
An Efficient Reconfigurable Architecture by

Characterizing Most Frequent Logic Functions

Iman Ahmadpour, Behnam Khaleghi, and Hossein Asadi
Department of Computer Engineering, Sharif University of Technology, Tehran

Abstract-Generous flexibility of Look-Up Tables (LUTs) in
implementing arbitrary functions comes with significant perfor
mance and area overheads compared with their Application
Specific Integrated Circuit (ASIC) equivalent. One approach to

alleviate such overheads is to use less flexible logic elements
capable to implement majority of logic functions. In this paper,
we first investigate the most frequently used functions in standard
benchmarks and then design a set of less-flexible but area-efficient
logic cells, called Hard Logics (HL). Since higher input functions
have diverse classes, we leverage Shannon decomposition to
break them into smaller ones to either reduce the HL design
space complexity or attain asymmetric low input functions.
A heterogeneous LUT-HL architecture and a mapping scheme
are also proposed to attain maximum logic resource usage.
Experimental results on MCNC benchmarks demonstrate that the
proposed architecture reduces area-delay product by 13% and
36% as compared to LUT4 and LUT6 based FPGAs, respectively.
Considering the same area budget, our proposed architecture
improves performance by 17% and 2% as compared to LUT4
and LUT6 based FPGAs.

I. INTRODUCTION

State-of-the-art Field-Programmable Gate Arrays (FPGAs)
are composed of K-input Look-Up Tables (LUTs) as their pro
cessing building blocks. While a K-input LUT can implement
any function with up to K variables, it comes with intensive
area and performance overhead in designs implemented on
FPGAs compared with their Application-Specific Integrated
Circuits (ASICs) [1], [2]. The area overhead of LUTs also
imposes significant power overhead as compared to its equiv
alent ASIC blocks.

To cope with significant area and performance overhead
of LUTs, recent studies have attempted to replace LUTs by
less flexible reconfigurable logic elements. This is motivated
by the fact that not all K-variable functions stand with equal
occurrence frequency in circuits [3]-[5]. As an example, the
AND logic class by itself builds 30% to 40% of functions
[3], [4]. These observations have inspired designers toward
investigating new configurable elements which are able to
implement a great deal of high frequent Boolean functions
with less transistor count and/or with improved latency.

A number of previous studies have attempted to propose
configurable elements include equipping FPGAs with dedi
cated hardware such as hardcore multipliers, Digital Signal
Processing (DSP) blocks, carry chain [6], and arithmetic logic
block [7]. Few other studies have tried to employ logic cells as
a substitute for LUTs to improve area, power, or performance.
Among these studies, COGRE [3] implements 93.4% and
50.6% of 4-input and 5-input functions using 8 and 11 SRAM
cells, respectively. This study claims 10.0% to 46.3% reduction
in logic area; however, this saving can be significantly dete
riorated by the increase in routing area. In addition, the area
and performance results have been compared with standard

cell-based LUTs while transmission-gate based LUTs consume
much less transistors and benefit from fast-input attribute.
Another study has introduced the concept of Extended LUT
(E-LUT) [8]. This study uses trimming input of functions
to break a K-input function into two smaller ones, where
one of them has fewer than K -1 variables. Without carrying
out place and route experiments, the authors estimate 5%
improvement in area-depth product. They also have neglected
that their cells are not fully permutable anymore, which may
incur routing overhead. In [4], the authors introduce Mega Cell
which consists of a 4-input LUT and two other HLs which
together cover more than 94% of functions. Every function will
be mapped to one of the logic cells and the other pair will be
power-gated. Due to limitation of the VPR toolset used in the
experiments, the increased delay of longer routing wires has
been neglected in this work. Another study presented in [9] has
proposed And-Invert-Cone (AlC) that has a similar structure
to And-Invert-Graph representation. The complexity of AlC is
linear with its inputs and its delay increases logarithmically
with the increase in inputs number. The authors have reported
the area and delay improvements in terms of cluster reduction
while no routing experiments has been performed and routing
area is not considered. To achieve required input permutability,
one can expect that the large full-crossbar connection blocks
will result in significant routing overhead.

This paper presents an efficient set of configurable logic
elements, referred to as HLs, to be replaced with conventional
LUTs inside an FPGA. For this purpose, we use the Shannon
expansion to break 5-variable functions into two asymmetric
functions, wherein one of them has less than K -1 inputs. It
is demonstrated that 98% of functions mapped into LUT5
can be decomposed such that at least one of its cofactors
has less than K -1 variables. Our analysis also shows that
84% of LUTs can be decomposed in such a way that one of
the resulted cofactors has a constant value, i.e., logical value
of zero or one. For the other cofactors, we profile them to
find the most frequent function classes in order to develop
custom area- and/or performance-aware HLs. Using a com
prehensive characterization of benchmarks circuits, we also
propose a heterogeneous cluster architecture with an optimal
number of each HL type, and a mapping scheme to achieve
highest resource utilization. To evaluate the efficiency of the
proposed architecture, we have implemented both the proposed
architecture as well as previously proposed techniques such as
COGRE, and E-LUT in the VPR toolset. Experimental results
show that our proposed architecture improves the area-delay
factor by 13%, 36%, 16% and 58% as compared with LUT4,
LUT6, COGRE, and E-LUT architectures. Considering equal
area budget, the proposed architecture improves the critical
path delay by 17%, 2%, 14%, and 23% as compared to the
aforementioned architectures, respectively.

The rest of this paper is organized as follows. Sec. II details

TABLE l. COVERA GE RATIO OF MOST FREQUENT 4-INPUT AND

3-INPUT NPN CL ASSES IN 20 L ARGEST MCNC BENCHMARK CIRCUITS

NPN class Ratio NPN class Ratio

ABCD 33.3% ABC 34.0%
AB+CD 22.8% A(B+C) 29.0%
A+BCD 18.9% AC+B!C 14.3%

(AB+C)D 12.3% A(!B!C+BC) 7.6%
Others 13.0% Others 15.0%

the proposed architecture. Sec. III presents the experimental
setup and results. In Sec. IV, we discuss the limitations of our
work and possible improvements. Finally, Sec. V concludes
the paper.

II. PROPOSED ARCHITECTURE

The main challenge of proposing a substitute for LUT
based FPGAs is the coverage ratio of proposed cells, i.e., per
c�nt�ge of funct

.
ions an HL can implement while making it as

�fficIent as possIble. If an arbitrary function cannot be mapped

�nto the �roposed HLs, the synthesis tool will decompose it
mt? multIple sub-functions to fit them into the proposed HLs,
or m the �ase of heterogeneous LUT-HL architectures will map
the functIOn to a LUT. The former case eventuates in increased
number of logic blocks and hence wastes local (intra-cluster)
or global (inter-cluster) routing resources. In the latter case,
due to the high ratio of LUTs, improvements will be negligible
especially considering the probable overheads in global routing
due to the unpermutability of HL inputs.

A. NPN classes and Shannon decomposition

To design efficient HL blocks, we use the concept of
Negation-Permutation-Negation (NPN) classes to categorize
very large number of functions to smaller number of classes.
Tw? functions F and G are NPN-equivalent if they can be
denved from each other by negating and/or permuting inputs,
and/or negating output. Although LUT6 provides the best
performance compared with other LUT-based architectures
[2], it has very diverse NPN classes that cannot be covered
by a small set of logic functions with limited configuration
cells [10]. On the other hand, LUT4 has the best area ef
ficiency [2], however, the small gain obtained in logic area
by replacing LUTs with custom HLs may deteriorated due
to routing overhead, as in [8]. Therefore, we target 5-input
functions which can be mapped into LUT5 and have relatively
smaller number of NPN classes. In addition, we leverage
Sha�non

.
expansio� theorem to further explore the possibility

?f s�m�hfymg 5-mput functions which subsequently leads
m effiCIent and smaller set of HLs. Based on the Shannon
Boolean expansion theorem, an arbitrary function defined as
F = f(Xl, ... , Xi, ... , Xn) can be decomposed with regard
to any of its variables Xi to form a pair of cofactors, i.e.,
!' = xi·f(Xl, ... , 1, ... ,xn) + xi·f(Xl, ... ,0, ... ,xn). Consider
mg the Shannon decomposition, every 5-input function can be
implemented using two 4-input LUTs and a 2: 1 multiplexer.
Nonetheless, our investigation on MCNC benchmark suite
reveals that for most of 5-input LUTs at least one of the
cofactors has less than four variables, particularly it is a solitary
zero or one logic. Note that every K-input function has K pairs
of cofactors (one pair per each input), so in order to explore the
frequency of NPN classes, we choose the pair with minimum
number of variables to further limit the NPN space.

60%

50%

40%
�
IE 30%
::l
0-
� 20%

t..t..

10%

0%

Cofactors Input

Fig. 1. Distribution of different cofactor pairs

B. Design of Hard Logic

The results of outlining LUT5 functions based on number
of inputs of their minimum cofactors are demonstrated in
Fig. 1. According to the results in this figure, in 97.7% of
functions at least one of the cofactor has only two or less
inputs. In addition, for �80% of functions at least one of
the cofactors is a constant-zero or -one. This observation
motivates us to design efficient HLs that implement four or less
input functions instead of 5-input functions that initially were
mapped into LUT5. Fig. 2(a) illustrates the general structure of
a logic element decomposed into HL blocks, e.g., Hard Logic
1 and Hard Logic 2. Using the given structure of logic element
based on HLs depicted in Fig. 2(a), next we design efficient
HLs to embed into this structure. By employing Boolean
Matcher tool [11], we investigate the cofactors and find out
that near�y 87% of 4-input and 85% of 3-input cofactors belong
to only four NPN classes as reported in Table. I.

At the first stage, we propose H LA, as depicted in
Fig. 2(b), which is able to implement three NPNs that alto
gether support 66% of 4-input functions. Note that negating the
i�puts

.
cannot simply perfonned in the previous logic output

smce It may cause conflict in the case of multiple fanouts

?f previous logic. Considering (!A!B) =!(A + B), if both
mputs of the AND gates require negation, we provide the
second inversion by the previous stage (if possible), or by
exchanging the inputs of the AND with the OR gate and
using their output configurable inverter. The same scenario
holds

.
for the OR gate. Evidently, while H LA is designed

for 4-mput cofactors, it also can implement majority of 3-
input functions since they are a subset of 4-input functions.
Ho:vever, considering the utilization of three and less input
cofactors, we propose another area and delay efficient HL,
called H L B which is shown in Fig. 2(b). This HL helps us to
further save logic block and intra-cluster multiplexer area for
less input cofactors. Due to the high ratio of constant cofactors,
we place H L A and H L B circuits in Hard Logic # I. For Hard
Logic #2, we allocate a single configuration cell to employ
constant logics. Our analysis using Boolean Matcher reveals
that H LA and H LB blocks can implement 61% of LUT5
mapped functions in MCNC benchmarks. These functions are
composed of a K-input cofactor where K is less than or equal
to four, and a constant zero or one cofactor. Please note that
for the remaining 4-input NPNs we examined other HLs, but
con

.
sidering thei� low utilization ratio, the induced complexity

to Implement dIfferent functions compromises the resulting
gain.

Fig. 2. Structure of proposed Hard Logic Blocks

Investigating the remaining LUT5 functions leads us into
two scenarios. The first group of functions does not contain
any constant cofactor. Profiling these functions shows that
most of them can be implemented by combination of H L A
and H LB. Therefore, we introduce a Double Hard Logic
(DHL) block as shown in Fig. 2(c). The second group includes
functions that have a constant cofactor, but its other cofactor
could not be implemented by neither H LA nor H LB. These
functions will be mapped to a simple E-LUT4, as shown in
Fig. 2(d). There is a minor set of functions which does not
fit in any of mentioned structures. While these functions can
be implemented by cascading two HL blocks, it will cause
intra-cluster and global routing overhead. So, in the proposed
architecture, we leave a small number of 5-input LUTs for
such functions.

C. Mapping Algorithm

Using ABC tool [12], input BLIF file is mapped to 5-
input LUTs. Next, by parsing the output BLIF we extract the
corresponding Boolean function of each LUT. For each K
variable function, all K pairs of cofactors are extracted. For
each cofactor pair, we find the target HL block with the priority
of less area consumption. So, in a greedy manner we first check
whether the H LB block (with a single configuration cell for
the other cofactor) can implement the cofactor. In a decreasing

Algorithm 1: Proposed Mapping Algorithm

Input: Circuit BLIF file
Output: Minimum area logic block for every function

1 Map input BLIF file to LUT5 using ABC;
2 for every LUT Li in new BLIF do
3 Ii +--- Boolean function of Li;
4 Si +--- all possible cofactor pairs of Ii;
5 for every cofactor pair Pj in set Si do
6 if NPN(Pj) E NPN(HLB) then
7 L HLj +--- HLB;

8 else if NPN(Pj) E NPN(HLA) then
9 L HLj +--- HLA;

10 else if NPN(Pj) E NPN(DHL) then
11 L HLj +--- DHL;

12 else if NPN(Pj) E NPN(E-LUT) then
13 L H Lj +--- E-LUT;

14 else
15 L H Lj +--- LUT5;

16 HLi +--- min{HLj I Pj E Si};

17 return;

Fig. 3. Original distribution of logic blocks

Fig. 4. Distribution of logic blocks after balancing

order of priorities, H LA, DHL, E-LUT, and LUT5 are the next
options. Algorithm 1 outlines the proposed mapping scheme.

Fig. 3 shows the per benchmark and average distribution
of the proposed logic blocks. As can be inferred from this
figure, utilization percentage of each logic block varies for
different applications. Since the number of each type of logic
block in a cluster is specified based on their average distribu
tion, it compromises the resource utilization in the proposed
architecture. The logic block with the highest resource demand
determines the final FPGA array size. For example, dedicated
logic blocks for E-LUT4 will be about 23%, however, applying
Algorithm 1, the dsip circuit requires more than 60% E
LUT4 block per cluster. Thus, it induces about 150% more
clusters to provide sufficient E-LUT4 blocks. On the other
hand, for this application, more than 97% of DHL blocks
remains unutilized. To address this problem, we try to take
advantage of overlapping functions. As an example, function
A- (B EB C) initially is implemented by H L B, due to its lower
area. However, if the resource demand for H LB exceeds its
total share (i.e., 17% of logic blocks), some of these functions
can be passed to any of DHL, E-LUT, and LUT5 logic blocks
that are utilized below its dedicated share and have unused
blocks. By applying this procedure in the final BLIF file,
we efficiently balance each logic block utilization toward its
average which was obtained for all 20 MCNC benchmarks.
Fig. 4 shows the distribution of logic blocks after balancing
step. Comparing this figure with Fig. 3 reveals the proximity

Fig. 5. Distribution of connections to different logic blocks

of logic block utilization ratio in different benchmarks after
balancing.

D. Cluster Design

Designing a cluster of HL blocks should deal with three
criteria; 1) total number of logic blocks within the cluster, 2)
number of each logic block and, 3) cluster's interior connection
block (input multiplexers) structure. Due to the heterogeneous
nature and diversity of used logic blocks in the proposed
architecture, choosing small clusters causes poor placement
and heavy load on global routing due to variety of connecting
pairs (e.g., H LA to H LB, E-LUT to DHL, etc.). For example,
in a H LA to LUTS connection, the adjacent clusters may either
lack a LUTS because of low ratio of LUTS blocks, or leave
rough flexibility to placement algorithm. Based on this fact and
by conducting experiments, we opted N = 17 as an optimum
number of logic blocks inside a cluster. The number of each
logic block type in a cluster can be obtained by their average
ratio as discussed in Sec. II-C. In our experiments, the number
of HLA, HLB, DHL, E-LUT4, and LUTS is set to 7, 3, 2, 4,
and 1, respectively.

To provide the best routability, the role of connections in
input multiplexers of logic blocks becomes very important.
To efficiently design multiplexers, we calculate the average
of various connections between different logic blocks, which
is shown in Fig. S. Based on this figure, we infer that, for
example, 27% of inputs of H L A block originate from H LB.
Hence, we dedicate 27% of H LA intra-cluster feedback inputs
to the outputs of H LB blocks in the same cluster.

III. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate efficiency of the proposed architecture,
we implemented 20 largest MCNC benchmarks using the pro
posed architecture, E-LUT, COGRE, and conventional LUT
based architectures and compared their area and performance
efficiency. For the E-LUT architecture, we chose its most
efficient structure, i.e., two LUT4 based one, and for the
COGRE, we compared with both COGRES and COGRE6.
For the COGRE architectures, we created the genlib library
of functions that COGRES and COGRE6 can implement, as
input cell library for ABC tool. Then, we synthesized the
MCNC benchmarks using the generated library and obtained
the corresponding BLIF file. Delay and area parameters are
extracted using HSPICE circuit level simulator using Predic
tive Technology Model (PTM) 4Snm technology [13]. Finally,
VPR 7.0 [14] is used for clustering, placement, and routing
the benchmarks and extracting area and delay reports.

A. Architectural Parameters

1) General VPR Parameters: Since we have used 4Snm
technology in our simulations, for all the architectures we
let VPR general parameters as the same in iFAR repository
provided with VPR tool. Table II summarize the main general
parameters that affect the final results.

TABLE II. GENERAL VPR PARAMETERS

Parameter Value Parameter Value
R MinWidth NMOS 8926 R MinWidth PMOS 16067

Switch block type Wilton Fs 3

Switch type MUX Switch delay 58
Segment length 4 Segment type Unidir.

2) Area and Delay Parameters: Table III summarizes the
area and delay for different logic blocks. Note that by H LA
LB we mean the logic block for H L A which includes the
H LA cell, the SRAM for constant cofactor, and XOR gate.
Such structure is depicted for the used E-LUT4 block in Fig.
2(d). Area is calculated as sum of the used minimum width
transistors. Here, delay is reported as average delay of all
inputs, while in simulations we used the actual delay for each
input. For instance, the fastest input of LUT6 has only IS ps
delay.

3) Cluster Configuration: Table IV outlines the cluster
configuration for both the proposed and baseline architectures.
These values are proved to be the optimum configuration
for the corresponding architectures [IS]. Notice that for the
COGRE architecture, we also examined larger number of logic
blocks within the cluster. However, the cluster size of 6 (N=6)
provides the best results. For the proposed architecture, as
discussed in Sec. II, other values for N is also examined and
N = 17 found to yield the best trade-off between area and
delay. Number of cluster inputs, J, is opted from the well
known formula J = 1f x (N + 1) [2].

B. Area

In order to compare the architectures with respect to
consumed transistor count, we use VPR with default routing
options. In the default operation mode, it places the circuit
on the minimum number of logical resources and in a binary
search mode and repetitively searches for minimum value of
channel width (minimum routing resources) that can route the
design. Reported area includes logic and routing area. Note
that VPR counts the intra-cluster input multiplexers as logical
resources, so usually the ratio of logic to the total area is higher
than academic suppositions.

TABLE Ill. SUMMARY OF AREA, DEL AY, AND NUMBER OF

CONFIGURATION BITS

Module Area # Coor. Bils Delay p8 Module Area # Conf. Bits uclay ps
11 LA LB 254 7 71 COGRE6 392 II 123
HLB LB 143 4 42 1wo E-LUT 1438 35 102
DilL LB 288 9 71 LUT4 654 16 66

E·LUT LB 709 18 60 LUT5 1327 32 108
COGRE5 291 8 100 LUT6 2643 64 110

TABLE IY. CLUSTER CONFIGURATION

Parameter Proposed COGRE5 COGRE6 LUT4 LUT5 LUT6 E-LUT
K 5 5 6 4 5 6 6
N 17 6 6 6 6 6 6
I 46 20 23 14 17 21 21

Fein 0.3 0.5 0.5 0.5 0.5 0.5 0.5
Fcout 0.1 0.17 0.17 0.17 0.17 0.17 0.17
Fcfb different 0.5 0.5 0.5 0.5 0.5 0.5

Fig. 6. Area comparison in area-constraint routing between the proposed and base-line architectures (bottom and top portions are logic and routing area,
respectively)

Fig. 7. Delay comparison in area-constraint routing between the proposed and base-line architectures (bottom and top portions are logic and routing delay,
respectively)

Fig. 8. Comparison of area-delay products between different architectures (normalized to the proposed HL architecture) in area-constraint routing

TABLE V. SUMMARY OF RESULTS (%)

Area-constraint (default) routing Equal-area routing
Area Delay Area-Delay Delay

LUT4 -4 17 13 17
LUT5 9 12 24 11
LUT6 37 -2 36 2

E-LUT 36 15 58 23
COGRE5 -3 21 18 24
COGRE6 3 12 16 14

Fig. 6 represents the logic and routing area for different
architectures. As summarized in Table V, experimental results
implies that the proposed architecture improves the total area
by 9% and 37% as compared to LUT5 and LUT6 architectures,
and imposes 4% area overhead compared with LUT4 which
has been known to be the most area-efficient architecture
among LUT-based architectures [2]. Comparing the logic and
routing area distinctly with LUT5 which is identical with our
proposed architecture in term of number of logic block inputs,
the results reported in Fig. 6 show that the proposed architec
ture improves logic area by 21 %. However, due to diversity of
logic elements and connections, and due to unpermutability
of the proposed logics, the proposed architecture increases
routing area by 6%. In the total, the area is improved by
9% on average. On the other hand, COGRE5 increases the
total number of logic blocks as compared to the proposed
architecture, but due to its smaller logic blocks area, overall, it
reduces the logic area by 20%. However, the increased number
of logic blocks imposes routing overhead which compromises
the total area gain.

Fig. 7 and Fig. 8 report the delay and area-delay product
of different architectures, respectively, when are mapped to
minimum sized device. The results reveal that the proposed
architecture improves the area-delay product by 13%, 24%,

and 36% compared to LUT4, LUT5, and LUT6 architectures,
respectively. The summary results reported in Table V show
that the improvements are due to improving in either area or
delay (e.g. vs. LUT5), area (e.g. vs. LUT6), or delay (e.g. vs.
LUT4).

C. Performance

Similar to the argument in Sec. III-B, comparing the
performance of different architectures requires fair circum
stances. For instance, mapping a circuit on LUT6 results in
smaller critical path than LUT4 based architecture, but also it
takes more area. In an area-equivalent condition, i.e., giving
the same transistor cost that LUT6 spends to implement a
design, LUT4 will represent improved performance due to
enhanced flexibility of routing. Hence, in order to conduct
such evaluation, for each benchmark we found the architecture
with the largest total area. Then, for other architectures, we
increased the channel width to reach the same area. This gives
them a flexibility to conduct the routing in more efficient
way and results in enhanced performance. Fig. 9 illustrates
the critical path delay of MCNC benchmarks on the studied
architectures in terms of logic and routing delay. Based on
this figure, the proposed architecture improves the delay by
17%, 11 % and 2% as opposed to LUT4, LUT5, and LUT6
architectures, respectively.

IV. DISCUSSION

State-of-the-art FPGAs target high performance applica
tions using LUT6 in their structure as Xilinx Virtex-6 family
[16]. However, there are other applications where performance
is not the major criterion. On the other hands, vendors usually
use a unique architecture for all FPGAs in the same family [16]
and only vary their size. For example, Xilinx does not change

Fig. 9. Critical Path Delay Comparison

the LUT6-based architecture of Virtex-6 to LUT4-based area
efficient architecture for customers whose major constraint
is either cost or power. The proposed architecture provides
an efficient trade-off between performance, cost, and power.
For high performance application domains, the proposed ar
chitecture provides the same performance as LUT6 with the
same transistor cost. In addition, for economical applications
it has only 4% area overhead compared with LUT4-based
architecture, but provides considerable area-delay efficiency.
Therefore, the proposed architecture can play a major role in
both performance- and area-attentive applications.

Despite advantages of the proposed architecture, it lacks
from few shortcomings. First, we have established our scenario
based on analyzing the MCNC benchmarks. Using other
benchmarks suites (such as IWLS) may result in different
distribution of functions and NPN classes. Thus, for other set
of benchmarks, type and/or ratio of proposed logic blocks may
differ from currently suggested HLs. Nevertheless, we can
classify applications into several categories, e.g., arithmetic
cores, encryption/decryption modules, etc. and propose an
efficient architecture for each one. Therefore, for different class
of applications, different structures can be provided.

Another area that needs significant improvement is the
mapping and clustering algorithm. This can be done by per
forming a clustering-aware logic balancing which needs con
ducting balancing simultaneously with clustering the logics.
For example, changing a H L B to H L A block may evict it
from a cluster (due to lack of H LA in that cluster) or vice
versa which complicates the global routing. In addition, since
only 2% of functions has been mapped to LUT5, we could
examine breaking such functions into multiple un utilized logic
blocks (for example, can be mapped into two unused E-LUTs)
and modify the clustering algorithm to place these logic parts
inside the same cluster to prevent global routing overhead. This
eliminates the need for pure LUT5 and makes the architecture
simpler and enhances the clustering and routing process.

Furthermore, we encountered some VPR related limitations
during the experiments. First, unfortunately VPR does not
support specified or partial permutation. Each of the gates in
the proposed logic blocks are permutable. Moreover, there are
functions with inherent permutability, e.g., ABC D, which is
entirely permutable, or A· (B + C + D) in which the inputs
B, C, and D can be permuted. Including such option to the
VPR router enhances the routing flexibility and can improve
either the delay or routing area. Second, for non-LUT-based
architectures, sometimes VPR is unable to find HL-latch pairs
and places the HL and the corresponding latch in different
logic blocks, so it wastes a logic block and imposes logic
and/or routing overhead.

V. CONCLUSION

In this paper, we proposed an efficient architecture that
can be substituted for current LUT-based architectures in both

the area-oriented and high performance applications domain.
The proposed architecture improves the area-delay factor by
l3%, 24%, and, 36% as compared to LUT4, LUT5, and LUT6-
based architectures, respectively. Considering equal transistor
count, it improves the performance by 17%, 11 %, and 2%
compared with LUT4, LUT5, and LUT6-based architectures,
respectively.

REFERENCES

[1] I. Kuon and J. Rose, Quantifying and exploring the gap between FPGAs

and ASICs. Springer Science & Business Media, 2010.

[2] E. Ahmed and J. Rose, "The effect of lut and cluster size on deep
submicron fpga performance and density, " Very Large Scale Integration
(VLSI) Systems, IEEE Trans. on, vol. 12, no. 3, pp. 288-298, 2004.

[3] Y Okamoto, Y Ichinomiya, M. Amagasaki, M. lida, and T. Sueyoshi,
" Cogre: A configuration memory reduced reconfigurable logic cell
architecture for area minimization, " in Field Programmable Logic and
Applications (FPL), 2010 Inti. Conference on. IEEE, 2010, pp. 304-9.

[4] A. Ahari, B. Khaleghi, Z. Ebrahimi, H. Asadi, and M. B. Tahoori,
"Towards dark silicon era in fpgas using complementary hard logic
design, " in Field Programmable Logic and Applications (FPL), 2014
24th International Conference on. IEEE, 2014, pp. 1-6.

[5] P.-Y Hsu, P.-c. Lu, and Y-Y Liu, "An efficient hybrid lut/sop reconfig
urable architecture, " in VLSI Design Automation and Test (VLSI-DAT),
2010 International Symposium on. IEEE, 2010, pp. 173-176.

[6] "Virtex-II platform FPGAs: Complete data sheet, " Data Sheet, Xilinx,
November 2007.

[7] H. Parandeh-Afshar, P. Brisk, and P. lenne, "A novel fpga logic block
for improved arithmetic performance, " in Proceedings of the 16th
international ACM/SIGDA symposium on Field programmable gate
arrays. ACM, 2008, pp. 17 1-180.

[8] J. H. Anderson and Q. Wang, "Area-efficient fpga logic elements:
Architecture and synthesis, " in Proceedings of the 16th Asia and South
Pacific Design Automation Conference. IEEE Press, 2011, pp. 369-
375.

[9] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P. lenne, "Rethinking
fpgas: elude the flexibility excess of luts with and-inverter cones, "
in Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays. ACM, 2012, pp. 119-128.

[10] A. Kennings, K. Vorwerk, and A. Mishchenko, Generating efficient
libraries for use in FPGA resynthesis algorithms. Department of
Electrical and Computer Engineering, University of Waterloo, 2010.

[11] D. Chai and A. Kuehlmann, "Building a better boolean matcher and
symmetry detector, " in Proceedings of the conference on Design,

automation and test in Europe: Proceedings. European Design and
Automation Association, 2006, pp. 1079-1084.

[12] A. Mishchenko et aI., "Abc: A system for sequential synthesis and
verification, " URL http://www. eecs. berkeley. eduF alanmi/abc, 2007
(accessed June 26, 2015).

[13] (2013 (accessed June 26, 2015)) Predictive technology model (ptm).
[Online]. Available: http://ptm.asu.eduJ

[14] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et aI., "Vtr 7.0: next generation
architecture and cad system for fpgas, " ACM Transactions on Recon
figurable Technology and Systems (TRETS), vol. 7, no. 2, p. 6, 2014.

[15] G. Lemieux and D. Lewis, "Using sparse crossbars within lut, " in
Proceedings of the 2001 ACM/SIGDA ninth international symposium
on Field programmable gate arrays. ACM, 2001, pp. 59-68.

[16] "Virtex-6 fpgas configurable logic block, " User Guide, Xilinx, February
2012.

