact onthe
overall throughput and the average response time of SSD-based
RAID arrays. The effect of extra page writes for different stripe
unit sizes and their impact on endurance has been also examined.
To validate the analytical study, we have used I/O intensive
traces and simulated an SSD-based RAID array using DiskSim
simulator with different stripe unit sizes. The experimental results
reveal that unlike HDD-based RAID arrays, a 4KB stripe unit
size can significantly improve the throughput, response time, and
endurance of an SSD-based RAID4 array (up to 67.6%, 52.2%,
and 48.6%, respectively) as compared to 128KB stripe unit size.

Index Terms—Solid-State Drive (SSD), Performance, En-
durance, RAID, Stripe Unit Size.

I. I NTRODUCTION

In recent years, NAND flash-basedSolid-State Drives
(SSDs) have gained much attention as a suitable replacement
for Hard Disk Drives(HDDs). By employing electronic parts
instead of mechanical parts, SSDs offer appealing charac-
teristics such as light weight, shock resistance, less power
consumption, and higher I/O performance. Such advantages
have made SSDs a promising storage media for small to
large-scale applications [1; 2; 3; 4; 5]. SSDs, however, suffer
from low write performance due to slow flash programming
time, limited endurance caused by erase-before-write opera-
tions, and reduced reliability due to flash device aging effect.
Additionally, SSDs impose higher per bit cost as compared
to HDDs. Recently,Multi Level Cells (MLCs) have been
introduced to reduce the per bit cost and to increase the flash
capacity. This is achieved by storing more than a bit in each
flash unit cell. MLCs, however, suffer from higherBit Error
Rate (BER) and more limited erase operations as compared
to Single Level Cells(SLCs). An MLC block wears out by
5,000 to 10,000 erases while the maximum permissible erase
operations is 10 times larger for an SLC block [2].

Several techniques have been proposed in the past to address
the shortcomings of SSDs, namely, slow write performance,
limited endurance, and reduced reliability [6; 7; 8; 9; 10; 11].
To enhance write performance, parallel writing on multiple
NAND flash chips can be used [6]. Different wear-leveling
algorithms have been also proposed and applied in the aim
of improving the endurance of NAND flash-based SSDs [11].
The issue of reduced reliability, however, has not been widely
addressed. Since BER progressively increases by erase-write
transactions, the reliability of disks decreases by each erase
operation [12]. In order to mitigate the issue of increasing
BER, Error-Correction Codes(ECCs) can be employed in
SSDs [13]. While SLCs mostly use single-bit ECCs such as
hamming codes, MLCs deploy more complicated ECCs due
to their higher BER [14]. This will further increase the access
latency of MLCs as compared to SLCs [9]. Using page-level
ECC codes mitigate the increasing BER, but they are unable
to provide any protection in the event of page, chip, or whole
device failure.

To achieve higher level of reliability, block- or device-
level redundancy techniques such as mirroring,Simple Parity
Checking(SPC), and erasure codes can be utilized [15; 16; 17].
Device-level redundancy can be implemented usingRedundant
Array of independent Disks(RAID) [18; 17]. RAID configu-
rations, which are widely used in data storage systems, offer
higher performance, reliability, and capacity [18; 17; 19;20;
21]. This is achieved by distributing user data across multiple
disks within an array. Each level of RAID array such as
RAID4, RAID5, and RAID6 can be configured using different
parameters such as stripe unit size and the number of disks
participated in a RAID array. Stripe unit size, which defines
the granularity of data distribution in a RAID array, has been
traditionally determined based on characteristics of HDDsto
balance throughput and response time. Due to characteristics
of HDDs, the suggested stripe unit size by enterprise data
storage systems vendors such as IBM, HP, and EMC varies
between 16KB up to 1MB [22; 23; 24; 25; 26; 27]. The
suggested stripe unit sizes can be possibly far from the optimal
configuration for SSD-based RAID arrays with respect to
I/O throughput and response time. Additionally, conventional
stripe unit size used for HDD-based RAIDs should be revisited
with respect to limited endurance of SSDs. To the best of our
knowledge, such analysis for SSD-based RAIDs is missing in



2

the previous work.
This paper presents an analytical study to examine the

effect of stripe unit size on the endurance and performance
metrics of an SSD-based RAID array, i.e., I/O throughput and
I/O response time. In the proposed study, we investigate the
number of extra page reads and writes and the corresponding
performance overhead incurred due to write requests. Our
analytical study reveals four major observations.

• Regardless of HDDs or SSDs, the larger stripe unit size
can result in significant number of extra read and write
operations due to parity update.

• Due to the major contribution of positioning time to the
overall HDD response time, the extra read and write op-
erations do not lead to a significant performance overhead
in HDD-based RAID arrays.

• The extra number of read and write operations can
directly affect both response time and I/O throughput in
SSD-based RAID arrays.

• The endurance of a parity disk in SSD-based RAID arrays
can be significantly affected by larger stripe unit size.

Using I/O intensive traces and a disk subsystem simulator,
we have experimentally validated the observations obtained
by the proposed analytical study. Both analytical and ex-
perimental studies demonstrate that choosing an appropriate
stripe unit size can significantly improve the performance
metrics of an SSD-based disk subsystem. In particular, the
experimental results for the studied benchmarks reveal that
a 4KB stripe unit size can improve the throughput and re-
sponse time of an SSD-based RAID4 array up to 67.6% and
52.2% respectively, as compared to 128KB stripe unit size. In
addition to the performance improvement, the results reveal
that the endurance of a 4KB stripe unite size significantly
reduces the number of extra page writes and consequently
enhances the endurance of RAID array, as compared to 128KB
stripe unit size. We have also further validated the simulation
results by conducting experiments on a system equipped with
40GB SSDs. To the best of our knowledge, this is the first
comprehensive work which investigates the effect of stripe
unit size on both endurance and performance of SSD-based
RAID arrays.

The remainder of this paper is organized as follows. In
Section II, a background on NAND-based flash and SSD-
based RAID configurations is provided. Section III elaborates
design challenges in SSD-based RAID configurations. Sec-
tion IV investigates the effect of different stripe unit sizes on
performance and endurance. In Section V, the experimental
results will be presented. Section VI reviews related work
on SSD-based RAID arrays and lastly, Section VII presents
summary and conclusion.

II. BACKGROUND

A. Flash Memory

An SSD consists of few flash chips, which are organized in
an interleaved manner to provide parallel access to user data.
A flash chip includes one or more dies and each die contains
a set of banks or planes, which in turn are constructed by
blocks. Typically one page size register and 2048 blocks are

Fig. 1. A typical structure of a flash chip consists of two diesand four
planes

organized in a plane and each block is composed of 64 or
128 pages, leads in hierarchical structure. An example of a
flash chip with four planes is presented in Fig. 1. In a typical
flash structure, dies in a plane can be accessed in parallel. The
smallest parallel unit in a NAND flash chip is plane-pair.

NAND flash memory exhibits challenging characteristics
such as asymmetric read/write latency, different granularity of
read/write operations, and erase-before-write limitation. The
asymmetric read/write latency implies that the latency of read
and write accesses is not equal. Typically, a single write access
takes about ten times longer than a unit-size read access.
The smallest unit in both read and write accesses is a page.
However, an erase operation is performed on a block level.

Another challenging characteristic of NAND flash memory
is erase-before-write limitation, which implies a block should
be erased before a page within the block is overwritten or
updated. Therefore, updating a previously written data on the
same page is not possible unless the entire bock is erased.
Since the number of block erases is limited in the NAND
flash technology, each block erase will reduce the total device
lifetime. The limitation of the number of erase operations
per block has been reported up to 10,000 and 100,000 for
MLC and SLC flash, respectively [28]. To overcome the
limited endurance of flash memory, wear leveling algorithms
have been proposed in the literature [29; 30]. The main aim
of wear leveling algorithms is to distribute write accesses
across all blocks in an even manner to prolong the lifetime
of a flash memory. Wear leveling algorithms are directed
by a software namedFlash Translation Layer(FTL). The
main responsibility of FTL is mapping a logical page address
received from the disk front-end to a physical page address in
the disk flash chips.

B. Interleaving

Parallel access to user data provided by interleaving is one
of the most prominent features of SSDs as compared to HDDs.
Interleaving is provided in different layers in SSDs, which
results in an improved performance and higher bandwidth.
Fig. 2 shows building blocks of an SSD controller and a chip-
level parallelism available in flash chips. In this figure, anSSD
controller is connected to four flash chips using four parallel
channels. Since one channel is dedicated to each flash chip,
data transfer and read or write operations can be performed



3

Fig. 2. Building blocks of an SSD controller and chip-level parallelism in a
typical SSD

on different flashes at the same time, which resembles RAID0
configuration in the back-end flash chips. The RAID configu-
ration, which is established on a number of flash chips within
an SSD could be calledintra-RAID as opposed tointer-RAID.
Inter-RAID can be configured on a number of SSDs. Both
architectures provide interleaving and parallelism, although
there is a slight difference between these two architectures.
In the intra-RAID configuration, data is serially transferred
to an SSD and it is then interleaved among flash chips. In
an inter-RAID array, however, data transmission from higher
level to SSDs is performed simultaneously. Consequently, an
inter-RAID array can provide better performance as compared
to the intra-RAID configuration.

There is also another kind of parallelism among planes
within a flash chip. Although there is one common channel
for all planes in a flash chip, planes in a die can operate
independently. In some circumstances, a pair of planes in a
die can operate independent from another pair of planes in
a same die. This means that data transfer is not performed
simultaneously but data can be accessed in an interleaved
manner on independent dies or planes [6].

C. RAID

Although RAID is commonly used for redundancy pur-
poses, it is indeed used to enhance both reliability and
performance [18; 17]. In particular, while RAID4, RAID5,
and RAID6 configurations are aimed at improving both per-
formance and reliability, RAID0 is only used to enhance
performance. RAID0, which does a simple data striping across
disks enhances performance and capacity while it does not
improve reliability. On contrary to RAID0, RAID1 reaches
higher reliability level by deploying mirroring but it doesnot
improve performance as compared to other RAID configu-
rations. RAID4 and RAID5 are two RAID schemes, where a
space equal to one disk is allocated to parity stripes. In RAID4,
the extra disk is dedicated to hold all parity bits while parity
bits are evenly spread across all disks in a RAID5 array.

In RAID4 and RAID5 configurations, a part of interleaved
data which is stored on a single disk, is calledstripe unit. The
stripe unit sizedefines the amount of data placed on a disk
which represents the granularity of data distribution in a RAID
array. Stripe unit size, which can be from a bit or a byte to
multiple blocks of data, may influence the performance and/or
the reliability of a RAID array [31].

(a)

(b)
Fig. 3. Writing a 512KB request to a RAID4 4+1 with stripe unitsize = 4K:
(a) Full stripe update, (b) Partial stripe update (UP: Updated, UC: Unchanged)

A row of stripe units, which parity is computed over, is
called astripe or a full stripe. The computed parity is written
on the parity stripe unit in the corresponding stripe. Therefore,
each stripe includes data stripe units and a parity stripe unit.
Data stripe unit, parity stripe unit, and full stripe have been
shown in Fig. 3. In RAID4 and RAID5 configurations with N
disks, there areN − 1 data stripe units and one parity stripe
unit. When an I/O request is started at the first data disk and
accesses exactly an integer multiple ofN−1 data stripe units,
a full stripe access is accomplished. Otherwise, a partial stripe
access within one row or multiple rows will happen [31; 19].
This will be further elaborated in Section IV.

To further achieve higher reliability levels in data storage
systems, one can employ erasure codes in disk subsystems.
Erasure codes such as Reed-Solomon [32; 33], X-codes [34],
and Even-Odd [16] integratem data disks andn redundant
disks in order to tolerate up ton disk failures. These erasure
codes are referred as RAID6 configuration. Majority of erasure
codes are based on complex XOR and arithmetic operations
[16; 32; 33]. There are several parameters such as word size,
the number of words in a stripe unit, and the number of
operations that are involved in data encoding of complex
erasure codes. One important parameter of erasure codes is
word size, where each stripe unit is partitioned into words.The
effect of word size on the performance of erasure codes has
been investigated in several studies, which will be discussed in
Sec. VI. In this work, we only investigate the impact of stripe
unit size in RAID arrays employingSingle Parity Checking
(SPC). Investigation of RAID6 configurations is beyond the
scope of this work.

III. C HALLENGES IN SSD-BASED RAID A RRAYS

Despite significant reliability improvement of SSDs over
HDDs, they still have limitedMean Time To Failure(MTTF)
as reported by SSD venders [35; 36; 37]. Typical MTTF of



4

TABLE I
EXAMPLE : NUMBER OF PAGE WRITES IN ARAID4 4+1 ARRAY (PAGE

SIZE=4KB)

Disk Number Total Size of
D0 D1 D2 D3 P Write Requests

Iozone 771K 767K 768K 767K 1439K 3,073K
Postmark 545K 546K 546K 546K 703K 2,183K
Vdbench 145K 145K 144K 145K 265K 579K

SSDs varies from 1M hours up to 2M hours. Hence, a high
available and reliable disk subsystem (e.g., 7- or 8-nine avail-
ability) is not achievable without using RAID configuration.
Finding an efficient RAID configuration for SSDs can be
challenging. Using RAID1 imposes higher cost while brings
more reliability. RAID4 and RAID5 are more cost efficient but
updating parity stripe units would result in fast disk aging. In
RAID4 and RAID5 configurations, the parity stripe unit in
each stripe is updated once its corresponding data stripe unit
is modified. Consequently, parity stripe units are updated more
frequently than data stripe units.

In a RAID5 array, since parity stripe units are distributed
across all SSDs, each disk gets more updates and ages faster
as compared to data disks within a RAID4 array. As a result,
the average lifetime of SSDs in a RAID5 array is shorter
than the average life time of data SSDs in a RAID4 array.
It has been demonstrated in [10] that RAID5 may suffer from
simultaneous disk failures. This is due to write requests are
evenly distributed across all disks and as a result, all disks wear
out approximately with the same rate. Similarly, disk aging
with the same rate is also valid for RAID1 configuration. To
alleviate this limitation, it has been suggested to use uneven
parity distribution using RAID4 configuration [10; 38; 39].
In such schemes, SSDs experience different amount of writes
in a RAID4 array, which results in differential aging of disk
drives.

In a RAID4 array, frequent parity updates leads to fast aging
of the parity disk while data disks in a RAID4 array wear out
similar to data disks in RAID0. Table I shows an example for
the number of page updates that data and parity disks receive
in a RAID4 array for I/O intensive benchmark programs. In
this example, the array includes five SSDs (four data disks and
one parity disk) and the stripe unit size is set to 128KB. Note
the total size of read and write requests and the other numbers
reported in Table I and Table II are in terms of number of pages
(a page size=4KB). It can be observed from Table I that the
parity disk receives updates about twice as data disks do for
Iozone and Vdbench benchmark programs. Consequently, the
parity disk wears out with a higher rate and fails sooner than
data disks.

As illustrated by an example in Table I, the parity disk
fast aging in RAID4 is a major disadvantage, which should
be properly addressed in SSD-based RAID arrays. Another
shortcoming of SSD-based RAID4 configuration is that the
parity disk may become performance bottleneck. Read ac-
cesses to the parity disk can be considerable since parity
should be computed in each write access. When a write request
is distributed across disks in a full stripe manner, no read

TABLE II
EXAMPLE : NUMBER OF PAGEREADS IN A RAID4 4+1 ARRAY (PAGE

SIZE=4KB)

Disk Number Total Size of
D0 D1 D2 D3 P Read Requests

Iozone 600K 410K 422K 498K 273K 0
Postmark 443K 416K 417K 445K 75K 1,272K
Vdbench 98K 71K 72K 97K 53K 5

access is required to compute the new parity. However, in case
a partial stripe is overwritten, reading of unchanged stripe units
or the parity stripe unit within a stripe is necessitated.

In the case of partial stripe update with the number of stripe
units equal or less than half of data disks, it is more cost
effective to read the old data and the old parity rather than
the unchanged data within the stripe [9; 28]. To further clarify
these statements, let’s consider a RAID4 4+1 array with four
data disks (D0, D1, D2, and D3) and one parity disk (P). In
this array, a write to a full stripe (D0∼D3) does not imply any
read access to generate the new parity. However, a write to a
partial stripe will require read accesses. For example, a write
access to (D0∼D2) will call to read data on D3 for the new
parity computation. A write access to a single stripe unit (e.g.,
data on D0) can be followed by either of the following read
accesses for parity generation. A straightforward solution is to
read data on D1 through D3, which requires three extra read
accesses. Another way is to read the old data on D0 and the old
parity, which implies two extra read accesses. In the lattercase,
old data on D0 and the old parity are first read simultaneously.
Then, the new parity is computed by performing exclusiveOR
between the old data on D0, the new data for D0, and the old
parity. The new data for D0 and the new parity are written on
disks at the same time.

In a RAID array, as explained before, some write requests
incur extra read accesses to data or parity disks within the
array. This overhead can increase the latency and degrade the
performance of the RAID array. Table II shows the number of
page reads due to write requests in an SSD-based RAID4 4+1
for sample I/O intensive workloads. For Iozone and Vdbench
workloads, although there is no or few read requests in the
input trace, the number of page reads is notable, which can
result in throughput degradation.

IV. STRIPE UNIT SIZE ANALYSIS

In this section, we investigate the effect of different stripe
unit sizes on the endurance and performance of an SSD-based
RAID array utilizing a parity disk. In our analysis, we mainly
focus on the number of page reads and page writes imposed
by write accesses rather than those imposed by read accesses.
This is due to the parity disk is not invoked in read accesses
and as a result, no extra read or write operations take place
on read accesses. Additionally, the endurance of RAID arrays
is not affected by read accesses.

The analysis of the number of extra page reads and writes
provided hereafter is independent of storage type (either HDD
or SSD) used in a RAID array. The performance impact of
the extra page reads and writes on SSD-based RAID, however,



5

can be very different from HDD-based RAID since HDDs and
SSDs exhibit different characteristics. In particular, while the
major contribution of positioning time to the overall response
time in HDDs can alleviate the performance penalty of extra
page reads and writes, this does not apply in SSDs as they
do not have any moving parts. As an example, in case of
write accesses to an SSD-based RAID, as it will be shown in
the next subsections, both performance and endurance can be
significantly affected with different stripe unit sizes.

In the rest of this section, we first investigate the impact
of stripe unit size on the number of extra page reads in write
requests. Then, the effect of stripe unit size on the number
of extra page writes in write requests is presented next. The
impact difference of extra page reads and writes between SSD
and HDD RAID arrays will be discussed in the subsequent
subsection. To provide better understanding of the impact of
stripe unit size on extra page reads and writes, we use RAID4
in the analysis provided in this section. However, this analysis
is also valid for RAID5 arrays as the extra number of reads
and writes does not depend on the way parity stripe units are
distributed across disks.

A. Impact of Stripe Unit Size on Number of Extra Page Reads

In a RAID configuration, a logical address from upper layer
is converted to a physical address involving several parameters
such asStarting Disk Index(SDI) and the number of data
disks within the array, referred asNd. SDI which refers to the
data disk number holding the first stripe unit of a request, is
calculated based onStripe Unit Size(SUS), request address
and the number of data disks within the array. SDI is equal
to (ADDl/SUS) modulo Nd, whereADDl is the logical
address of a request. When a request is striped across data
disks, two possible situations may happen: i) a row involved
in a write update forms a full stripe write, which all stripe
units in the row are updated, ii) a row is not invoked in a
full stripe manner. We call the formerfull row updateagainst
partially row updatein the latter case. A write can fall into
one of these two cases depending on logical address, stripe
unit size, and request size. When a full row update happens,
since all stripe units of a row exist in the RAID controller,
there is no need to read any stripe unit from disks for parity
stripe generation. In contrast, in case of partially row update,
since some stripe units are missed in the RAID controller, read
operations from data or parity disks should be undertaken.

In order to make the subject more clear, let’s consider an
example of a 512KB write request written into an SSD-based
RAID4 4+1 array. Let’s also assume that the stripe unit has
the smallest granularity and its size is a page (typically 4KB).
If the logical address of this request is mapped to the first
disk (Disk 0), 32 full row updates will be accomplished as
shown in Fig. 3(a). On the other hand, if the logical address
is mapped to any data disk other than the first disk (Disk
0), 31 full row updates and 2 partially row updates would be
emerged. Fig. 3(b) shows a situation in which the first stripe
unit of a request is written to the second disk (i.e., SDI=1 or
Disk 1).

(a)

(b)
Fig. 4. Writing a 512KB request to a RAID4 4+1 with stripe unitsize =
128KB: (a) Full stripe update, (b) Partial stripe update (UP: Updated, UC:
Unchanged)

When data stripping leads to a full row update as shown in
Fig. 3(a), since all rows are updated in a full stripe manner,
no read operation is needed. In Fig. 3(b), only the first and
the last rows imply read operations. In the first row, the first
page is missed in the RAID controller and should be read from
Disk 0. In the last row, only the first stripe unit is updated.
Therefore, to compute the new parity, the old data stripe of
Disk 0 and the old corresponding parity stripe should be read.
Consequently, in this example, two page reads from Disk 0
and one page read from the parity disk are necessitated.

Now let us consider a larger stripe unit size equal to 128KB.
In this situation, the request is divided into four stripe units,
which may occupy one or two rows as shown in Fig. 4. As
shown in Fig. 4(a), no read operation is needed when a write
operation is performed on a full stripe. However, in case of
partial stripe write, read operation from data disks and the
parity disk is required. Fig. 4(b) shows an example when
two data stripe units from Disk 0 and one data stripe from
the parity disk should be read. Since the stripe unit size is
128KB, which is equivalent to 32 pages, totally 96 page reads
is demanded. This number of page reads is significantly greater
than 3 page reads that was requested when the stripe unit size
was set to 4KB or one page size.

In Table III, we have analyzed the number of extra page
reads performed for a 512KB write request with different
stripe unit sizes and two sample starting disks (SDI=D1 or
D2)1. It is intuitive that if the starting disk isD0 (not reported
in Table III), no extra page reads will be incurred since all page
updates will be accomplished in a full stripe manner. In case
SDI is equal toD1, the first row of the write request will call
to read fromD0 and the last row will require to read from
D0 and the parity disk. Hence, writing a 512KB request in a
RAID4 4+1 array requires three extra stripe unit reads from

1D1 andD2 refer to Disk 1 and Disk 2, respectively.



6

NEPR(r=1) =

{

(LDI − SDI + 2)×NPS if (LDI − SDI + 1) < Nd/2

(Nd − LDI + SDI − 1)×NPS otherwise
(1)

NEPR(r≥2) =



















(2Nd − SDI − LDI)×NPS if (SDI > Nd/2) && (LDI + 1 ≥ Nd/2)

(Nd − SDI + LDI + 3)×NPS if (SDI > Nd/2) && (LDI + 1 < Nd/2)

(Nd + SDI − LDI − 1)×NPS if (SDI ≤ Nd/2) && (LDI + 1 ≥ Nd/2)

(SDI + LDI + 2) ×NPS otherwise

(2)

TABLE III
NUMBER OF EXTRA PAGE READS TO WRITE A512KB REQUEST IN A

RAID4 4+1 ARRAY (PAGE SIZE=4KB)

Number of Extra Page Reads (NEPR)
SUS SDI D0 D1 D2 D3 Parity Overall

4K D1 2 0 0 0 1 3
D2 1 1 1 1 0 4

8K D1 4 0 0 0 2 6
D2 2 2 2 2 0 8

16K
D1 8 0 0 0 4 12
D2 4 4 4 4 0 16

32K
D1 16 0 0 0 8 24
D2 8 8 8 8 0 32

64K D1 32 0 0 0 16 48
D2 16 16 16 16 0 64

128K D1 64 0 0 0 32 96
D2 32 32 32 32 0 128

256K
D1 64 0 0 64 0 128
D2 64 64 0 0 0 128

512K
D1 0 128 0 0 128 256
D2 0 0 128 0 128 256

D0, D1, and the parity disk (4KB stripe unit size: 3 pages,
8KB stripe unit size: 6 pages). In case SDI is equal toD2, the
first row of the write request will call to read fromD0 and
D1 and the last row will require to read fromD2 andD3. As
a result, writing a 512KB request in this array requires to read
four stripe units from the data disks (4KB stripe unit size: 4
page reads and 8KB stripe unit size: 8 page reads).

The analytical examples given above lead us to formulate
the number of overall extra page reads caused by a write
request. For simplicity, we assume that the request size is
divided by stripe unit size. We also assume that the number
of pages within a stripe unit is referred asNumber of Pages
per Stripe(NPS). This number is equal to [SUS/Sizepage],
whereSizepage is the size of a page in flash chips. Let’s also
assume that the last disk in the last row accessed by a request,
is referred asLast Disk Index(LDI). This index is equal to
[(Sizereq/SUS) + SDI - 1] moduloNd, whereSizereq is
the size of the request. In case, the striping is performed only
on one row (r=1), theNumber of Extra Page Reads(NEPR), is
calculated according to Equation 1. If the striping is performed
on at least two rows (r≥ 2), the number of extra page reads
can be calculated as shown in Equation 2.

According to Equation 1, Equation 2, and the analytical
results reported in Table III, as the stripe unit size boosts
up, the number of page reads from data disks and the parity
disk increases. The extra page reads obviously can impose
performance penalty to the disk subsystem. As shown in
Table III, the total number of extra page reads is increased

from 3 to 256 pages when the stripe unit size is increased from
4KB to 512KB. As stated earlier, the extra number of page
reads reported in this table is valid for both RAID4 and RAID5
configurations. Additionally, this analysis is independent of the
type of storage device (either HDD or SSD).

B. Impact of Stripe Unit Size on Number of Extra Page Writes

Here, we analyze the effect of stripe unit size increase on
the number of page writes in a write request. Since the request
size is constant and it is distributed on data disks, the number
of page writes on data disks does not change by the variation of
stripe unit size. Therefore, no extra page writes is performed
on data disks. However, the number of page writes on the
parity disk can be affected by the stripe unit size.

Table IV reports the number of page writes imposed by a
512KB write request for different stripe unit sizes and different
starting disk numbers. In this table, we report the number
of page writes rather than the number of extra page writes.
Similar to the analysis provided in the previous subsection,
the number of extra page writes for the first starting disk (i.e.,
SDI = D0), would be equal to zero, since all page updates
will be accomplished in a full stripe manner. Considering the
data distribution shown in Fig. 3, if the granularity is a page or
4KB, there would be 33 page writes (equivalent to 516KB) on
the parity disk when the starting disk is notD0. On the other
hand, if the stripe unit size is 128KB and the starting disk is
not the first disk (as shown in Fig. 4(b)), since two 128KB
parity blocks will be written on the parity disk, the number of
page writes on the parity disk will be increased to 64 pages.
This number of page writes is about twice greater than what
we had for 4KB stripe unit size. Similar to the number of extra
page reads, we can extract the formulation from this example
for the number of extra page writes. Here, we assume that
the request size is divided by SUS and striping is performed
over at least two rows of the array. Equation 3 can be used
to compute theNumber of Extra Page Writes(NEPW) on the
parity disk.

NEPW = ⌈
SDI + (Sizereq/SUS)

Nd

⌉ ×NPS (3)

The total number of page writes committed to
SSDs, reported in Table IV, would be equal to
NEPW + (Sizereq/Sizepage). The analytical results
reported in Table IV, and the formulation given in Equation 3
demonstrates that the larger stripe unit size, the more
write/erase operations on the parity disk, which results in



7

TABLE IV
NUMBER OF PAGE WRITES TO WRITE A512KB REQUEST IN ARAID4 4+1

ARRAY (PAGE SIZE=4KB)

Number of Page Writes
SUS SDI D0 D1 D2 D3 Parity Overall

4K D1 32 32 32 32 33 161
D2 32 32 32 32 33 161

8K D1 32 32 32 32 34 162
D2 32 32 32 32 34 162

16K
D1 32 32 32 32 36 164
D2 32 32 32 32 36 164

32K D1 32 32 32 32 40 168
D2 32 32 32 32 40 168

64K D1 32 32 32 32 48 176
D2 32 32 32 32 48 176

128K D1 32 32 32 32 64 192
D2 32 32 32 32 64 192

256K
D1 0 64 64 0 64 192
D2 0 0 64 64 64 192

512K
D1 0 128 0 0 128 256
D2 0 0 128 0 128 256

fast aging of the parity disk. The total number of page
writes is increased in this table from 161 to 256 pages when
the stripe unit size is increased from 4KB to 512KB. In
particular, the number of page writes on the parity disk is
increased from 33 to 128 pages when the stripe unit size
is increased from 4KB to 512KB. Since the parity disk in
RAID4 is a performance bottleneck and page writes on flash
memories are time-consuming operations, performance can
be considerably degraded.

C. Extra Page Reads and Writes in SSD- vs. HDD-Based
RAID Arrays

The main conclusion from the analytical study provided in
the previous subsections is that as the stripe unit size becomes
larger, the number of extra page reads and writes increases
in both RAID4 and RAID5 configurations in either SSD- or
HDD-based RAID arrays. The performance impact of extra
page reads/writes needs to be further investigated. Intuitively,
reading or writing2n pages in SSDs takes twice as reading or
writing n pages. Hence, it is expected that the extra number of
page reads and writes in SSDs directly affects the performance.
This will be validated in our results presented in Sec. V. Such
statement, however, is not valid for HDDs due to the major
contribution of positioning time in the overall response time. In
general, the response time for an access to a HDD is calculated
as follows:

Taccess = Tseek + Trotate + Ttransfer (4)

In this equation,Tseek, Trotate, and Ttransfer are seek
time, rotation time, and transfer time, respectively. We refer
to positioning time as the sum of seek time and rotation time.
Positioning time is generally independent from the requestsize
and it depends on the characteristics of HDDs. Transfer time,
however, depends both on HDD characteristics and the request
size. Since positioning time will be a major contributor of
response time for small requests, it is expected that imposing
extra page page reads and page writes will not result into
significant performance overhead in small requests. On the

other hand when a request is large enough to be distributed
on many stripes in an array, the number of extra page reads
and page writes becomes negligible as compared to the total
number of page reads and writes of user data. This will be
validated in the results provided in Sec V-C.

V. EXPERIMENTAL RESULTS

In order to evaluate our analytical study, we have simulated
SSD-based RAID4 and RAID5 4+1 arrays using DiskSim
V4.0 simulator [40]. DiskSim is a disk subsystem simulator,
which has been extended to support both HDDs and SSDs.
In our experiments, we report the number of extra read and
write pages for both RAID4 and RAID5 configurations. In
this simulator, no cache memory has been used in the RAID
controller for either SSDs or HDDs. The configuration of
RAID controller in all experiments are the same for both
HDD- and SSD-based RAID arrays. Additionally, we also
report the performance metrics of SSD-based RAID arrays,
i.e., throughput and response time, for both RAID4 and RAID5
arrays. In the experimental setup, we have used a common
configuration previously used in other studies [4; 41; 42; 43].
This configuration has been outlined in Table V. In our
simulations, the number of page reads and page writes on each
disk and the average response time are measured. We have also
extracted throughput by extending the source code of DiskSim.
Six I/O traces have been used in our simulation, among which
two are MSR Cambridge [44] block I/O traces and four are
traces produced by Postmark [45], Iozone [46], and Vdbench
[47] programs. These four latter traces are I/O intensive traces
which were gathered by running the corresponding application
programs. Table VI reports the characteristics of these traces.
To further validate the proposed analytical study, we have also
conducted experiments on a system equipped with three SSDs.
Due to very time-consuming experiments on the physical
system, we have only conducted a sample experiment on this
system setup.

In the rest of this section, performance results extracted by
DiskSim simulator for a SSD-based RAID array is presented
in Sec. V-A and Sec. V-B. The performance simulation results
for a HDD-based RAID array is presented in Sec. V-C.
The endurance simulation results for a SSD-based RAID are
reported in Sec. V-D. Lastly, experimental results for SSD-
based RAID extracted from a system equipped with Intel SSDs
are reported in Sec. V-E.

A. Effect of stripe unit size on number of page reads and
writes

Fig. 5 shows the impact of varying stripe unit size on the
number of extra page reads of data and parity disks due
to parity generation in a RAID4 4+1 array. It can be seen
that the number of extra page reads on data and parity disks
significantly boosts up by increasing the stripe unit size from
4KB to 512KB. However, the number of extra page reads on
data disks is declined when the stripe unit size is increased
from 512KB to 1024KB. After this point, the number of extra
page reads on all disks remains almost the same and it is



8

TABLE VI
STATISTICS OF TRACES EXTRACTED FROMIOZONE, POSTMARK, AND VDBENCH PROGRAMS; AND MSR CAMBRIDGE TRACES USED IN OUR

EXPERIMENTS

Parameter Iozone Postmark VdBench Postmark2 CAMRESIRA01-lvm1 CAMWEBDEV-lvm2
Read Requests (%) 0 83.2 0.1 64 1 0
Write Requests (%) 100 16.8 99.9 36 99 100

Average 360 222 412 242 6231 4155
Request Size (KB)

Average Read – 99 4 146 6717 –
Request Size (KB)

Average Write 360 833 413 405 6230 4155
Request Size (KB)

Average Time Between 0.25 39.75 0.16 46.73 4.2 2.91
Consecutive Write Requests (ms)

Average Time Between – 7.52 13.60 25.72 1.13 –
Consecutive read Requests (ms)
Max Write Request Size (KB) 512 4096 512 512 32768 32768

(a) (b) (c)

Fig. 5. Number of extra page reads by varying stripe unit size: (a) Iozone, (b) Postmark2, (c) Vdbench

(a) (b) (c)

Fig. 6. Number of page writes by varying stripe unit size: (a)Iozone, (b) Postmark2, (c) Vdbench

TABLE V
EXPERIMENTAL SETUP USED INDISKSIM

Parameter Value Parameter Value
Page Size (KB) 4 Number of Pages 64

per Block
Number of Blocks 2048 Number of Planes 8

per Plane per Die
Number of Dies 8 SSD Size (GB) 32
Per Flash Chip

Number of Parallel 1 Page Read 0.025
I/O Channels Latency (ms)
Page Write 0.2 Block Erase 1.5

Latency (ms) Latency (ms)
Cache Configuration No cache used

saturated. This point, where saturation happens, is dependent
on the maximum write request size of a trace. From Table VI

the maximum write request for traces used in Fig. 5 is 512KB.
When the stripe unit size exceeds the maximum write request
size, no distribution takes place and each write request is
directed to only one disk. Consequently, for parity generation,
one read operation from the target data disk and one read
operation from the parity disk is requested. This means that
every write request implies a page read from the parity disk
and a page read from only one data disk. This will increase the
number of parity page reads while it will decrease the number
of data page reads. Here, one should expect that the total page
reads from all data disks gets almost equal to the parity disk
page reads. This has been confirmed by the results provided
in Fig. 5.

We have also measured the number of page writes on data
and parity disks in a RAID4 4+1 configuration to evaluate the



9

(a) (b)

Fig. 7. Number of extra page reads by varying stripe unit sizefor RAID4 and RAID5: (a) Postmark, (b) CAMRESIRA01-lvm1

(a) (b)

Fig. 8. Number of page writes by varying stripe unit size for RAID4 and RAID5: (a) Postmark, (b) CAMRESIRA01-lvm1

effect of varying stripe granularity on write performance and
lifetime of SSDs as shown in Fig. 6. In this figure, we report
the number of page writes rather than the number of extra
page writes. It can be seen that the stripe unit size increment
does not much affect the number of writes on data disks. This
is because the amount of data that is supposed to be written
on data disks is not affected by the variation of the stripe unit
size. On the other hand, the number of page writes on the
parity disk increases by enlarging the stripe unit size. This is
in agreement with the analytical study presented in SectionIV.

The incremental page writes on the parity disk deteriorates
the lifetime of the parity disk since the greater number of
page writes implies the greater number of erase operations on
flash blocks. Additionally, the extra page writes can affectthe
overall performance as they increase the number of accesses
to the parity disk, which is the performance bottleneck in a
RAID4 configuration. For instance, when the stripe unit size
is equal to 128KB, the number of writes on the parity disk is
about twice greater than the number of page writes on a data

disk. As it can be seen in Fig. 6, the number of page writes on
the parity disk gets saturated when the stripe unit size exceeds
the maximum write request size. This is due to the pattern
of data distribution does not change once the stripe unit size
becomes larger than the maximum size of write requests.

In Fig. 7, we compare the extra page reads for data and
parity disks in RAID4 and RAID5 arrays. The total number
of extra page reads in RAID5 increases similar to RAID4
with stripe unit size increment. Unlike RAID4, as it was
expected, the extra page reads are evenly distributed in the
RAID5 array. In a RAID4 array, page reads and page writes
on the parity disk are directed to only one disk, whereas these
extra transactions are distributed on all disks in RAID5. That
is why one expects longer response time for a RAID4 array
as compared to a RAID5 array. This will be demonstrated
in the next subsection. Note the total number of page reads
is almost similar in both RAID4 and RAID5 arrays. The
slight difference is due to starting disk numbers in these two
configurations can be different for I/O requests.



10

(a) (b)

(c) (d)

Fig. 9. Average response time by varying stripe unit size: (a) Iozone, (b) Postmark, (c) CAMRESIRA01-lvm1, (d) CAMWEBDEV-lvm2

Fig. 8 compares the number of page writes for data and
parity disks in RAID4 and RAID5 arrays. In this figure, we
report the number of page writes rather than the number
of extra page writes. Similar to the discussion provided for
Fig. 7, page writes in RAID5 is evenly distributed across all
disks. Therefore, one should expect similar disk aging for all
SSDs in a RAID5 array. From the results reported in Fig. 8,
two observations can be concluded. First since the number of
extra page writes is negligible in small stripe unit size (e.g.,
4KB), we observe almost similar disk aging for both RAID4
and RAID5 configurations. Second, as the number of extra
page writes becomes considerable in large stripe unit sizes
(e.g., 1024KB), the disk aging in RAID5 array gets more
pronounced than data disks in RAID4 array. As shown in
Fig. 8, the number of page writes imposed to data disks in
RAID4 is, on average, 20% less compared to RAID5 array in
large stripe unit sizes.

Note that the number of writes in RAID4 and RAID5 arrays
is almost similar. However, as pointed out in Sec. III, the main
shortcoming of RAID5 array is that SSDs in a RAID5 arrays
suffer from simultaneous disk failures as all disks get similar
writes. That is all disks wear out approximately with the same
rate. The results shown in Fig. 8 validate this observation.

B. Effect of stripe unit size on overall performance

As shown in the previous subsection, incrementing the
stripe unit size leads to significant increase in the number
of page reads and page writes from/to the parity disk and
also increases the number of page reads from data disks. In
this subsection, we investigate the effect of this observation
on two major metrics of disk performance, namely, response
time and throughput. The average response time of RAID4
and RAID5 arrays with different stripe unit sizes have been
reported in Fig. 9 and it is compared with the performance of
the following configurations: i) a RAID0 array including four
SSDs and ii) a single SSD. The response time results have
been reported for four I/O intensive benchmarks. As shown
in Fig. 9, using RAID configuration with a small granularity
of stripe unite size results in a significant improvement in the
average response time compared to a single SSD. For instance,
choosing a page-level stripe unit size in RAID0 will improve
the response time up to six times compared to a single SSD.
On the other hand, enlarging the stripe unit size to some
extent in RAID4 and RAID5 can worsen the response time
as opposed to a single SSD, as shown in Fig. 9. Additionally,
it can be observed that RAID4 and RAID5 response times are
very close to each other in small stripe unit sizes, however,
RAID5 shows better response time due to distribution of parity



11

(a) (b)

Fig. 10. Overall throughput by varying stripe unit size: (a)Iozone, (b) Postmark

(a) (b)

Fig. 11. Average response time by varying stripe unit size with different number of flash chips inside the SSD: (a) Iozone,(b) Vdbench

page reads and page writes. It should be noted that the larger
stripe unit size decreases data distribution and consequently
it worsens response time. However, as Fig. 9 depicts, more
extra page reads and page writes has even more severe effect
on performance degradation.

The overall throughput of RAID4, RAID5, and RAID0
arrays with different stripe unit sizes as well as a single
SSD has been reported in Fig. 10. The overall throughput
has been computed based on total time, idle time, number
of requests, and average request size according to Equation5.
Such parameters are reported in DiskSim output simulation
results.

Throughput =

∑

Size(Ri)

Total Simulation T ime− Total Idle T ime
(5)

As it can be seen in Fig. 10, using 4KB stripe unit size
in RAID4 and RAID5 improves throughput up to four times
as compared to a single SSD. Fig. 10 also demonstrates that
the throughput of RAID0, RAID4 and RAID5 arrays degrades
as the stripe unit size enlarges. When stripe unit size exceeds
256KB and 2048KB, the throughput gets even worse than a
single SSD in RAID4 and RAID5 configurations, for both

Iozone and Postmark traces, respectively. The reason for this
degradation is that when stripe unit size reaches the maximum
request size in the trace, no data distribution takes place and
extra page operations get saturated at its maximum number.
The results show that both response time and throughput
decline as the stripe unit size is increased. The experimental
results reported in Fig. 9 and Fig. 10 are in agreement with
the analysis provided in Section IV.

The way that the number of page reads and writes affects
performance is also dependent on the number of parallel units
used in each disk. For instance, when an SSD uses only one
flash chip in serving a read or write request, it can only manage
one request at a time. However, in an SSD with more number
of flash chips, more requests can be simultaneously served
due to parallelism between flash chips. We have evaluated the
effect of number of flash chips on performance with different
stripe unit sizes. Fig. 11 demonstrates that the less flash chips
in an SSD, the more aggressive response time deterioration.
Note the Y-axis in this figure is in logarithmic scale. The
response time reported in this figure is comprised of service
time and queue time. When more parallelism is established in
an SSD, more extra reads and writes are served simultaneously.



12

TABLE VII
IMPACT OF STRIPEUNIT SIZE ON RESPONSET IME IN RAID4 4+1 ARRAY USING SEAGATE-CHEETAH15K5 HDD

Contribution of Positioning
Stripe Response Time (ms) Positioning Time (ms) Transfer Time (ms) Time in Response Time (%)
Unit Average Request Size (KB)

Size (KB) 8 400 1600 8 400 1600 8 400 1600 8 400 1600
4 3.00 3.50 4.77 2.91 2.28 1.77 0.03 1.04 3.25 96.99 65.23 37.20
8 3.12 3.47 4.61 3.00 2.32 1.79 0.03 1.00 3.17 96.36 67.03 38.94
16 3.16 3.47 4.55 2.99 2.34 1.80 0.03 1.02 3.15 94.60 67.51 39.55
32 3.22 3.43 4.53 3.01 2.31 1.80 0.03 1.08 3.17 93.44 67.44 39.81
64 3.16 3.36 4.53 2.98 2.21 1.79 0.03 1.25 3.22 94.36 65.81 39.64
128 3.15 3.35 4.56 2.98 2.13 1.78 0.03 1.41 3.40 94.53 63.71 39.05

TABLE VIII
IMPACT OF STRIPEUNIT SIZE ON RESPONSET IME IN RAID4 4+1 ARRAY USING SEAGATE-CHEETAH9LP HDD

Contribution of Positioning
Stripe Response Time (ms) Positioning Time (ms) Transfer Time (ms) Time in Response Time (%)
Unit Average Request Size (KB)

Size (KB) 8 400 1600 8 400 1600 8 400 1600 8 400 1600
4 5.07 18.21 59.71 4.16 4.01 4.10 0.22 13.63 55.82 82.05 22.04 6.87
8 5.13 17.60 56.50 4.06 3.89 3.99 0.27 12.96 52.57 79.20 22.11 7.06
16 5.20 17.94 55.58 4.02 3.76 3.84 0.37 13.09 51.48 77.31 20.98 6.91
32 5.13 19.40 56.27 4.03 3.87 3.91 0.28 13.76 51.43 78.61 19.92 6.95
64 5.10 22.75 58.45 4.02 3.68 3.67 0.28 15.72 52.50 78.72 16.18 6.28
128 5.13 28.90 64.97 4.02 3.84 4.00 0.29 19.08 55.86 78.44 13.28 6.15

TABLE IX
IMPACT OF STRIPEUNIT SIZE ON RESPONSET IME IN RAID4 4+1 ARRAY USING QUANTUM -ATLASIII HDD

Contribution of Positioning
Stripe Response Time (ms) Positioning Time (ms) Transfer Time (ms) Time in Response Time (%)
Unit Average Request Size (KB)

Size (KB) 8 400 1600 8 400 1600 8 400 1600 8 400 1600
4 7.08 26.02 94.09 6.37 5.74 5.72 0.23 19.87 88.36 90.00 22.08 6.07
8 7.24 25.09 88.70 6.38 5.79 5.85 0.29 18.73 82.70 88.19 23.09 6.60
16 7.25 25.02 86.71 6.36 5.63 5.75 0.31 18.49 80.43 87.73 22.51 6.63
32 7.31 26.88 87.44 6.33 5.40 5.51 0.36 19.90 80.64 86.58 20.10 6.30
64 7.22 31.43 89.76 6.34 5.53 5.72 0.30 24.44 82.76 87.83 17.59 6.37
128 7.26 39.12 97.82 6.37 5.46 5.64 0.30 31.66 90.35 87.76 13.95 5.76

On the other hand, having less parallelism increases service
time and queue time and it, in turn, harshly degrades the
performance.

C. Extra Page Reads and Writes in HDD-Based RAID Arrays

Table VII, Table VIII, and Table IX provide three samples to
elaborate the impact of stripe unit size on response time using
different HDDs (Seagate-Cheetah15k5, Seagate-Cheetah9LP,
and Quantum-AtlasIII [40]) whose characteristics are re-
ported in Table X. In these sample experiments, we have used
three synthetic traces with average request size equal to 8KB,
400KB, and 1600KB. The main observation from these three
tables is that the response time does not exhibit significant
variation with different stripe unit sizes. As an example,
considering the synthetic trace with average request size equal
to 8KB, the response time varies from 3.00ms to 3.15ms when
increasing the stripe unit size from 4KB to 128KB in Table
VII. As an another example, considering the synthetic trace
with average request size equal to 1600KB, the response time
varies from 59.71ms to 64.97ms when increasing the stripe
unit size from 4KB to 128KB in Table VIII. In the results
provided in these tables, positioning time contributes to more

than 75% when the average request size is equal to 8KB. In
this case, due to major contribution of positioning time in the
overall response time, the extra number of page reads and
writes does not lead to significant performance overhead in
HDDs. This observation, however, is not valid in SSDs as it
was demonstrated in the previous subsection. On the other
hand, the results demonstrate that positioning time contributes
to less than 10% in Table VIII and Table IX when the average
request size is equal to 1600KB. In this case, since user data
is distributed over several stripes, the number of extra read
and write pages becomes negligible as compared to the total
number of read and write pages.

D. Effect of stripe unit size on life time of SSD array

Here, we investigate the effect of different stripe unit sizes
on the endurance of a RAID4 array. To do so, the number of
erase operations performed on data and parity disks have been
reported in Fig. 12 for few I/O benchmarks. It can be observed
that although the stripe unit size increment does not have much
effect on the endurance of data disks, it considerably affects
the number of erases in the parity disk. For instance, when
the stripe unit size reaches 128KB and 1024KB in Iozone and



13

(a) (b) (c)

Fig. 12. Number of erases by varying stripe unit size : (a) Iozone, (b) CAMRESIRA01-lvm1, (c) CAMWEBDEV-lvm2

TABLE X
CHARACTERISTICS OFHDDS USED IN EXPERIMENTS

Cheetah15k5 Cheetah9LP Atlas III
Sector Transfer 0.0150 0.1050 0.1060

Time (ms)
Max Seek 6.9139 10.627 15.3600
Time (ms)
Min Seek 0.5525 0.8310 1.6630
Time (ms)
Rotation 15020 10045 7200

Speed (rpm)
Size (# blocks) 287M 18M 18M

CAMWEBDEV-lvm2 benchmarks, respectively, the number of
erases on the parity disk is about twice greater than the number
of erases in the data disks. This means that the parity disk ages
about twice faster than data disks.

The issue of parity disk fast aging can be resolved by
replacing the parity disk when it becomes too old. In advance
replacement of parity disk, however, will impose cost in an
inter-RAID4 array. In an intra-RAID4, it is not possible to
replace only one chip within an SSD and the whole SSD
should be discarded.

E. Performance experiments with a physical SSD-based RAID
array

To further validate simulation results, we have conducted
limited experiments on a physical system setup deploying
RAID5 2+1 SSD array, using Linux software RAID. The
evaluation is conducted on a hardware platform with an
1.8GHz AMD processor, employing an Nvidia ck804 SATA
controller c©. The SSD module is the 40GB Intel SATA-II
SSD (SSDSA2M040G2GC)c©. An 80GB HDD is used to
house operating system (Ubuntu 12.04) and other applications.
Fig. 13 demonstrates the results obtained by running Iozone
trace on three SSDs configured as RAID5 2+1. Fig. 13.b shows
that the number of extra page reads on different disks boostsup
by stripe unit size enlargement. Fig. 13.c demonstrates slight
increase in the number of page writes with increasing the stripe
unit size. These two effects result in performance degradation
as shown in Fig. 13.a, which admits our simulation results.

VI. RELATED WORK

Numerous studies have been performed on disk array
storage systems characteristics and enhancement techniques.

Among these works, studies which investigate striping meth-
ods and granularity effects on arrays performance and relia-
bility, are more related to our study. In the following subsec-
tions, we review both HDD- and SSD-based RAID studies,
which evaluate the effect of stripe unit size on performance,
endurance, and reliability of RAID arrays. Since the scope of
this work is on SSD-based RAID arrays, we elaborate such
studies more in detail.

A. HDD-based RAID studies

There are a few studies which investigate the impact of
stripe unit size on performance of HDD-based RAID arrays. In
[48], Deng et. al. investigate the performance effect of stripe
unit size on non-redundant HDD-based RAID integrated in
Network Attached System(NAS). This study demonstrates that
the stripe unit size has a negligible impact on performance
of RAID0 arrays. This is explained by the fact that the sub-
commands of different requests coming from file system are
combined into one I/O command, which results in only one
disk positioning in each drive. This effect decreases the overall
positioning time and mitigates the impact of stripe unit size
variation.

In [24], Chen et. al. study how data should be distributed
on a redundant HDD-based RAID to optimize the disk array
performance. This study investigates optimal stripe unit size
for read and write intensive workloads in a RAID5 config-
uration. It is demonstrated that read requests in a RAID5
array behave similar to reads and writes in non-redundant
disks when varying stripe unit size. However, write intensive
workloads achieve optimal performance at smaller stripe unit
size due to more full stripe writes with small granularity.

In [23], Jin et. al. introduce a performance model to analyze
the effect of stripe unit size in a RAID array. This model
can be applied to achieve optimal stripe unit size in a disk
array. In [49], Hwang et. al. presented a distributed disk
array architecture, named RAIDx, which is aimed at achieving
higher I/O performance. By integrating orthogonal striping and
mirroring architecture, it is shown that RAIDx outperforms
RAID5 and RAID10 arrays. In this study, the effect of stripe
unit size on aggregate bandwidth of RAIDx has been also
investigated and it is compared with RAID5 and RAID10
arrays.



14

(a) (b) (c)

Fig. 13. Experiment results from executing Iozone trace on aphysical SSD-based RAID array: (a) average response time, (b) number of extra page reads,
(c) number of page writes

B. SSD-based RAID studies

Studies on SSD-based arrays have been performed consid-
ering different array architectures from simple level of RAIDs
to more complicated array such as RAID6 utilizing erasure
code techniques. A part of these studies investigate striping
and granularity effects on different level of RAIDs or erasure
coded arrays. Furthermore, there are several studies, which
introduce techniques at the aim of performance and reliability
enhancement. There are few methods, which investigate the
impact of stripe unit size on performance of an SSD-based
RAID array.

In [50], Petrov et. al. studied properties of an SSD-based
RAID array and considered issues, which affect performance
of such array. It is demonstrated that while a single SSD
shows significant performance enhancement over HDD, an
SSD-based RAID array suffers from performance degradation
due to a) current non-SSD compatible RAID controllers, b)
read/write asymmetry of SSDs, and c) fragmentation caused
by erase operations. This study concludes that the performance
degradation is mostly due to RAID controllers that are not
designed for the characteristics of SSDs. The authors have
also examined the effect of stripe unit size on the throughput
of RAID0 or a non-parity-based array. Although the impact of
stripe unit size on throughput was studied, the corresponding
effect on other important metrics such as response time and
endurance has not been analyzed. Additionally, parity-based
RAID and the effect of parity computation on performance
has not been studied in the proposed study.

In [51], Jeremic et. al. demonstrated the pitfall of SSD-based
RAID arrays. They pointed out to the impact of stripe unit size
in parity-based RAID arrays, however, no experimental results
have been provided. The proposed study also investigates
the impact of page-size alignment, synchronous aging, and
workload history on performance of SSD-based RAID arrays.

In [52], Chang et. al. proposed an adaptive stripping method
which enhances garbage collection process. They introduced
dynamic stripping versus static stripping for choosing an
element inside an SSD. In a static stripping scheme, a page
write request is assigned to an element based on its logical
block address and the number of elements reside in an SSD.
It is explained that although the static scheme distributesdata
evenly, due to uneven access to data blocks, some elements

might possess much more hot data blocks than others. Con-
sequently, such elements may call garbage collection process
more frequently, resulting in performance degradation. Inorder
to mitigate this issue, dynamic stripping has been suggested,
which distributes pages of write requests on idle banks that
involve free pages. In this scheme, a hot data goes over a
bank with the lowest number of erase count.

In [53], Chang et. al. presented a striping algorithm among
banks in a flash memory. The proposed scheme uses load
balancing and redundancy to improve both performance and
reliability. In the proposed scheme, stripes of an intra-RAID
are classified into data and code stripes. A code stripe
maintains theexclusive ORof distributed information on
the corresponding data stripe such that the exclusive OR of
two banks in a data stripe will be stored on a different
bank in a code stripe. Consequently, when a bank is busy,
the corresponding data can be retrieved from other banks,
which results in improved performance. In [54], Y. Deng
et. al. examine flash-based storage system architectures and
study optimization methods to improve SSDs performance and
energy consumption. SSDs parallelism such as Intra-RAID and
Inter-RAID and its different architectures are also investigated
in this study.

Balakrishnan et. al. proposed a parity-based RAID, called
differential RAID [10]. The proposed method is based on
different aging rate of SSDs in an array. In this method,
the reliability of SSD array is increased by decreasing the
probability of data loss in the event of one disk failure. This
method suggests an uneven parity distribution, which makes
SSDs receive different percentage of parities and have different
aging rate. For instance, when there are five disks in an array,
the parity assignment such as (60, 10,10, 10 , 10) explains that
the first disk stores 60 percent of parities while in the other
disks, each holds 10 percent of parities. Therefore, the first
disk ages faster than the other disks. The aging rate of disks
also depends on write request distribution. Requests which
impose full stripe writes, make disks age closely and decrease
the reliability. In contrast, the reliability is the highest when
all the requests are random writes. When the stripe unit size
is small, many requests in a workload are distributed in a
full stripe manner which increases the data loss probability.
From previous subsections, we observed that smaller stripe
unit size imposes less parity page writes. Hence, small stripe



15

unit size makes more full stripe writes and less parities which
together make the reliability of the array to decline. When
stripe unit size enlarges, the number of generated parity pages
is augmented; however, the amount of full or partial stripe
writes mostly depends on workload and request size.

There are a few studies that evaluate the effect of word size
or the number of words in a stripe unit on the performance
of disk subsystems configured as erasure coded arrays. A
two dimensional stripe-based erasure code named GRID is
proposed in [55]. This study analytically investigates theeffect
of stripe on storage efficiency in an array. The authors describe
stripe size as multiplication of the number of stripes in a row
stripe and the number of stripes in a column stripe. Although
the proposed method is based on stripe-based erasure codes,
the effect of stripe unit size, which is different from stripe size
is not investigated.

Another study investigating word size has been presented in
[56]. This study gives insights for erasure code deploymentin
cloud file systems. The impact of word size and the number
of words on recovery time and degraded reads has been
examined. It is demonstrated that larger word size results in
larger recovery performance. It is also shown that lager word
size depreciate the disk seek time overhead. Another study
presented in [57] investigates the impact of data disks and
word size on the proposed RAID6 scheme, called minimum
RAID6 codes. The proposed experimental results show that
larger word size would result in improved performance in
the proposed RAID6 codes. This study has been proposed for
HDD-based RAID arrays.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we explored the effect of stripe unit size
on performance and endurance of SSD-based RAID arrays.
We presented an analytical study to investigate the impact
of stripe unit size on extra page reads and writes incurred
by write requests. Although most previous studies have used
larger stripe size (such as 64KB or 128KB) in SSD-based
RAID arrays, our proposed analytical study revealed that a
4KB stripe unit size can significantly improve throughput,
response time, and endurance in SSD-based RAID arrays as
compared to large stripe unit sizes (e.g., 128KB). To validate
the proposed analytical study, we used I/O intensive traces
and evaluated the effect of stripe unit size using a disk
subsystem simulator. The results obtained using experimental
study using I/O intensive traces demonstrated that choosing
a 4KB stripe unit size can improve throughput, response
time, and endurance of SSD-based RAID arrays up to 67.6%,
52.2%, and 48.6% respectively, as compared to 128KB stripe
unit size.

As a future work, one can extend this study to investigate
the impact of stripe unit size on performance and endurance
of complex erasure codes such as Reed-Solomon, Even-odd,
and X-code. In particular, investigation of word size and the
number of words within a stripe unit can be further examined
in SSD-based RAID arrays employing complex erasure codes.

REFERENCES

[1] Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., and
Rowstron, A. ”Migrating Server Storage to SSDs: Analysis
of Tradeoffs”. 4th ACM European Conference on Computer
systems (EuroSys), pp. 145–158, (2009).

[2] Chen, F., Koufaty, D., and Zhang, X. ”Understanding Intrin-
sic Characteristics and System Implications of Flash Memory
Based Solid State Drives”.11th International Joint Conference
on Measurement and Modeling of Computer Systems (SIGMET-
RICS), pp. 181–192. ACM, (2009).

[3] Kim, Y., Tauras, B., Gupta, A., and Urgaonkar, B. ”FlashSim:
A Simulator for NAND Flash-Based Solid-State Drives”.First
International Conference on Advances in System Simulation, pp.
125–131, (2009).

[4] Kim, Y., Oral, S., Shipman, G., Lee, J., Dillow, D., and Wang,
F. ”Harmonia: A Globally Coordinated Garbage Collector
for Arrays of Solid-State Drives”.IEEE 27th Symposium on
Mass Storage Systems and Technologies (MSST), pp. 1–12, May
(2011).

[5] Wong, G. ”SSD Market Overview”.Inside Solid State Drives
(SSDs), volume 37 ofSpringer Series in Advanced Microelec-
tronics, pp. 1–17. Springer Netherlands, (2013).

[6] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J., Manasse,
M., and Panigrahy, R. ”Design Tradeoffs for SSD Perfor-
mance”.USENIX Annual Technical Conference (ATC), pp. 57–
70, (2008).

[7] Im, S. and Shin, D. ”Flash-Aware RAID Techniques for
Dependable and High-Performance Flash Memory SSD”.IEEE
Transactions on Computers (TC), 60(1), pp. 80 –92, January
(2011).

[8] Greenan, K., Long, D., Miller, E., Schwarz, T., and Wildani,
A. ”Building Flexible, Fault-Tolerant Flash-Based Storage
Systems”. 5th Workshop on Hot Topics in Dependability
(HotDep), (, Lisbon, Portugal, 2009).

[9] Mao, B., Jiang, H., Feng, D., Wu, S., Chen, J., Zeng, L.,
and Tian, L. ”HPDA: A Hybrid Parity-Based Disk Array for
Enhanced Performance and Reliability”.IEEE International
Symposium on Parallel Distributed Processing (IPDPS), pp. 1–
12, April (2010).

[10] Balakrishnan, M., Kadav, A., Prabhakaran, V., and Malkhi, D.
”Differential RAID: Rethinking RAID for SSD Reliability”.
ACM Transaction on Storage (TOS), 6, pp. 1–22, July (2010).

[11] Chang, Y. H., Hsieh, J. W., and Kuo, T. W. ”Endurance
Enhancement of Flash-Memory Storage Systems: an Efficient
Static Wear Leveling Design”.44th Annual Design Automation
Conference, pp. 212–217, (2007).

[12] Mielke, N., Marquart, T., Wu, N., Kessenich, J., Belgal, H.,
Schares, E., Trivedi, F., Goodness, E., and Nevill, L. ”Bit Error
Rate in NAND Flash Memories”.IEEE International Sympo-
sium on Reliability Physics (IRPS), pp. 9–19, May (2008).

[13] Kang, Y. and Miller, E. ”Adding Aggressive Error Correction to
a High-Performance Compressing Flash File System”.7th ACM
International Conference on Embedded Software (EMSOFT),
pp. 305–314, (2009).

[14] Yaakobi, E., Ma, J., Grupp, L., Siegel, P., Swanson, S.,and
Wolf, J. K. ”Error Characterization and Coding Schemes for
Flash Memories”. IEEE Globecom Workshop on Application
of Communication Theory to Emerging Memory Technologies
(ACTEMT), pp. 1–5, December (2010).

[15] Qin, X., Miller, E., Schwarz, T., Long, D., Brandt, S., and
Litwin, W. ”Reliability mechanisms for very large storage
systems”.20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies, pp. 146–156, April (2003).

[16] Blaum, M., Brady, J., Bruck, J., and Menon, J. ”EVENODD:
An Efficient Scheme for Tolerating Double Disk Failures in
RAID Architectures”. IEEE Transaction on Computers, 44(2),
pp. 192–202, (1995).

[17] Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D.



16

”RAID: High-Performance, Reliable Secondary Storage”.ACM
Computing Surveys (CSUR), 26, pp. 145–185, June (1994).

[18] Patterson, D., Gibson, G., and Katz, R. ”A Case for Redundant
Arrays of Inexpensive Disks (RAID)”.ACM SIGMOD Record,
17, pp. 109–116, June (1988).

[19] Chen, S. and Towsley, D. ”A Performance Evaluation of RAID
Architectures”.IEEE Transactions on Computers (TC), 45, pp.
1116–1130, October (1996).

[20] Lee, E. K. and Katz, R. H. ”Performance Consequences of
Parity Placement in Disk Arrays”.ACM SIGARCH Computer
Architure News, 19(2), pp. 190–199, (1991).

[21] He, X., Beedanagari, P., and Zhou, D. ”Performance Evaluation
of Distributed iSCSI RAID”.international workshop on Storage
network architecture and parallel I/Os, pp. 11–18, (2003).

[22] Lee, E. K. and Katz, R. H. ”An Analytic Performance Model
of Disk Arrays And Its Application”. Technical report, (1991).

[23] Jin, H. and Hwang, K. ”Optimal striping in RAID architecture”.
Concurrency - Practice and Experience, 12(10), pp. 909–916,
(2000).

[24] Chen, P. M. and Lee, E. K. ”Striping in a RAID Level 5 Disk
Array”. SIGMETRICS - Performance Evaluation Review, 23(1),
pp. 136–145, May (1995).

[25] IBM Incorporation. ”History of changes to software -
ServeRAID”. http://www-947.ibm.com/support/entry/portal/
docdisplay?lndocid=MIGR-4QDMES.

[26] EMC Corporation. ”EMC CLARiiON RAID 6 Technology”.
Technical report, July (2007).

[27] Hewlett-Packard Development Company. ”HP Array Configu-
ration Utility User Guide”. Technical report, April (2011).

[28] Lee, S., Ha, K., Zhang, K., Kim, J., and Kim, J. ”FlexFS: a
Flexible Flash File System for MLC NAND Flash Memory”.
USENIX Annual Technical Conference, (2009).

[29] Chang, L. P. and Huang, L. C. ”A Low-Cost Wear-Leveling
Algorithm for Block-Mapping Solid-State Disks”.ACM Special
Interest Group on Programming Languages Notices (SIGPLAN
Not.), 46, pp. 31–40, May (2011).

[30] Chang, L. P. ”On Efficient Wear Leveling for Large-Scale
Flash-Memory Storage Systems”.ACM Symposium on Applied
Computing (SAC), pp. 1126–1130, (2007).

[31] Kuratti, A. and Sanders, W. ”Performance Analysis of the
RAID 5 Disk Array”. International Computer Performance and
Dependability Symposium (ICPDS), pp. 236–245, April (1995).

[32] Reed, I. and Solomon, G. ”Polynomial Codes Over Certain
Finite Fields”.Journal of the Society for Industrial and Applied
Mathematics, 8(2), pp. 300–304, (1959).

[33] Blmer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M.,
and Zuckerman, D. ”An XOR-Based Erasure-Resilient Coding
Scheme”. Technical report, International Computer Science
Institute, August (1995).

[34] Xu, L. and Bruck, J. ”X-code: MDS Array Codes With Optimal
Encoding”.IEEE Transaction on Information Theory, 45(1), pp.
272–276, (2006).

[35] Tokyo-Toshiba Corporation. ”Toshiba introduces highperfor-
mance blade-type SSDs”. http://www.toshiba.co.jp/about/press/
2010 11/pr0801.htm, November (2010).

[36] Micron Technology Inc. ”P400m Enterprise SATA SSD”. http:
//www.micron.com, January (2013).

[37] Kaneko, H., Matsuzaka, T., and Fujiwara, E. ”Three-Level
Error Control Coding for Dependable Solid-State Drives”.14th
IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), pp. 281–288, (2008).

[38] Mir, I. and McEwan, A. ”A Fast Age Distribution Convergence
Mechanism in an SSD Array for Highly Reliable Flash-Based
Storage Systems”. 3rd IEEE International Conference on
Communication Software and Networks (ICCSN), pp. 521–525,
May (2011).

[39] Mir, I. and McEwan, A. ”A Reliability Enhancement Mecha-
nism for High-Assurance MLC Flash-Based Storage Systems”.
17th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications (RTCSA), volume 1,
pp. 190–194, August (2011).

[40] Bucy, J., Schindler, J., Schlosser, S., and Ganger, G. ”The
DiskSim Simulation Environment Version 4.0 Reference Man-
ual”. Technical report, CMU-PDL-08-101, Carnegie Mellon
University, May (2008).

[41] Lee, J., Kim, Y., Shipman, G., Oral, S., Wang, F., and Kim, J. ”A
semi-preemptive garbage collector for solid state drives”. IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 12–21, April (2011).

[42] Lee, Y., Barolli, L., and Lim, S. ”Mapping granularity and
performance tradeoffs for solid state drive”.The Journal of
Supercomputing, pp. 1–17, (2012).

[43] Kim, J., Lee, J., Choi, J., Lee, D., and Noh, S. H. ”Enhancing
SSD reliability through efficient RAID support”.Proceedings
of the Asia-Pacific Workshop on Systems, pp. 4:1–4:6, (2012).

[44] Narayanan, D., Donnelly, A., and Rowstron, A. ”Write Off-
Loading: Practical Power Management for Enterprise Storage”.
ACM Transaction on Storage, 4(3), pp. 1–23, (2008).

[45] Katcher, J. ”PostMark: a New File System Benchmark”,
October (1997).

[46] Norcott, W. D. ”IOzone”. http://www.iozone.org.
[47] Berryman, A., Calyam, P., Honigford, M., and Lai, A. M.

”VDBench: A Benchmarking Toolkit for Thin-Client Based
Virtual Desktop Environments”. IEEE Second International
Conference on Cloud Computing Technology and Science, pp.
480–487, (2010).

[48] Deng, Y. and Wang, F. ”Exploring the Performance Impactof
Stripe Size on Network Attached Storage Systems”.Journal of
Systems Architecture, 54(8), pp. 787–796, (2008).

[49] Hwang, K., Jin, H., and Ho, R. ”Orthogonal Striping and Mir-
roring in Distributed RAID for I/O-Centric Cluster Computing”.
IEEE Transaction on Parallel and Distribution Systems, 13(1),
pp. 26–44, (2002).

[50] Petrov, I., Almeida, G., Buchmann, A., and Graf, U. ”Building
Large Storage Based on Flash Disks”.ADMS, September
(2010).

[51] Jeremic, N., Mühl, G., Busse, A., and Richling, J. ”The
Pitfalls of Deploying Solid-State Drive RAIDs”.4th Annual
International Conference on Systems and Storage, pp. 14:1–
14:13, (2011).

[52] Chang, L. P. and Kuo, T. W. ”An Adaptive Striping Architecture
for Flash Memory Storage Systems of Embedded Systems”.
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTETS), pp. 187196, (2002).

[53] Chang, Y. B. and Chang, L. P. ”A Self-Balancing Striping
Scheme for NAND-Flash Storage Systems”.ACM Symposium
on Applied Computing (SAC), pp. 1715–1719, (2008).

[54] Deng, Y. and Zhou, J. ”Architectures and Optimization Methods
of Flash Memory Based Storage Systems”.Journal of Systems
Architecture, 57(2), pp. 214–227, (2011).

[55] Li, M., Shu, J., and Zheng, W. ”GRID Codes: Strip-Based
Erasure Codes With High Fault Tolerance for Storage Systems”.
ACM Transaction on Storage, 4(4), pp. 15:1–15:22, (2009).

[56] Khan, O., Burns, R., Plank, J., Pierce, W., and Huang, C.”Re-
thinking Erasure Codes for Cloud File Systems: Minimizing I/O
for Recovery and Degraded Reads”.10th USENIX Conference
on File and Storage Technologies, (2012).

[57] Plank, J., Buchsbaum, A., and Z. Vander, T. B. ”Minimum
Density RAID-6 Codes”. ACM Transaction on Storage, 6(4),
pp. 16:1–16:22, (2011).

Farzaneh Rajaei Salmasireceived the BSc and MSc degrees in
computer engineering from the Amirkabir University of Technology
(Tehran Polytechnics) and the Sharif University of Technology (SUT)
in 1999 and 2011, respectively. She has been working as a research
assistant in the Data Storage Systems and Networks (DSN) labora-
tory, SUT, since 2010 till present. Her research interests include SSD
reliability and security.



17

Hossein Asadireceived the B.Sc. and M.Sc. degrees in computer
engineering from the Sharif University of Technology (SUT), Tehran,
Iran, in 2000 and 2002, respectively, and the Ph.D. degree inelectrical
and computer engineering from Northeastern University, Boston, MA,
in 2007. He has been with the Department of Computer Engineering,
SUT, since 2009, where he is currently an Assistant Professor. He
has established and has been the director of the Data StorageSystems
and Networks (DSN) laboratory, SUT, since 2009.

He was with EMC Corporation, Hopkinton, MA, as a Research
Scientist and Senior Hardware Engineer, from 2006 to 2009. From
2002 to 2003, he was a member of the Dependable Systems Labo-
ratory, SUT, where he researched hardware verification techniques.
From 2001 to 2002, he was a member of the Sharif Rescue Robots
Group. He has authored or co-authored more than 50 technical
papers in reputed journals and conference proceedings. Hiscurrent
research interests include data storage systems and networks, solid-
state drives, and reconfigurable and dependable computing.Dr. Asadi
was a recipient of the Technical Award for the Best Robot Design
from the International RoboCup Rescue Competition, organized by
AAAI and RoboCup, and the Distinguished Lecturer Award fromthe
SUT in 2010, one of the most prestigious awards in the university.

Majid GhasemiGol is currently a senior B.Sc. student in the
Department of Computer Engineering at Sharif University ofTech-
nology (SUT). He has been working as a research assistant in the
Data Storage Systems and Networks (DSN) laboratory, SUT, since
2011 till present. His research interests include SSD reliability and
security.


