
DiskAccel: Accelerating Disk-Based Experiments by
Representative Sampling

Mojtaba Tarihi*
tarihi@ce.sharif.edu

Hossein Asadi*†

asadi@sharif.edu
Hamid Sarbazi-Azad*‡

azad@sharif.edu
* Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

† ICT Innovation Center, Sharif University of Technology, Tehran, Iran
‡ Institute for Research in Fundamental Sciences, Tehran, Iran

ABSTRACT
Disk traces are typically used to analyze real-life workloads
and for replay-based evaluations. This approach benefits
from capturing important details such as varying behavior
patterns, bursty activity, and diurnal patterns of system ac-
tivity, which are often missing from the behavior of work-
load synthesis tools. However, accurate capture of such de-
tails requires recording traces containing long durations of
system activity, which are difficult to use for replay-based
evaluation. One way of solving the problem of long storage
trace duration is the use of disk simulators. While publicly
available disk simulators can greatly accelerate experiments,
they have not kept up with technological innovations in the
field. The variety, complexity, and opaque nature of storage
hardware make it very difficult to implement accurate sim-
ulators. The alternative, replaying the whole traces on real
hardware, suffers from either long run-time or required man-
ual reduction of experimental time, potentially at the cost
of reduced accuracy. On the other hand, burstiness, auto-
correlation, and complex spatio-temporal properties of stor-
age workloads make the known methods of sampling work-
load traces less effective.

In this paper, we present a methodology called DiskAccel
to efficiently select key intervals of a trace as representa-
tives and to replay them to estimate the response time of
the whole workload. Our methodology extracts a variety of
spatial and temporal features from each interval and uses
efficient data mining techniques to select the representative
intervals. To verify the proposed methodology, we have im-
plemented a tool capable of running whole traces or selective
intervals on real hardware, warming up hardware state in an
accelerated manner, and emulating request causality while
minimizing request inter-arrival time error. Based on our
experiments, DiskAccel manages to speed up disk replay by
more than two orders of magnitude, while keeping average
estimation error at 7.6%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGMETRICS’15, June 15–19, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3486-0/15/06 ...$15.00.
http://dx.doi.org/10.1145/2745844.2745856 .

1. INTRODUCTION
Storage devices are a key component of any computing

environment for intermediate and long-term data storage.
Apart from supporting the required capacity, they must
meet performance demands at an acceptable cost. As a re-
sult, storage devices have long been the subject of many
performance optimizations such as prefetching [8], request
scheduling [57], caching [47, 23], layout optimizations [33],
and hybrid storage [23, 37].

An integral part of designing a high-performance stor-
age device is evaluation of algorithms, cache configurations,
and/or other optimization techniques under study. Evalu-
ating such design refinements requires accurate experimen-
tation, which is often very time-consuming. Software-based
simulators [6] provide repeatable and closely observable ex-
perimental setups without the need for real hardware. How-
ever, storage devices are opaque and contain many sophis-
ticated algorithms. Although methodologies exist to auto-
matically extract new device parameters [40], serious issues
remain unresolved as shown by our previous experimental
studies [49]. In particular, while storage simulators are gen-
erally sufficient for preliminary studies of algorithms, they
in no way can be used for complete evaluation of algorithms
and as such, use of real hardware is essential.

Input workloads, which should be replayed on real hard-
ware, have a strong impact on experiments. These work-
loads either come from real machines or are generated by
benchmarks and synthesis tools. Parameterizable software
benchmarks are a popular source of evaluation workloads [20,
30, 9], but are not very representative of real-life workloads.
Studies presented in [16, 21] show that while actual work-
loads are very bursty and exhibit diurnal patterns, widely
used benchmarks cannot be configured for these properties.
Worse yet, many benchmarks cannot even accurately control
inter-arrival times despite its significant influence on perfor-
mance [3, 27]. Benchmarks results are also influenced by
host hardware; a faster processor can decrease I/O inter-
arrival time and larger memory can greatly improve operat-
ing system caching.

Another obstacle for repeated experiments which can greatly
hinder hardware-based experiments is the duration of stor-
age traces ranging from hours to days and weeks. Previous
studies have resorted to run traces as fast as possible [50],
speed up inter-arrival time [51, 39], manually select portions
of the trace [61, 14, 57], and manual selection along with
speed-ups [60]. These methods either lack reproducibility
or do not preserve key parameters of trace behavior.

Long experimentation times also hinder microprocessor

simulations. To alleviate this issue, two main schemes have
been proposed which reduce workload size [13, 58]. These
methods select certain workload intervals and use their mea-
surements to project the performance of the whole workload.
They also keep the state up to date by use of checkpoints
or warm-ups. As a result, these schemes can provide accu-
rate estimations while running only a fraction of the original
workload which would have taken days or weeks to simulate
in full. For I/O workloads, clustering was used in [15] to en-
hance trace synthesis. In [44], clustering was used to create a
classification decision tree for use in controllers of Solid-State
Drives (SSDs). CART models used in [53] can be used for
performance projection and tree-based workload trimming.
To the best of our knowledge, none of these works focus on
accurate and replay-based reduction of I/O workloads.

In this paper, we present a methodology called DiskAc-
cel that greatly accelerates trace-based storage evaluation
on real hardware. DiskAccel employs traces recorded from
real servers and uses a variety of properties to select a rep-
resentative subset of the workload. This process does not
use performance numbers obtained from other hardware de-
vices so that the selection becomes independent of hardware.
Although this methodology can also be employed with soft-
ware simulators, due to concerns with accuracy issues noted
above, we focus on using real hardware to maximize ac-
curacy. As part of DiskAccel, we have developed a tool
to replay the representative intervals on target hardware.
Our tool avoids many pitfalls of trace-based experiments by
(a) warm-up of hardware cache by replaying an appropriate
number of preceding requests, (b) enforcing inter-request de-
pendency by constructing dependency trees, and (c) accu-
rate control of request arrival time by avoiding scheduling
delays.

The process of selecting representative intervals divides
each trace into multiple intervals, extracts a variety of fea-
tures from each interval, and then performs clustering. The
features used include address and time entropy, request ran-
domness, seek time, and working set locality. We use a
weighted variant of the K-Means clustering algorithm similar
to [13], and select the point closest to the cluster centroid as
the cluster representative. To perform experiments based on
this sampling methodology, we have developed a tool to run
the representative intervals with timing accuracy and disk
state warm-up on real hardware1. To increase timing accu-
racy, we use busy-waiting and real-time Linux facilities [34]
to minimize request inter-arrival time error. Warm-up se-
lects requests leading up to the representative intervals such
that their footprint is equal to the cache capacity of the
target hardware. These requests are then run in an acceler-
ated manner before running the representative interval. We
also try to replicate the request dependency by controlling
request arrival times in a closed-loop manner. More specifi-
cally, we treat read requests as being blocking and consider
writes to be non-blocking. This heuristic is essential as al-
most every publicly existing traces lack essential high level
information such as request flags and issuing thread and pro-
cess identification (ID). To the best of our knowledge, this
is the first attempt to present a methodology to accelerate
replay-based I/O experiments while keeping error rates at a
minimum. In addition, this is the first work which presents

1This tool is available at: http://dsn.ce.sharif.edu/software

efficient warm-up technique for disk drives to speed up I/O
experiments.

To validate DiskAccel, we use the Microsoft Research Cam-
bridge (MSRC) workloads [28] to test our methodology against
a wide variety of workloads. We perform clustering based
on the extracted features and validate our methodology in
two steps. First, we use the performance numbers embedded
in the traces to compare the whole trace average response
time against the weighted response time. This yields an av-
erage relative error of 3.6% error for all traces in [28] and
a worst-case error of 12.1%. In the experiments, we per-
form full runs on 11 of the selected traces (each spanning
approximately one week) with no acceleration on our hard-
ware testbed to serve as a reference. We then compare the
relative error of choosing representative intervals on these
traces with the new performance results. This yields an
average error of 6.5% and a maximum error of 13.6%. Fi-
nally, we perform partial runs on our hardware testbed with
an average speed-up of 577x versus full one-week runs and
compare the weighted response time against the average re-
sponse time of the numbers yielded from full one-week runs.
This yields an average and maximum relative errors of 7.6%
and 17.2%, respectively.

In the following, we discuss the related work in Sec. 2. Our
experimental methodology is explained in Sec. 3. Then, we
present our methodology of reducing replay time in Sec. 4.
Details of methodology for replaying traces is covered in
Sec. 5. Next, we validate our methodology on a completely
different hardware setup in Sec. 6. We conclude the paper
in Sec. 7 and discuss the limitations and future directions of
our work.

2. RELATED WORK
In this section, we first discuss previous methodologies in

synthesis of storage workloads and point out their deficien-
cies. We then cover trace reduction methodologies used on
storage and microprocessor traces and evaluate their usabil-
ity in storage workloads. Finally, we discuss the use of real
disks in storage benchmarking and highlight the important
measures that must be taken to ensure high accuracy of per-
formance measurements.

2.1 Trace Synthesis and Benchmarks
Storage traces capture a record of I/O requests sent to the

storage subsystem over a period of time. In some scenarios,
however, it is essential to scale a workload to the desired
hardware configuration. This practice is particularly useful
when measuring the maximum potential of underlying hard-
ware or when trying to optimize software or storage subsys-
tem parameters. This is where benchmarks excel the most
as the users are able to tune various options and settings.

Benchmark programs attempt to generate a workload sim-
ilar to a certain application. Benchmark tools such as Post-
mark [20], Bonnie++ [9], and Iozone [30] are publicly avail-
able and have been widely used to evaluate storage algo-
rithms and architectures. However, I/O benchmarks have
difficulties in replicating burstiness and auto-correlation [50]
despite these behaviors being exhibited widely by I/O work-
loads [32, 21, 22]. It should also be noted that our proposed
methodology can also be used on traces generated by such
benchmarks to accelerate experiments.

Trace synthesis programs try to replicate key properties
of workloads to yield a portable and tunable replacement

for traces. Such approaches include synthesizing traces us-
ing Binomial distribution [54, 14, 15] and multi-distribution
fits [59] to approaches based on spatio-temporal entropy [52].
Trace shuffling and piece-wise synthesis of traces in [14]
demonstrates that although long-range dependence is present,
the use of sufficiently large time intervals diminishes its im-
pact. Hence, short-range dependency can represent the inter-
arrival times of each interval.

2.2 Trace Reduction
While real-world traces contain key spatio-temporal prop-

erties, their long duration must be addressed appropriately.
In this section, previous works on reduction and compaction
of storage and microprocessor traces will be covered.

Microprocessor simulations are essential for architecture
explorations. While various software programs exist to sim-
ulate processor behavior at the required level, they tend to
be as far as five- to six-orders of magnitude slower than
real hardware [58]. This, coupled with a large volume of
multi-billion instruction traces makes it very expensive to
investigate architectural ideas without resorting to trace size
reduction.

Two studies are well-known on the subject of sampling
CPU traces, SMARTS [58], which performs systematic sam-
pling of intervals for detailed simulation, and SimPoint [13],
which uses per-interval feature extraction and clustering to
pick representative intervals. Both studies report massive
time savings with negligible error.

Systematic sampling in [58] relies upon assuming a normal
distribution of response time in intervals. This expectation
can easily be satisfied through the Central Limit Theorem,
assuming intervals are numerous and independent. While
this assumption does not hold for individual I/O requests,
it does hold for request intervals as pointed out by [14].
In Sec. 4, we perform a viability study for using a similar
solution for I/O traces.

SimPoint [13] uses clustering algorithms to group similar
intervals and select representatives. In earlier releases of this
work, intervals had a fixed number of instructions. Later
on, variable length intervals were supported by common se-
quence matching. SimPoint takes advantage of availabil-
ity of the binaries generating the trace to form much more
descriptive and accurate feature vectors based on the code
structure. In [24], different feature vectors for this tool were
evaluated, of note is the use of accessed memory addresses
as the sole source of features which yields poor results. Clus-
tering is performed by a modified version of K-Means which
supports weighting different points belonging to each inter-
val. As K-Means needs K, the number of clusters, to be
specified, Bayesian Information Criterion (BIC) [42] was
used to choose the best clustering resulted by different val-
ues of K.

The study presented in [14] divides traces into fixed-duration
intervals and shows that such divisions can be used and syn-
thesized independent of the history with little impact on
accuracy. This study was later used by [15] which extracts
temporal information from these intervals and then performs
clustering to pick representative intervals as the subject of
synthesis. In [44], clustering was used as a step to find out
which features can better distinguish key behavior classes.
The features used are mostly spatial and the resulting classes
specify the main behaviors exhibited, e.g., fully sequential,
part-sequential, and part-random. The evaluation for clus-

tering was a goodness of fit measure and the final result is
a decision tree which can be used in an SSD controller to
optimize for these behaviors. The authors found out that
out of the different clustering algorithms, K-Means is the
best choice.

A variety of features based on spatial and temporal prop-
erties of traces were extracted by [48] for each interval. Inter-
val features were then subjected to a process termed dedu-
plication by the authors to reduce the number of per-interval
property sets. These properties were then used to generate
benchmark configuration parameters to produce a behavior
similar to that of the source trace.

2.3 Replaying I/O Traces
Workload traces offer an opportunity to evaluate hard-

ware devices and algorithms in real-life scenarios. However,
proper care must be taken to ensure that meaningful per-
formance results are obtained.

Storage traces record I/O activity from computers where
requests often depend on each other. While performing ex-
periments, open-loop as opposed to closed-loop control of
requests greatly affects experimental results [41]. Tools such
as blktrace/blkparse [5] and fio [4] can perform closed-loop
control in a multi-threaded manner provided that this in-
formation has been recorded in the trace. TBBT [60] and
ROOT [55] try to infer inter-request relationship based on
the higher level semantics of the syscalls and Network File
System (NFS) layers, respectively. Both //TRACE [26] in-
terferes with program activity to discover request dependen-
cies. We cover this subject in Sec. 5.1.

When a certain inter-arrival time is chosen, it must be
enforced with high accuracy. Anderson et al. [3] studied
the effect of inter-arrival error or drift time on measurement
accuracy from trace replay. They subsequently developed a
replay tool which kept drift time to a maximum of 100µs.

Another key detail that can affect trace replay results
is the state of the storage subsystem, including disks and
controller-level cache. To ensure that cache contents are
valid for experiments, appropriate warm-up is necessary. For
example, the authors in [25, 56] used a portion of a trace to
perform warm-up. The latter also tried to match the warm-
up of synthetic workloads to the size of hardware state. This
will be further discussed in Sec. 5.2.

3. EXPERIMENTAL SETUP
Performance Measure. The performance measure used

in this paper is the average request response time which is
the time spent between sending a request to the I/O subsys-
tem and receiving operation acknowledgement. Should the
operation be blocking, response time indicates the amount
of processing time wasted waiting for I/O and a major per-
formance bottleneck for many use cases. In other words,
we compare the reference average response time against re-
sponse time projected by our subset of the workload to mea-
sure the accuracy of our methodology. We use Weighted Re-
sponse Time (WRT) calculation to project performance of
the whole workload. To compute WRT, as shown in Equa-
tion 1, we weight the selected representative intervals by the
total number of requests represented by that interval. If we
use WRT on the whole workload and assume each interval
to only represent itself, the result is the reference average
response time. Weighting emphasizes dense intervals over
sparse intervals for calculating average request times. There

 0
 2000
 4000
 6000
 8000

 10000
 12000

D1 D2 D3 D4 D5 D6 D7

R
eq

u
es

ts

Time (Days)

Figure 1: Average per-minute requests of usr 1 trace
from [28] (Note the diurnal patterns).

 0
 200
 400
 600
 800

 1000
 1200
 1400

D1 D2 D3 D4 D5 D6 D7

R
eq

u
es

ts

Time (Days)

Figure 2: Average per-minute requests of rsrch 0
trace from [28] (Non-diurnal, very bursty, and hav-
ing no well-defined patterns).

 0
 1000
 2000
 3000
 4000
 5000
 6000

D1 D2 D3 D4 D5 D6 D7

R
eq

u
es

ts

Time (Days)

Figure 3: Average per-minute requests of hm 0 trace
from [28] (Bursty, activity peaks on a certain day).

are two benefits to this choice. First, dense intervals contain
more requests and represent more user activity. Second, the
extra strain they put onto the hardware further increases the
response time, affecting I/O performance even more [29].

RTaverage =

∑
I∈Intervals

RTinterval(I)× Countinterval(I)∑
I∈Intervals

Countinterval(I)

(1)
Workloads. We used 36 traces, referred to as the Mi-

crosoft Research Cambridge (MSRC) traces [28], which have
been recorded from a variety of servers used for research, web
development, terminal services, printing, hardware monitor-
ing, and web proxy services. Each trace is approximately a
week long and records requests to a single volume. These
traces contain from a few hundred requests to well over a
hundred million requests. Burstiness is present throughout
and the long duration has allowed them to demonstrate di-
urnal and weekly patterns. This duration, however, is a
serious challenge for replay on real hardware. We show the
average per-minute requests for usr 1, rsrch 0, and hm 0 in
Figure 1, Figure 2, and Figure 3, respectively. It can be seen
that these workloads are bursty and while usr 1 (hosting
user data) shows a clear diurnal pattern, the other two are
much less predictable. In case of the hm 0 workload which is
used for hardware monitoring, the activity peaks on a single
day. These three traces demonstrate the difficulty of repre-
sentative tracing. To record diurnal and bursty patterns, it
is necessary to record long periods of activity but such long
traces make replaying difficult.

Testbed. We initially use the same response time num-
bers embedded on the original traces to test the first part of
our methodology, but to fully validate our findings we devel-
oped a tool to (a) perform whole one-week runs of a selected
number of traces to serve as new references, and (b) perform

partial runs including only the representative intervals and
compare their WRT against the newly obtained reference
numbers. We replay the traces on identical 3.5” 5400RPM
500GB Seagate Momentus Disks of the same batch. We
took a number of steps to prevent interferences with our
experiments, (a) no file systems were mounted on the tar-
get drives and they were directly accessed via their device
nodes (/dev/sdXX), (b) device nodes are opened with the
O DIRECT flag to prevent kernel caching on target drives,
(c) we used the RT PREEMPT real-time capability patch
for Linux [34] and set top priority to the program, and (d)
recorded trace data in memory and performed processing
beforehand to prevent I/O blocking. The requests are sent
with the Linux’s Native Asynchronous I/O [12] which allows
us to get the exact request finish times while being able to
have multiple requests in flight. These enhancements, how-
ever, are not sufficient to minimize drift time and similar
to [3] we had to use busy-waiting. This is because usleep
and nanosleep calls must be avoided due to serious inaccu-
racies [36]. Switching to busy-waiting reduced average drift
time by hundreds of microseconds even when the real-time
patch was active.

Evaluation Steps. DiskAccel workflow can be seen in
Figure 4. DiskAccel selects representative intervals via clus-
tering and then runs them on a system. We took the follow-
ing steps for evaluating DiskAccel:

1. First, we evaluate the accuracy of DiskAccel at pick-
ing representatives (Step 1 in Figure 5). We com-
pare WRT of representative intervals against the whole
workload average response time. WRT and average RT
are both generated using the original response time
values embedded in MSRC traces. In the latter two
steps, we will exclusively use response times obtained
from our own testbed.

2. To validate Step 1, we first replay a selected number of
MSRC traces2 in whole on our testbed at the original
pace (one week) and use it as a reference instead of
the original response time values. We then use the ob-
tained response time values to validate our evaluation
of selecting representatives (Step 2, Figure 5).

3. In Step 3 (Figure 5), we evaluate the accuracy of DiskAc-
cel as a whole. The difference between this step and
Step 2 is use of response time results from partial
testbed runs instead of using whole trace response times
used for calculating WRT. It must be noted that the
reference average response time is still calculated us-
ing the whole, one-week runs similar to Step 2. Par-
tial runs represents both stages of DiskAccel (a) pick-
ing representative intervals, evaluated in Step 1 and
further validated in Step 2 and (b) replaying on our
testbed, including warm-up.

4. TRACE SAMPLING
To reduce traces to a small number of representative in-

tervals, our methodology first performs clustering to choose

2Due to the extensive time needed to run each MSRC trace
at original speeds, we had to use a subset of these workloads
to reduce experimentation time. We tried to pick a single
trace from each class for this purpose: hm 0, mds 1, prn 0,
proj 4, prxy 0, rsrch 0, src1 2, ts 0, usr 2, wdev 0, web 2.

 1

 10

 100

 1000

Average

hm
_0

hm
_1

m
ds_0

m
ds_1

prn_0

prn_1

proj_0

proj_1

proj_2

proj_3

proj_4

prxy_0

prxy_1

rsrch_0

rsrch_1

rsrch_2

src1_0

src1_1

src1_2

src2_0

src2_1

src2_2

stg_0
stg_1

ts_0
usr_0

usr_1

usr_2

wdev_0

wdev_1

wdev_2

wdev_3

web_0

web_1

web_2

web_3

A
ve

ra
ge

P
ha

se
 L

en
gt

h
(I

nt
er

va
ls

)

Figure 6: Average phase length across 10-second intervals (A phase is defined as a continuous stretch of
intervals where variation between the response time of each two intervals is less than 10%.)

Trace
Feature

Selection
Features K-Means Clusters

Points
&

Weights

Trace
Replay

Weight
Response

Time

Projected
Average

Response
Time

Figure 4: DiskAccel workflow.

DiskAccel
Weight

and
Selection

Original
Trace
RTs

Whole
Trace

Replay
RTs

Partial
Trace

Replay
RTs

WRT Average

Step 1 Comparison

WRT Average

WRT Average

Step 2 Comparison

Step 3 Comparison

Comparison DiskAccel RT Reference RT

Figure 5: Evaluation steps (RT: Response Time,
WRT: Weighted Response Time).

the representative intervals and then replays them while
performing warm-up and enforcing request dependency. In
this section, we focus on I/O traces and their difference
with CPU traces. Then, a systematic sampling based on
SMARTS [58] will be evaluated and its shortcomings will be
demonstrated. Finally, we describe the process of clustering
trace intervals and compare the accuracy and time reduction
that can be achieved by choosing representative intervals.

4.1 I/O versus CPU Workloads
Before we engage in application of various sampling tech-

niques, we demonstrate key differences of CPU traces in
comparison to I/O traces. First of all, CPUs have much
higher activity levels in comparison to I/O devices, meaning
an I/O trace of the same activity is going to have much lower
number of requests than that of the CPU traces. Second,
I/O traces are very bursty [32, 21, 22] and the response
time fluctuates wildly between request intervals, while in
CPU traces Cycles per Instruction (CPI) remains constant
for many different intervals [10]. Due to the bursty and
sparse nature of storage workloads, unlike microprocessor
based methodologies which divide traces into intervals based
on the number of requests within them [58, 13], we divide
each trace into intervals of a fixed duration.

Burstiness and auto-correlation of storage workloads [32,
21, 22] means that requests cannot be considered indepen-
dently and any sampling must capture the temporal con-
text of requests. The solution used by [14] was to use a
duration-based division of I/O traces which captures tem-
poral context and manages to greatly diminish the impact of

long range dependence on performance. We group requests
into 10-second intervals. There are a number of reasons be-
hind this selection; first of all, the authors in [14] show that
this interval duration diminishes the effect of long range de-
pendence very well. Secondly, as will be demonstrated in
Sec. 6.2, run-time of per-interval warm-ups dwarf that of the
actual intervals being measured. Nevertheless, a week con-
tains roughly sixty-thousand individual 10-second intervals,
a number that allows low error and considerable speed-ups
by our proposed methodology.

To demonstrate the difference between I/O and CPU trace
behavior, we show the average duration of a ”phase”in MSRC
traces [28] in Figure 6. Similar to [13], we define a phase as
a set of successive intervals where performance fluctuates by
less than 10%. Based on the trace, the average phase length
can vary from a single interval to multiple hours. It must
be noted that long average phase length can also be caused
by extreme sparsity, as is the case for the three most dense
traces with less than 100 requests per hour on average. It
is evident from these results that storage traces cannot be
expected to have well-defined phases such as microproces-
sor traces. However, although I/O response time can affect
processor CPI [17], the lack of phase behavior at the I/O
request level does not mean that there is no phase behavior
at the fine level of detail captured by microprocessor traces.
I/O requests are removed from the details of microprocessor
activity in such cases.

4.2 Systematic Sampling
In this section, we evaluate the effectiveness of using sys-

tematic sampling at representing the performance of the
whole trace. SMARTS [58] determines the number of sam-
pled intervals which must run in a detailed manner by using
confidence intervals. It then uses systematic sampling with
a fixed period to select these intervals and run them in a de-
tailed manner. We evaluate the effectiveness of both these
steps using MSRC traces [28] and conclude that this strategy
is unsuitable for reducing storage traces.

Similar to SMARTS [58], we first determine the number
of intervals using normal distribution confidence intervals.
Figure 7 shows the total duration of requests that must be
sampled in order to reach a maximum error margin of 15%
with a confidence of 90%. This tolerance is much more re-
laxed than the work in [58] but we believe it is essential due
to the bursty nature of storage workloads.

As can be seen from the results in Figure 7, some work-
loads can be significantly reduced. However, this does not
extend to every workload and on average, 500 minutes of
pure replay time (sans the significant overhead of cache
warm-up) is needed based on this method. These reduc-
tions, while significant, are still impractical for repetitive
experiments. This method is also prone to over- and under-

reporting the number of intervals. For example, rsrch 0,
wdev 1, and prxy 0 are reported to require less than 4 sam-
ples but hm 0 which contains less than 700 requests is re-
ported to need over 27 minutes of pure interval run-time.

As explained earlier, intervals in [58] are sampled by a
fixed period. This requires the specification of a starting
offset. This choice is much more challenging for storage
workloads as they are bursty and lack well-defined phase be-
havior. For example, some starting offsets result in entirely
empty set of samples for some traces. As noted earlier, this
methodology may poorly estimate the number of required
samples. To aid systematic sampling, two improvements
were tested (a) the minimum number of samples is set to
30 to alleviate the issue of under-sampling (Min30 versus
NoMin) (b) since a starting offset is needed for systematic
sampling, we choose the single run containing the most re-
quests (Single) versus averaging the 10 most populated runs
(Avg10). Please note that should we use the latter enhance-
ment in practice, it results in 10x slower experiments.

It can be concluded from the experiments (Figure 8) that
even with the above enhancements and when using the num-
bers embedded in the traces themselves, systematic sam-
pling produces significant error. The Single 30Min which
does not average multiple runs has significant error, even in
workloads such as proj 3, rsrch 1, and hm 1 where multi-
ple hours worth of samples need to be taken. We attribute
this high error to (a) lack of phase behavior in most traces
(depicted in Figure 6) and (b) the burstiness of workloads
which makes the choice of representative intervals challeng-
ing. This is in stark contrast with microprocessor instruction
traces where phase behavior is far better defined [46]. We
conclude that a guided sampling methodology based on the
properties of request intervals is essential for higher accuracy
of trace size reduction.

4.3 Feature Extraction and Data Mining
Shortcomings of systematic sampling show that a guided

method of selecting representative intervals is essential for
reaching higher accuracy. As it is not a good practice to use
the performance numbers of a certain hardware configura-
tion when trying to design a general methodology, we refrain
from using response time results in clustering and only use
these numbers to measure the accuracy of our methodology.
Instead, we use properties such as trace request arrival time,
address, and type to generate feature vectors for clustering.

Use of Arrival Time Entropy as a key property of trace
behavior has been proposed in [54, 14, 52]; the latter work
also uses address entropy to identify uneven accesses to disk
locations. We use the multi-level aggregation scheme shown
in Figure 9 which has been used in [54, 14, 15] to estimate
the entropy of data points in continuous space. At each
aggregation level, buckets have the same size and the next
aggregation level is obtained by merging consecutive array
buckets in pairs. At every level, a bucket is treated as an
alphabet letter in discrete Shannon Entropy [45] calculations
and the number of requests within it as the letter frequency.

We use this multi-level aggregation methodology to mea-
sure the time and address entropy. While time is continu-
ous and can be divided easily, address is a discrete quantity.
Thus, we use 512 bytes as the smallest unit, which is the
common denominator of request addresses as it used to be
disk sector size for a long time. For both entropy calcula-

L3

L2

L1

Figure 9: Using different aggregation levels for cal-
culating entropy.

tions, we use 16 unique levels of aggregation which is higher
than what was used in [14].

Arrival Time Entropy as described above, is an effective
measure of workload burstiness and has been used in several
studies [54, 14, 15]. Bursty behavior concentrates many re-
quests in a compact period of time, skewing temporal distri-
bution and reducing entropy. Address-space entropy trans-
lates to a higher spatial and temporal locality, which can
greatly improve cache performance. Working Set Locality is
defined as the ratio of total interval traffic to the number of
unique sectors (working set) accessed in an interval. This
measure was named ”aggregation ratio” in [15].

We have conducted experiments with multiple features
indicative of interval load. We use Total Traffic, Average
Request Size, Working Set Size, and Interval Request Count
as basic features. However, further discrimination between
requests is necessary. Read and write requests have a differ-
ent performance in I/O subsystems [17]. While writes can
simply be satisfied by recording data in cache or non-volatile
RAM, reads (or more specifically, read misses) should lead to
immediate fetch of data, either from storage cache or media.
As a result, read operations have a much more pronounced
impact on system performance [17] and thus, it is likely ben-
eficial for them to have a higher priority. As such, we also
use Read Ratio as one of the main features.

Another key property of I/O workloads which affects both
Hard Disk Drives (HDDs) and Solid State Drives (SSDs) is
the randomness of I/O requests. Aside from poor cache per-
formance, vastly different implementation details penalize
random requests compared to sequential requests. Random
accesses force HDDs to perform complex seeks, reducing per-
formance. For SSDs, random accesses generate many more
requests to the flash chips, reducing throughput. To recog-
nize random requests, we use a queue-aware distance based
scheme similar to what was used in [2]. In this classifica-
tion, the distance of address of each new request is compared
against the address of a number of recent requests. The min-
imum distance referred to as Travel Distance is compared
against Randomness Distance Threshold.

If the travel distance exceeds this threshold, the request
is classified as random. In this paper, this number of re-
cent requests (queue depth) is taken to be 32 requests and
Randomness Distance Threshold is 128KB, which seem to
be the queue depth and read-ahead length of our surveyed
disk drives. Randomness Ratio is the feature representing
the fraction of random requests within an interval. We
also use the sum of request Travel Distance and Average
request Travel Distance, as Total Travel Distance and Av-
erage Travel Distance features, respectively. Table 1 shows
the features investigated in this study for the construction
of feature vectors along with the properties which we think
are related to these features.

 1

 10

 100

 1000

 10000

Average

hm
_0

hm
_1

m
ds_0

m
ds_1

prn_0

prn_1

proj_0

proj_1

proj_2

proj_3

proj_4

prxy_0

prxy_1

rsrch_0

rsrch_1

rsrch_2

src1_0

src1_1

src1_2

src2_0

src2_1

src2_2

stg_0
stg_1

ts_0
usr_0

usr_1

usr_2

wdev_0

wdev_1

wdev_2

wdev_3

web_0

web_1

web_2

web_3

T
ot

al
S

am
pl

e
D

ur
at

io
n

(M
in

ut
es

)

Figure 7: Total duration of intervals selected by confidence-based sampling with a maximum error of 15%
and a confidence of 90%. The full duration of the traces is one week (∼10000 minutes).

 1

 10

 100

 1000

 10000

Average

hm
_0

hm
_1

m
ds_0

m
ds_1

prn_0

prn_1

proj_0

proj_1

proj_2

proj_3

proj_4

prxy_0

prxy_1

rsrch_0

rsrch_1

rsrch_2

src1_0

src1_1

src1_2

src2_0

src2_1

src2_2

stg_0
stg_1

ts_0
usr_0

usr_1

usr_2

wdev_0

wdev_1

wdev_2

wdev_3

web_0

web_1

web_2

web_3

E
rr

or
 P

er
ce

nt
ag

e

Single_NoMin Avg10_NoMin Single_Min30 Avg10_Min30

Figure 8: Error percentage of using a SMARTS-like [58] systematic sampling policy on 10-second intervals.
AvgN averages the N runs with the highest total request count (Single = Avg1). MinK places a minimum
bound of K on the sample count (NoMin = Min1).

4.4 Data Mining
Clustering algorithms group data points based on fea-

tures similarities. Our aim at data mining, similar to Sim-
Point [13] is to, (a) group trace intervals into similar clusters
and (b) choose a suitable representative for each cluster. We
group features together to construct feature vectors as in-
puts of the clustering algorithm and use WRT error as a
measure of accuracy.

As dense request intervals have much more impact on
performance [29], the process of clustering and selecting
representative intervals must take interval density into ac-
count. In other words, the process of clustering must sup-
port weighting data points. The authors in [1] conduct a
study on weighted clustering where different data points may
have different weights assigned. Based on their classification,
K-Means is weight-sensitive and its clustering behavior is al-
ways affected by the repetition of points, noted by them as a
naive method of applying weights to data points. SimPoint
3.0 [13] faces a similar challenge due to use of variable length
intervals and augments K-Means with support for interval
weighting.

We use a weighted variation of K-Means [7] which sup-
ports the application of weights to each individual data point.
Before feeding the feature vectors to clustering, we perform
preprocessing using [19] to center data on zero and set the
variance to unity to improve the output of machine learn-
ing. We also had to specify K, the number of clusters, in
K-Means. Our calculations of error show that the value of
K has a great impact on response time estimation error. To
select K, we have implemented BIC [42], based on the Sim-
Point 3.0 implementation in [13] which supports weights, as
well as Fk from [31]. Both these methods use distortion and
the number of clusters to determine the optimal number of
clusters. Based on our experiments, BIC performs better
and we omit the results of Fk here due to page limitation.
In our methodology, we generate clusterings with K ranging
from 2 to 50 with approximately sixty-thousand 10-second

intervals as input and choose the clustering with the lowest
BIC.

Table 1 shows the final set of features that were extracted
for every interval with a short description of each feature.
Depending on the selection of features, each interval is rep-
resented by a point with the features as its coordinates and
the number of requests within it as the weight. Weighted
K-Means is then performed on the data with different values
of K, forming clusters and reporting the centroids. Intervals
represented by points closest to cluster centroid are picked as
the cluster representative. We use weighted response time
of the representative intervals to measure the error in es-
timated response time compared to the weighted response
time of all intervals. We weight the representative intervals
by the total number of requests inside the cluster.

For simplicity, we have used a unified feature vector across
all traces. We aim to improve upon this in our future work.
The best feature vector for clustering data based on our ex-
periments is ArqWslRndAntEntTreAte, which uses Average
Request Size, Working Set Locality, Randomness, Address
and Time Entropy, Total and Average (Queue-Based) Travel
Distance as the feature vector. We choose this name based
on the three-word short form in Table 1. Figure 10 shows
WRT error by clustering using weighted K-means. Our re-
sults show an average and maximum error of 3.6% and 12.1%
using the original response time in the traces themselves.

5. TRACE REPLAY
We presented details of our experiment testbed in Sec. 3.

In this section, we explain the process of enforcing depen-
dency and the methodology used for warm-up of state before
each representative interval is run.

5.1 Enforcing Causality
A very important difference of replaying traces versus run-

ning programs is the fact that inter-arrival time of requests is
partly influenced by the inter-arrival time of original hard-
ware. This is caused by inter-request dependency in the

Table 1: List of features explored for clustering.

Feature Name Short Form Description Related Property
Random Ratio Rnd Percentage of Queue-Based Random Requests (See [2]) Temporal and Spatial Locality
Read Ratio Rd Percentage of Read Requests Read Frequency
Total Traffic Mss Sum of Request Sizes Device Load
Total Request Count Cnt Total Number of Requests Device Load
Address Entropy Ant Multi-level Address Shannon Entropy Temporal and Spatial Locality
Arrival Time Entropy Ent Multi-level Arrival Time Shannon Entropy Burstiness
Working Set Wst Sum of Unique Locations Accessed Device Load, Temporal Locality
Working Set Locality Wsl Ratio of Total Traffic to Working Set Temporal Locality
Average Request Size Arq Ratio of Total Traffic to Request Count Device Load
Travel Distance Tre Queue-Based Request Offset Travel (See [2]) Spatial Locality, Seek Count
Average Travel Distance Ate Average Queue-Based Request Offset Travel (See [2]) Spatial Locality, Seek Count

 0
 2
 4
 6
 8

 10
 12
 14

Average

hm
_0

hm
_1

m
ds_0

m
ds_1

prn_0

prn_1

proj_0

proj_1

proj_2

proj_3

proj_4

prxy_0

prxy_1

rsrch_0

rsrch_1

rsrch_2

src1_0

src1_1

src1_2

src2_0

src2_1

src2_2

stg_0
stg_1

ts_0
usr_0

usr_1

usr_2

wdev_0

wdev_1

wdev_2

wdev_3

web_0

web_1

web_2

web_3E
rr

or
 (

P
er

ce
nt

ag
e)

Figure 10: Per-trace WRT error of our chosen feature vector ArqWslRndAntEntTreAte with original response
times (Step 1 in Figure 5).

original system activity. Ignoring this dependency is re-
ferred to as open-loop replaying which causes significant
error [41], making closed-loop replays essential. However,
most of traces available in public domain fail to record im-
portant semantic information and this information must be
inferred based on the type and arrangement of requests.

Our replay tool replays traces in a closed-loop manner by
constructing I/O request dependency trees. Consider the
scenario in Figure 11; in the original replay, request A must
finish before B is issued (Top). On the destination hard-
ware, A may take considerably longer (Middle and Bottom).
Open-loop replay (Middle) issues request B by ∆OL units of
time after A starts, even if it violates the dependency. In
contrast, closed-loop replaying waits ∆CL units of time af-
ter A is finished before sending request B. We believe this
method better reflects the relationship between requests.

As noted earlier, enforcement of dependencies is much eas-
ier and accurate when detailed traces [55, 26] are present.
These tools use rich information to enforce dependency as
it was present in the original run. Most available public
datasets such as the one used in our study [28] lack detailed
information, especially those that record long periods of ac-
tivity which is more representative. As a result, we have to
make approximations of trace behavior for replays.

While it is possible to replay every request as blocking
(i.e., controlled similar to A and B in Figure 11), we do
not believe it represents real system behavior. Specifically,
writes are normally cached by the operating system inside
the main memory and are flushed to disk based on operating
system behavior. While written data can be flushed to disk
by calling flush() on Linux and fcntl(F FULLSYNC) on Mac
OS X [55], the study in [35] shows that a small percentage
of reads are non-blocking and write behavior depends on the
workload. As a result, out of the trace requests, we consider
reads to be blocking and writes to be non-blocking. As a
further support for this decision, it has been observed that

A
B
ΔOL
ΔCL

A
B

A
B

ΔOL

ΔCL

Replay

Original

Figure 11: Comparison of open-loop (Middle) and
closed-loop (Bottom) replays of a recorded workload
(Top). Originally (Top), B depends on A and its
start is ∆OL and ∆CL units of time after the start and
finish time of A, respectively. On the destination, A
takes longer than original and unlike the open-loop
replay (Middle), close-loop (Bottom) replay avoids
potential conflicts.

microprocessor CPI has a correlation with average I/O read
request response time [17], but no such relation exists with
average request time for combined read/write requests.

We propose a dependency policy such that in the absence
of semantic information, read and write operations are as-
sumed to be blocking and non-blocking, respectively. In
other words, when calculating request arrival time in our
replay tool we have three scenarios, (a) requests following a
read requests conclusion will have their arrival time calcu-
lated based on its finish (Figure 11, bottom), (b) requests
that arrive before a read concluding only depend on its ar-
rival time (Figure 11, middle), and (c) requests that follow
a write, whether it concludes or not depend on its arrival
time (Figure 11, middle).

An example of this policy can be seen in Figure 12 which

A
B
C
D
E
ΔAB

ΔBC

ΔCD

ΔCE

ΔDE

Write Read Non-
Blocking

Blocking

Figure 12: Inferring dependencies by treating reads
as blocking and writes as non-blocking.

shows the arrival and finish time in the original trace. De-
pendencies are inferred based on arrival time and request
type. A is a read and is finished before B starts. Thus,
it falls under the first scenario and is blocking. B is a
write and falls under the third scenario. In other words,
we assume that after the program issues A and B, the wait
time is only caused by CPU thinking time and not wait-
ing on their results. Request D arrives before C is com-
pleted and falls under the second scenario. We assume
CPU was actually thinking before issuing D as it did not
need C to finish to get issued. Request E arrives after
both C and D are finished and falls under the first scenario,
where both ∆CE and ∆DE have to be preserved. In other
words, ArrivalE = max(FinishC + ∆CE , F inishD + ∆DE)
where ArrivalE is the calculated arrival time and variables
FinishC and FinishD describe the finishing time in our
testbed. Enforcing both these delta times ensures that even
if requests C and D are acknowledged in a different order
than the original trace, the assumed constant processing
time will be preserved. Since the introduction of Native
Command Queuing (NCQ) to the Serial ATA standard, out
of order acknowledgment should be assumed to be present
in all modern storage hardware.

5.2 Accelerated Warm-up
As the goal of DiskAccel is to run storage traces with

the greatest possible accuracy, the architectural state of the
hardware must be warmed up appropriately. While restora-
tion of architectural state can be performed via checkpoints [13],
this capability is rarely available on real hardware. As a re-
sult, warm-up of the state should be performed by sending
requests.

In [58], this is performed via a step called Detailed Warm-
up, where a portion of the instruction trace preceding each
selected interval is replayed. Between the end of a run and
next detailed warm-up, instructions are emulated so the user
visible state is always valid, but detailed warm-up should
cover the whole architectural state. For I/O traces, an ar-
bitrary portion of the traces has been used to warm up the
state [25, 56].

To minimize run-time, we should reduce the time spent
on warm-up. However, architectural state of storage sub-
systems is much larger than that of microprocessors. While
current microprocessors have tens of megabytes of cache at
most, cache size can be as large as 128MB for HDDs [43],
512MB for SSDs [38], and much more extensive caching is
performed in enterprise storage systems.

Warm-up Original Interval Cool-down

IA
IB
IC
ID

Runs

Figure 13: Runs generated (including warm-up and
cool-down) for the representative intervals IA...ID.
Since IB and IC are continuous, a singular run can
perform measurements for both of them.

The warm-up process must select enough requests before
each representative interval so the cache is warmed up. As
hit ratio of workloads might be variable, we should care
about the request footprint and not the sum of request sizes.
To track request footprint, we use interval trees to track each
unique accessed sector. We then move in backwards from
the start of each representative interval and stop when the
total capacity of unique disk locations reaches the capacity
of the cache. Please note that due to operations such as read-
ahead, much fewer requests must be selected to warm up the
cache but we choose a pessimistic policy to ensure the accu-
racy of warm-up. After the last requests in a representative
interval is issued, there is a possibility that requests exist
that preceded the conclusion of these requests. To increase
accuracy, after all requests in a representative interval are
issued, we send requests that originally arrived before these
requests finished. We refer to this as cool-down process.

A high level view of the replaying process for represen-
tative intervals can be seen in Figure 13. IA...ID are the
selected representative intervals and three runs have been
generated for replaying them. The striped lines show the
interval boundaries; each run is preceded by a warm-up and
in its conclusion, a cool-down process is run. IB and IC are
immediate neighbors and thus, IB can act as warm-up for
IC and IC can perform as a cool-down for IB . This allows
them to share the same run.

The warm-up behavior of our solution has important ad-
vantages: (a) if the device cache is so large that warm-up of
multiple intervals overlaps, the runs are joined and warm-
up time is reduced considerably, (b) if the workload is very
dense, not all the requests between different representative
intervals are run and only the required amount of warm-up
is performed.

6. EXPERIMENTAL VALIDATION
As mentioned previously, we use a subset of MSRC [28]

in the experiments. All these traces approximately span
over a week and have been taken from a variety of servers.
While these traces do include the response time of the orig-
inal server, we use our implementation of a trace runner to
(a) validate the results of the clustering process and (b) test
the viability and accuracy of running representative trace
intervals to estimate the original request response time. We
will explain the results of these two experiments in the fol-
lowing subsections.

6.1 Cross-validation of Clustering
In the previous section, we used the response time of the

original trace to measure the accuracy of our methodology

 0
 4
 8

 12
 16

Average

hm
_0

m
ds_1

prn_0

proj_4

prxy_0

rsrch_0

src1_2

ts_0
usr_2

wdev_0

web_2

E
rr

o
r

(P
er

ce
n

ta
g

e) Clustering Partial

Figure 14: Per-trace WRT error of our chosen feature vector ArqWslRndAntEntTreAte, compared against
the reference. The “clustering” statistic is the WRT error by clustering whole trace runs (Step 2 in Figure 5)
and “partial” refers to the WRT error of partial trace runs (Step 3 in Figure 5). The reference for both cases
is the average response time of a whole trace replay.

(Step 1 in Figure 5). To rule out the possibility of our learn-
ing methodology being overly tuned to the Redundant Array
of Independent Disks (RAID) used on the original machines,
we use our replay tool described in Sec. 3 to perform the re-
plays on our testbed. Multiple identical and independent
disks were used to perform concurrent experiments.

In Step 1 of Figure 5, we used the original response time
values in the trace both as the reference and for calculating
WRT. In Step 2, we repeat this comparison with different
hardware. We use our replay tool to run the thread in full
with no acceleration (requiring one week with each individ-
ual disk). The resulting response time values were used for
calculating both the reference and WRT values yielding an
average and maximum error of 6.5% and 13.6%, respectively.
Detailed results can be seen in Figure 14 as“clustering”error
bars. This error is comparable to those obtained from the
original traces and demonstrates that our clustering method-
ology can successfully select representative intervals that are
accurate across different hardware (Single SATA HDDs vs.
RAID1 and RAID5 arrays [28]). In the next section, we
conduct experiments to perform partial runs (Step 3 of Fig-
ure 5).

6.2 Running Representative Intervals
The actual process of DiskAccel only runs the represen-

tative intervals on the target hardware and uses WRT to
estimate the response time of a complete run. To run each
interval, hardware state must be similar to that of the origi-
nal run at the start of a representative interval. To do so, key
properties of the target hardware and list of representative
intervals are given to our trace replaying tool.

In our tool, the warm-up of hardware state is performed by
running a number of requests preceding each representative
interval, so that the hardware cache has the same contents
as the complete run. Warm-up requests are selected via an
interval tree which ensures that requests are selected by their
total footprint and not the sum of request sizes. To speed
up the warm-up process, warm-up requests are run as fast
as possible.

As cache size varies by different hardware, different num-
ber of requests must be sent for warm-up and user must sup-
ply cache size according to the hardware on which requests
are replayed. Another user-supplied parameter is disk queue
depth which is the number of requests that can be concur-
rently processed by storage hardware. If more requests than
queue capacity are to be sent by the hardware, the trace re-
playing tool must block until at least one request is finished.
Cache size and queue capacity for our disks are 8MB and 32
requests, respectively.

We replayed the representative intervals of the selected

traces using our replaying tool, weighted each interval by the
number of requests within its cluster and calculated WRT.
The WRT error, reported by only replaying the represen-
tative intervals is reported in Figure 14. The average and
maximum response time errors are 7.6% and 17.2%, respec-
tively.

The main aim of the methodology introduced in this paper
is to reduce the run-time for replay-based experiments. In
Figure 15 we display (a) run-time of the whole trace, (b) par-
tial runs with no accelerated warm-up, calculated based on
the original trace arrival time (a lower bound as our testbed
is slower), (c) run-time with accelerated warm-up measured
on our testbed, and (d) pure run-time of representative inter-
vals with no warm-up. The results show massive speed-ups
(the graph is log-scale) compared to both the unaccelerated
run and the full run-time with a 577 times reduction on
average.

In short, DiskAccel can select representative intervals in-
dependent of the hardware configuration using a clustering
process that must be run only once for each trace. DiskAccel
needs about 20 minutes of run-time for partial runs (includ-
ing warm-up) of a one-week trace. Our tool also manages
to massively reduce run times while keeping average and
maximum error across different hardware to a minimum.

6.3 Discussion
As noted in Figure 14, estimation error of our current

methodology can be attributed to (a) the process of clus-
tering and choice of representatives, and (b) partial replay
and warm-up of state. Our clustering uses a constant fea-
ture vector for choosing representative intervals. While we
tried alternative approaches such as DBSCAN [11] as well
as augmenting K-Means with Principal Component Analysis
(PCA) [18] (as implemented in [19]), we did not achieve bet-
ter results. We plan to enhance our machine learning with
suitable feature selection to improve the results. Based on
our investigations, we believe that the error caused by partial
runs is mainly caused by discrepencies in low-level behavior
of HDD (i.e., cache flush after idleness). We hope to im-
prove this behavior by controlling the timing of requests as
the warm-up finishes.

7. CONCLUSION
In this paper, we introduced a methodology, called DiskAc-

cel, to extract key properties of storage traces and use them
to select representative intervals by employing the weighted
K-Means algorithm. We also developed a tool to effectively
run the representative intervals, fill the hardware cache for
warm-up, and enforce request dependencies.

 1
 10

 100
 1000

 10000
 100000

Average

hm
_0

m
ds_1

prn_0

proj_4

prxy_0

rsrch_0

src1_2

ts_0
usr_2

wdev_0

web_2D
ur

at
io

n
(M

in
ut

es
)

Full Unaccelerated Accelerated Pure

Figure 15: Run time durations of different modes, Whole trace (Full), Partial runs without accelerated warm-
up (Unaccelerated), Partial runs with accelerated warm-up (Accelerated), and without warm-up (Pure).

We performed the evaluation of DiskAccel at three differ-
ent steps. We began by evaluating the ability of the clus-
tering process at accurate estimation of whole trace average
response times; first, using the response times recorded in
the original trace and then, using response times from replay
of whole traces using our tool. We also used our replay tool
to only run the representative intervals with the required
warm-up in an accelerated manner. Our methodology man-
aged to estimate the average response time by an average
and maximum error of %7.6 and %17.2, respectively while
speeding up the I/O experiments by 577 times on average.

As a future work, one can further improve the current so-
lution so error and experimentation times could be further
reduced. We also limited our study to a single hardware
setup due to the time-consuming nature of gathering refer-
ence response times at the original rate. We would like to
study the behavior of the proposed methodology for more
diverse hardware setups, especially SSDs and hybrid hard-
ware architectures in the future.

8. REFERENCES
[1] M. Ackerman, S. Ben-David, S. Branzei, and D. Loker.

Weighted clustering. In AAAI, pages 858–863, 2012.

[2] I. Ahmad. Easy and Efficient Disk I/O Workload
Characterization in VMware ESX Server. In Proc.
IISWC’07, pages 149–158, Sept.

[3] E. Anderson, M. Kallahalla, M. Uysal, and
R. Swaminathan. Buttress: A toolkit for flexible and
high fidelity i/o benchmarking. In Proc. FAST’04,
pages 4–4.

[4] J. Axboe. Fio-flexible io tester.
http://freecode.com/projects/fio, 2008. [Online;
accessed 1-August-2014].

[5] A. D. Brunelle. Block i/o layer tracing: blktrace, 2006.

[6] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R.
Ganger. The disksim simulation environment version
4.0 reference manual (cmu-pdl-08-101). Parallel Data
Laboratory, page 26, 2008.

[7] J. Burkardt. KMEANS - the K-Means Data
Clustering Problem. http://people.sc.fsu.edu/
~jburkardt/m_src/kmeans/kmeans.html, 2013.
[Online; accessed 16-June-2014].

[8] P. Cao, E. W. Felten, A. R. Karlin, and K. Li.
Implementation and performance of integrated
application-controlled file caching, prefetching, and
disk scheduling. TOCS, 14(4):311–343, 1996.

[9] R. Coker. Bonnie++.
http://www.coker.com.au/bonnie++/, 2001. [Online;
accessed 20-June-2014].

[10] A. S. Dhodapkar and J. E. Smith. Comparing

program phase detection techniques. In Proc.
MICRO’03, page 217.

[11] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In E. Simoudis,
J. Han, and U. Fayyad, editors, Second International
Conference on Knowledge Discovery and Data Mining,
pages 226–231. AAAI Press, 1996.

[12] Google. AIOUserGuide. https:
//code.google.com/p/kernel/wiki/AIOUserGuide,
2014. [Online; accessed 1-August-2014].

[13] G. Hamerly, E. Perelman, J. Lau, and B. Calder.
Simpoint 3.0: Faster and more flexible program phase
analysis. JILP, 7(4):1–28, 2005.

[14] B. Hong and T. M. Madhyastha. The relevance of
long-range dependence in disk traffic and implications
for trace synthesis. In Proc. MSST’05, pages 316–326.

[15] B. Hong, T. M. Madhyastha, and B. Zhang.
Cluster-based input/output trace synthesis. In Proc.
IPCCC’05, pages 91–98.

[16] W. W. Hsu, A. J. Smith, and H. C. Young.
Characteristics of production database workloads and
the tpc benchmarks. IBM Systems Journal,
40(3):781–802, 2001.

[17] B. Jacob, S. Ng, and D. Wang. Memory Systems:
Cache, DRAM, Disk. 2010.

[18] I. Jolliffe. Principal Component Analysis. John Wiley
& Sons, Ltd, 2005.

[19] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open
source scientific tools for Python.
http://www.scipy.org/, 2001–. [Online; accessed
1-August-2014].

[20] J. Katcher. Postmark: A new file system benchmark.
Technical report, Technical Report TR3022, Network
Appliance, 1997.
www.netapp.com/tech library/3022.html, 1997.

[21] S. Kavalanekar, D. Narayanan, S. Sankar,
E. Thereska, K. Vaid, and B. Worthington. Measuring
database performance in online services: a trace-based
approach. In Performance Evaluation and
Benchmarking, pages 132–145. 2009.

[22] S. Kavalanekar, B. Worthington, Q. Zhang, and
V. Sharda. Characterization of storage workload
traces from production windows servers. In Proc.
IISWC’08, pages 119–128.

[23] T. Kgil and T. Mudge. Flashcache: a nand flash
memory file cache for low power web servers. In Proc.
CASES’06, pages 103–112.

[24] J. Lau, S. Schoemackers, and B. Calder. Structures for
phase classification. In Proc. ISPASS’04, pages 57–67.

[25] C. Maltzahn, K. J. Richardson, and D. Grunwald.
Reducing the disk i/o of web proxy server caches. In
Proc. ATC’99, pages 225–238.

[26] M. P. Mesnier, M. Wachs, R. R. Simbasivan, J. Lopez,
J. Hendricks, G. R. Ganger, and D. R. O’Hallaron.
//trace: Parallel trace replay with approximate causal
events. In Proc. FAST’07.

[27] N. Mi, G. Casale, L. Cherkasova, and E. Smirni.
Injecting realistic burstiness to a traditional
client-server benchmark. In Proc. ICAC’09, pages
149–158.

[28] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for
enterprise storage. ACM ToS, 4(3):10:1–10:23, Nov.
2008.

[29] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety,
and A. Rowstron. Everest: Scaling down peak loads
through i/o off-loading. In Proc. OSDI’08, December.

[30] W. D. Norcott and D. Capps. Iozone filesystem
benchmark. http://www.iozone.org/, 2006. [Online;
accessed 20-June-2014].

[31] D. T. Pham, S. S. Dimov, and C. Nguyen. Selection of
k in k-means clustering. Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 219(1):103–119, 2005.

[32] A. Riska and E. Riedel. Disk drive level workload
characterization. In Proc. ATC’06, pages 97–102.

[33] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. TOCS,
10(1):26–52, 1992.

[34] S. Rostedt and D. V. Hart. Internals of the rt patch.
In Proceedings of the Linux symposium, 2007.

[35] C. Ruemmler and J. Wilkes. Unix disk access patterns.
In USENIX Winter, volume 93, pages 405–420, 1993.

[36] R. Saikkonen. Linux i/o port programming mini -
howto.
www.tldp.org/HOWTO/pdf/IO-Port-Programming.pdf,
2000. [Online; accessed 19-November-2014].

[37] R. Salkhordeh, H. Asadi, and S. Ebrahimi. Operating
system level data tiering using online workload
characterization. The Journal of Supercomputing,
71(4):1534–1562, 2015.

[38] Samsung Corporation. Samsung SSD 840 PRO Series,
August 2013. Rev. 1.2.

[39] P. Scheuermann, G. Weikum, and P. Zabback. Data
partitioning and load balancing in parallel disk
systems. The VLDB Journal, 7(1):48–66, 1998.

[40] J. Schindler and G. R. Ganger. Automated disk drive
characterization (poster session). SIGMETRICS
Perform. Eval. Rev., 28(1):112–113, June 2000.

[41] B. Schroeder, A. Wierman, and M. Harchol-Balter.
Open versus closed: A cautionary tale. In Proc.
NSDI’06, pages 18–18, 2006.

[42] G. Schwarz. Estimating the dimension of a model. The
Annals of Statistics, 6:461–464, 1978.

[43] Seagate Corporation. Enterprise Capacity 3.5 HDD
Data Sheet, April 2014.

[44] B. Seo, S. Kang, J. Choi, J. Cha, Y. Won, and
S. Yoon. Io workload characterization revisited: A
data-mining approach. IEEE TC, 63(12):3026–3038,
Dec 2014.

[45] C. E. Shannon. A note on the concept of entropy. Bell
System Tech. J, 27:379–423, 1948.

[46] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proc. ASPLOS’02, pages 45–57.

[47] A. J. Smith. Disk cache-miss ratio analysis and design
considerations. TOCS, 3(3):161–203, 1985.

[48] V. Tarasov, S. Kumar, J. Ma, D. Hildebrand,
A. Povzner, G. Kuenning, and E. Zadok. Extracting
flexible, replayable models from large block traces. In
Proc. FAST’12, pages 22–22, 2012.

[49] M. Tarihi. Serious problems using dixtrac extracted
parameters. https://sos.ece.cmu.edu/pipermail/
disksim-users/2013-July/000821.html, 2013.
[Online; accessed 16-June-2014].

[50] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright. A
nine year study of file system and storage
benchmarking. ACM TOS, 4(2):5, 2008.

[51] B. Trushkowsky, P. Bod́ık, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The scads director:
Scaling a distributed storage system under stringent
performance requirements. In Proc. FAST’11, pages
12–12.

[52] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing
the spatio-temporal behavior of real traffic data.
Performance Evaluation, 49(1):147–163, 2002.

[53] M. Wang, K. Au, A. Ailamaki, A. Brockwell,
C. Faloutsos, and G. Ganger. Storage device
performance prediction with cart models. In Proc.
MASCOTS’04, pages 588–595, Oct.

[54] M. Wang, T. Madhyastha, N. H. Chan,
S. Papadimitriou, and C. Faloutsos. Data mining
meets performance evaluation: Fast algorithms for
modeling bursty traffic. In Proc. ICDE’02, pages
507–516.

[55] Z. Weiss, T. Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. ROOT: Replaying Multithreaded
Traces with Resource-Oriented Ordering. In Proc.
SOSP’13, November 2013.

[56] T. M. Wong and J. Wilkes. My cache or yours?
making storage more exclusive. In Proc. ATEC’02,
pages 161–175, 2002.

[57] B. L. Worthington, G. R. Ganger, and Y. N. Patt.
Scheduling algorithms for modern disk drives.
SIGMETRICS Perform. Eval. Rev., 22(1):241–251,
may 1994.

[58] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In Proc.
ISCA’03, pages 84–95.

[59] J. Zhang, A. Sivasubramaniam, H. Franke,
N. Gautam, Y. Zhang, and S. Nagar. Synthesizing
Representative I/O Workloads for TPC-H. In Proc.
HPCA’04, pages 142–142, Feb.

[60] N. Zhu, J. Chen, T.-c. Chiueh, and D. Ellard. TBBT:
Scalable and Accurate Trace Replay for File Server
Evaluation. In Proc. SIGMETRICS’05, pages
392–393, 2005.

[61] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: Helping disk arrays sleep
through the winter. In Proc. SOSP’05, pages 177–190.

