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Abstract-Generous flexibility of Look-Up Tables (LUTs) in 
implementing arbitrary functions comes with significant perfor
mance and area overheads compared with their Application
Specific Integrated Circuit (ASIC) equivalent. One approach to 

alleviate such overheads is to use less flexible logic elements 
capable to implement majority of logic functions. In this paper, 
we first investigate the most frequently used functions in standard 
benchmarks and then design a set of less-flexible but area-efficient 
logic cells, called Hard Logics (HL). Since higher input functions 
have diverse classes, we leverage Shannon decomposition to 
break them into smaller ones to either reduce the HL design 
space complexity or attain asymmetric low input functions. 
A heterogeneous LUT-HL architecture and a mapping scheme 
are also proposed to attain maximum logic resource usage. 
Experimental results on MCNC benchmarks demonstrate that the 
proposed architecture reduces area-delay product by 13% and 
36% as compared to LUT4 and LUT6 based FPGAs, respectively. 
Considering the same area budget, our proposed architecture 
improves performance by 17% and 2% as compared to LUT4 
and LUT6 based FPGAs. 

I. INTRODUCTION 

State-of-the-art Field-Programmable Gate Arrays (FPGAs) 
are composed of K-input Look-Up Tables (LUTs) as their pro
cessing building blocks. While a K-input LUT can implement 
any function with up to K variables, it comes with intensive 
area and performance overhead in designs implemented on 
FPGAs compared with their Application-Specific Integrated 
Circuits (ASICs) [1], [2]. The area overhead of LUTs also 
imposes significant power overhead as compared to its equiv
alent ASIC blocks. 

To cope with significant area and performance overhead 
of LUTs, recent studies have attempted to replace LUTs by 
less flexible reconfigurable logic elements. This is motivated 
by the fact that not all K-variable functions stand with equal 
occurrence frequency in circuits [3]-[5]. As an example, the 
AND logic class by itself builds 30% to 40% of functions 
[3], [4]. These observations have inspired designers toward 
investigating new configurable elements which are able to 
implement a great deal of high frequent Boolean functions 
with less transistor count and/or with improved latency. 

A number of previous studies have attempted to propose 
configurable elements include equipping FPGAs with dedi
cated hardware such as hardcore multipliers, Digital Signal 
Processing (DSP) blocks, carry chain [6], and arithmetic logic 
block [7]. Few other studies have tried to employ logic cells as 
a substitute for LUTs to improve area, power, or performance. 
Among these studies, COGRE [3] implements 93.4% and 
50.6% of 4-input and 5-input functions using 8 and 11 SRAM 
cells, respectively. This study claims 10.0% to 46.3% reduction 
in logic area; however, this saving can be significantly dete
riorated by the increase in routing area. In addition, the area 
and performance results have been compared with standard 

cell-based LUTs while transmission-gate based LUTs consume 
much less transistors and benefit from fast-input attribute. 
Another study has introduced the concept of Extended LUT 
(E-LUT) [8]. This study uses trimming input of functions 
to break a K-input function into two smaller ones, where 
one of them has fewer than K -1 variables. Without carrying 
out place and route experiments, the authors estimate 5% 
improvement in area-depth product. They also have neglected 
that their cells are not fully permutable anymore, which may 
incur routing overhead. In [4], the authors introduce Mega Cell 
which consists of a 4-input LUT and two other HLs which 
together cover more than 94% of functions. Every function will 
be mapped to one of the logic cells and the other pair will be 
power-gated. Due to limitation of the VPR toolset used in the 
experiments, the increased delay of longer routing wires has 
been neglected in this work. Another study presented in [9] has 
proposed And-Invert-Cone (AlC) that has a similar structure 
to And-Invert-Graph representation. The complexity of AlC is 
linear with its inputs and its delay increases logarithmically 
with the increase in inputs number. The authors have reported 
the area and delay improvements in terms of cluster reduction 
while no routing experiments has been performed and routing 
area is not considered. To achieve required input permutability, 
one can expect that the large full-crossbar connection blocks 
will result in significant routing overhead. 

This paper presents an efficient set of configurable logic 
elements, referred to as HLs, to be replaced with conventional 
LUTs inside an FPGA. For this purpose, we use the Shannon 
expansion to break 5-variable functions into two asymmetric 
functions, wherein one of them has less than K -1 inputs. It 
is demonstrated that 98% of functions mapped into LUT5 
can be decomposed such that at least one of its cofactors 
has less than K -1 variables. Our analysis also shows that 
84% of LUTs can be decomposed in such a way that one of 
the resulted cofactors has a constant value, i.e., logical value 
of zero or one. For the other cofactors, we profile them to 
find the most frequent function classes in order to develop 
custom area- and/or performance-aware HLs. Using a com
prehensive characterization of benchmarks circuits, we also 
propose a heterogeneous cluster architecture with an optimal 
number of each HL type, and a mapping scheme to achieve 
highest resource utilization. To evaluate the efficiency of the 
proposed architecture, we have implemented both the proposed 
architecture as well as previously proposed techniques such as 
COGRE, and E-LUT in the VPR toolset. Experimental results 
show that our proposed architecture improves the area-delay 
factor by 13%, 36%, 16% and 58% as compared with LUT4, 
LUT6, COGRE, and E-LUT architectures. Considering equal 
area budget, the proposed architecture improves the critical 
path delay by 17%, 2%, 14%, and 23% as compared to the 
aforementioned architectures, respectively. 

The rest of this paper is organized as follows. Sec. II details 



TABLE l. COVERA GE RATIO OF MOST FREQUENT 4-INPUT AND 

3-INPUT NPN CL ASSES IN 20 L ARGEST MCNC BENCHMARK CIRCUITS 

NPN class Ratio NPN class Ratio 

ABCD 33.3% ABC 34.0% 
AB+CD 22.8% A(B+C) 29.0% 
A+BCD 18.9% AC+B!C 14.3% 

(AB+C)D 12.3% A(!B!C+BC) 7.6% 
Others 13.0% Others 15.0% 

the proposed architecture. Sec. III presents the experimental 
setup and results. In Sec. IV, we discuss the limitations of our 
work and possible improvements. Finally, Sec. V concludes 
the paper. 

II. PROPOSED ARCHITECTURE 

The main challenge of proposing a substitute for LUT
based FPGAs is the coverage ratio of proposed cells, i.e., per
c�nt�ge of funct

.
ions an HL can implement while making it as 

�fficIent as possIble. If an arbitrary function cannot be mapped 

�nto the �roposed HLs, the synthesis tool will decompose it 
mt? multIple sub-functions to fit them into the proposed HLs, 
or m the �ase of heterogeneous LUT-HL architectures will map 
the functIOn to a LUT. The former case eventuates in increased 
number of logic blocks and hence wastes local (intra-cluster) 
or global (inter-cluster) routing resources. In the latter case, 
due to the high ratio of LUTs, improvements will be negligible 
especially considering the probable overheads in global routing 
due to the unpermutability of HL inputs. 

A. NPN classes and Shannon decomposition 

To design efficient HL blocks, we use the concept of 
Negation-Permutation-Negation (NPN) classes to categorize 
very large number of functions to smaller number of classes. 
Tw? functions F and G are NPN-equivalent if they can be 
denved from each other by negating and/or permuting inputs, 
and/or negating output. Although LUT6 provides the best 
performance compared with other LUT-based architectures 
[2], it has very diverse NPN classes that cannot be covered 
by a small set of logic functions with limited configuration 
cells [10]. On the other hand, LUT4 has the best area ef
ficiency [2], however, the small gain obtained in logic area 
by replacing LUTs with custom HLs may deteriorated due 
to routing overhead, as in [8]. Therefore, we target 5-input 
functions which can be mapped into LUT5 and have relatively 
smaller number of NPN classes. In addition, we leverage 
Sha�non 

.
expansio� theorem to further explore the possibility 

?f s�m�hfymg 5-mput functions which subsequently leads 
m effiCIent and smaller set of HLs. Based on the Shannon 
Boolean expansion theorem, an arbitrary function defined as 
F = f(Xl, ... , Xi, ... , Xn) can be decomposed with regard 
to any of its variables Xi to form a pair of cofactors, i.e., 
!' = xi·f(Xl, ... , 1, ... ,xn) + xi·f(Xl, ... ,0, ... ,xn). Consider
mg the Shannon decomposition, every 5-input function can be 
implemented using two 4-input LUTs and a 2: 1 multiplexer. 
Nonetheless, our investigation on MCNC benchmark suite 
reveals that for most of 5-input LUTs at least one of the 
cofactors has less than four variables, particularly it is a solitary 
zero or one logic. Note that every K-input function has K pairs 
of cofactors (one pair per each input), so in order to explore the 
frequency of NPN classes, we choose the pair with minimum 
number of variables to further limit the NPN space. 
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Fig. 1. Distribution of different cofactor pairs 

B. Design of Hard Logic 

The results of outlining LUT5 functions based on number 
of inputs of their minimum cofactors are demonstrated in 
Fig. 1. According to the results in this figure, in 97.7% of 
functions at least one of the cofactor has only two or less 
inputs. In addition, for �80% of functions at least one of 
the cofactors is a constant-zero or -one. This observation 
motivates us to design efficient HLs that implement four or less 
input functions instead of 5-input functions that initially were 
mapped into LUT5. Fig. 2(a) illustrates the general structure of 
a logic element decomposed into HL blocks, e.g., Hard Logic 
1 and Hard Logic 2. Using the given structure of logic element 
based on HLs depicted in Fig. 2(a), next we design efficient 
HLs to embed into this structure. By employing Boolean 
Matcher tool [11], we investigate the cofactors and find out 
that near�y 87% of 4-input and 85% of 3-input cofactors belong 
to only four NPN classes as reported in Table. I. 

At the first stage, we propose H LA, as depicted in 
Fig. 2(b), which is able to implement three NPNs that alto
gether support 66% of 4-input functions. Note that negating the 
i�puts 

. 
cannot simply perfonned in the previous logic output 

smce It may cause conflict in the case of multiple fanouts 

?f previous logic. Considering (!A!B) =!(A + B), if both 
mputs of the AND gates require negation, we provide the 
second inversion by the previous stage (if possible), or by 
exchanging the inputs of the AND with the OR gate and 
using their output configurable inverter. The same scenario 
holds 

.
for the OR gate. Evidently, while H LA is designed 

for 4-mput cofactors, it also can implement majority of 3-
input functions since they are a subset of 4-input functions. 
Ho:vever, considering the utilization of three and less input 
cofactors, we propose another area and delay efficient HL, 
called H L B which is shown in Fig. 2(b). This HL helps us to 
further save logic block and intra-cluster multiplexer area for 
less input cofactors. Due to the high ratio of constant cofactors, 
we place H L A and H L B circuits in Hard Logic # I. For Hard 
Logic #2, we allocate a single configuration cell to employ 
constant logics. Our analysis using Boolean Matcher reveals 
that H LA and H LB blocks can implement 61% of LUT5 
mapped functions in MCNC benchmarks. These functions are 
composed of a K-input cofactor where K is less than or equal 
to four, and a constant zero or one cofactor. Please note that 
for the remaining 4-input NPNs we examined other HLs, but 
con

.
sidering thei� low utilization ratio, the induced complexity 

to Implement dIfferent functions compromises the resulting 
gain. 



Fig. 2. Structure of proposed Hard Logic Blocks 

Investigating the remaining LUT5 functions leads us into 
two scenarios. The first group of functions does not contain 
any constant cofactor. Profiling these functions shows that 
most of them can be implemented by combination of H L A 
and H LB. Therefore, we introduce a Double Hard Logic 
(DHL) block as shown in Fig. 2(c). The second group includes 
functions that have a constant cofactor, but its other cofactor 
could not be implemented by neither H LA nor H LB. These 
functions will be mapped to a simple E-LUT4, as shown in 
Fig. 2(d). There is a minor set of functions which does not 
fit in any of mentioned structures. While these functions can 
be implemented by cascading two HL blocks, it will cause 
intra-cluster and global routing overhead. So, in the proposed 
architecture, we leave a small number of 5-input LUTs for 
such functions. 

C. Mapping Algorithm 

Using ABC tool [12], input BLIF file is mapped to 5-
input LUTs. Next, by parsing the output BLIF we extract the 
corresponding Boolean function of each LUT. For each K
variable function, all K pairs of cofactors are extracted. For 
each cofactor pair, we find the target HL block with the priority 
of less area consumption. So, in a greedy manner we first check 
whether the H LB block (with a single configuration cell for 
the other cofactor) can implement the cofactor. In a decreasing 

Algorithm 1: Proposed Mapping Algorithm 

Input: Circuit BLIF file 
Output: Minimum area logic block for every function 

1 Map input BLIF file to LUT5 using ABC; 
2 for every LUT Li in new BLIF do 
3 Ii +--- Boolean function of Li; 
4 Si +--- all possible cofactor pairs of Ii; 
5 for every cofactor pair Pj in set Si do 
6 if NPN(Pj) E NPN(HLB) then 
7 L HLj +--- HLB; 

8 else if NPN(Pj) E NPN(HLA) then 
9 L HLj +--- HLA; 

10 else if NPN( Pj) E NPN(DHL) then 
11 L HLj +--- DHL; 

12 else if NPN( Pj) E NPN(E-LUT) then 
13 L H Lj +--- E-LUT; 

14 else 
15 L H Lj +--- LUT5; 

16 HLi +--- min{HLj I Pj E Si}; 

17 return; 

Fig. 3. Original distribution of logic blocks 

Fig. 4. Distribution of logic blocks after balancing 

order of priorities, H LA, DHL, E-LUT, and LUT5 are the next 
options. Algorithm 1 outlines the proposed mapping scheme. 

Fig. 3 shows the per benchmark and average distribution 
of the proposed logic blocks. As can be inferred from this 
figure, utilization percentage of each logic block varies for 
different applications. Since the number of each type of logic 
block in a cluster is specified based on their average distribu
tion, it compromises the resource utilization in the proposed 
architecture. The logic block with the highest resource demand 
determines the final FPGA array size. For example, dedicated 
logic blocks for E-LUT4 will be about 23%, however, applying 
Algorithm 1, the dsip circuit requires more than 60% E
LUT4 block per cluster. Thus, it induces about 150% more 
clusters to provide sufficient E-LUT4 blocks. On the other 
hand, for this application, more than 97% of DHL blocks 
remains unutilized. To address this problem, we try to take 
advantage of overlapping functions. As an example, function 
A- (B EB C) initially is implemented by H L B, due to its lower 
area. However, if the resource demand for H LB exceeds its 
total share (i.e., 17% of logic blocks), some of these functions 
can be passed to any of DHL, E-LUT, and LUT5 logic blocks 
that are utilized below its dedicated share and have unused 
blocks. By applying this procedure in the final BLIF file, 
we efficiently balance each logic block utilization toward its 
average which was obtained for all 20 MCNC benchmarks. 
Fig. 4 shows the distribution of logic blocks after balancing 
step. Comparing this figure with Fig. 3 reveals the proximity 



Fig. 5. Distribution of connections to different logic blocks 

of logic block utilization ratio in different benchmarks after 
balancing. 

D. Cluster Design 

Designing a cluster of HL blocks should deal with three 
criteria; 1) total number of logic blocks within the cluster, 2) 
number of each logic block and, 3) cluster's interior connection 
block (input multiplexers) structure. Due to the heterogeneous 
nature and diversity of used logic blocks in the proposed 
architecture, choosing small clusters causes poor placement 
and heavy load on global routing due to variety of connecting 
pairs (e.g., H LA to H LB, E-LUT to DHL, etc.). For example, 
in a H LA to LUTS connection, the adjacent clusters may either 
lack a LUTS because of low ratio of LUTS blocks, or leave 
rough flexibility to placement algorithm. Based on this fact and 
by conducting experiments, we opted N = 17 as an optimum 
number of logic blocks inside a cluster. The number of each 
logic block type in a cluster can be obtained by their average 
ratio as discussed in Sec. II-C. In our experiments, the number 
of HLA, HLB, DHL, E-LUT4, and LUTS is set to 7, 3, 2, 4, 
and 1, respectively. 

To provide the best routability, the role of connections in 
input multiplexers of logic blocks becomes very important. 
To efficiently design multiplexers, we calculate the average 
of various connections between different logic blocks, which 
is shown in Fig. S. Based on this figure, we infer that, for 
example, 27% of inputs of H L A block originate from H LB. 
Hence, we dedicate 27% of H LA intra-cluster feedback inputs 
to the outputs of H LB blocks in the same cluster. 

III. EXPERIMENTAL SETUP AND RESULTS 

In order to evaluate efficiency of the proposed architecture, 
we implemented 20 largest MCNC benchmarks using the pro
posed architecture, E-LUT, COGRE, and conventional LUT
based architectures and compared their area and performance 
efficiency. For the E-LUT architecture, we chose its most 
efficient structure, i.e., two LUT4 based one, and for the 
COGRE, we compared with both COGRES and COGRE6. 
For the COGRE architectures, we created the genlib library 
of functions that COGRES and COGRE6 can implement, as 
input cell library for ABC tool. Then, we synthesized the 
MCNC benchmarks using the generated library and obtained 
the corresponding BLIF file. Delay and area parameters are 
extracted using HSPICE circuit level simulator using Predic
tive Technology Model (PTM) 4Snm technology [13]. Finally, 
VPR 7.0 [14] is used for clustering, placement, and routing 
the benchmarks and extracting area and delay reports. 

A. Architectural Parameters 

1) General VPR Parameters: Since we have used 4Snm 
technology in our simulations, for all the architectures we 
let VPR general parameters as the same in iFAR repository 
provided with VPR tool. Table II summarize the main general 
parameters that affect the final results. 

TABLE II. GENERAL VPR PARAMETERS 

Parameter Value Parameter Value 
R MinWidth NMOS 8926 R MinWidth PMOS 16067 

Switch block type Wilton Fs 3 

Switch type MUX Switch delay 58 
Segment length 4 Segment type Unidir. 

2) Area and Delay Parameters: Table III summarizes the 
area and delay for different logic blocks. Note that by H LA 
LB we mean the logic block for H L A which includes the 
H LA cell, the SRAM for constant cofactor, and XOR gate. 
Such structure is depicted for the used E-LUT4 block in Fig. 
2(d). Area is calculated as sum of the used minimum width 
transistors. Here, delay is reported as average delay of all 
inputs, while in simulations we used the actual delay for each 
input. For instance, the fastest input of LUT6 has only IS ps 
delay. 

3) Cluster Configuration: Table IV outlines the cluster 
configuration for both the proposed and baseline architectures. 
These values are proved to be the optimum configuration 
for the corresponding architectures [IS]. Notice that for the 
COGRE architecture, we also examined larger number of logic 
blocks within the cluster. However, the cluster size of 6 (N=6) 
provides the best results. For the proposed architecture, as 
discussed in Sec. II, other values for N is also examined and 
N = 17 found to yield the best trade-off between area and 
delay. Number of cluster inputs, J, is opted from the well
known formula J = 1f x (N + 1) [2]. 

B. Area 

In order to compare the architectures with respect to 
consumed transistor count, we use VPR with default routing 
options. In the default operation mode, it places the circuit 
on the minimum number of logical resources and in a binary
search mode and repetitively searches for minimum value of 
channel width (minimum routing resources) that can route the 
design. Reported area includes logic and routing area. Note 
that VPR counts the intra-cluster input multiplexers as logical 
resources, so usually the ratio of logic to the total area is higher 
than academic suppositions. 

TABLE Ill. SUMMARY OF AREA, DEL AY, AND NUMBER OF 

CONFIGURATION BITS 

Module Area # Coor. Bils Delay p8 Module Area # Conf. Bits uclay ps 
11 LA LB 254 7 71 COGRE6 392 II 123 
HLB LB 143 4 42 1wo E-LUT 1438 35 102 
DilL LB 288 9 71 LUT4 654 16 66 

E·LUT LB 709 18 60 LUT5 1327 32 108 
COGRE5 291 8 100 LUT6 2643 64 110 

TABLE IY. CLUSTER CONFIGURATION 

Parameter Proposed COGRE5 COGRE6 LUT4 LUT5 LUT6 E-LUT 
K 5 5 6 4 5 6 6 
N 17 6 6 6 6 6 6 
I 46 20 23 14 17 21 21 

Fein 0.3 0.5 0.5 0.5 0.5 0.5 0.5 
Fcout 0.1 0.17 0.17 0.17 0.17 0.17 0.17 
Fcfb different 0.5 0.5 0.5 0.5 0.5 0.5 



Fig. 6. Area comparison in area-constraint routing between the proposed and base-line architectures (bottom and top portions are logic and routing area, 
respectively) 

Fig. 7. Delay comparison in area-constraint routing between the proposed and base-line architectures (bottom and top portions are logic and routing delay, 
respectively) 

Fig. 8. Comparison of area-delay products between different architectures (normalized to the proposed HL architecture) in area-constraint routing 

TABLE V. SUMMARY OF RESULTS (%) 

Area-constraint (default) routing Equal-area routing 
Area Delay Area-Delay Delay 

LUT4 -4 17 13 17 
LUT5 9 12 24 11 
LUT6 37 -2 36 2 

E-LUT 36 15 58 23 
COGRE5 -3 21 18 24 
COGRE6 3 12 16 14 

Fig. 6 represents the logic and routing area for different 
architectures. As summarized in Table V, experimental results 
implies that the proposed architecture improves the total area 
by 9% and 37% as compared to LUT5 and LUT6 architectures, 
and imposes 4% area overhead compared with LUT4 which 
has been known to be the most area-efficient architecture 
among LUT-based architectures [2]. Comparing the logic and 
routing area distinctly with LUT5 which is identical with our 
proposed architecture in term of number of logic block inputs, 
the results reported in Fig. 6 show that the proposed architec
ture improves logic area by 21 %. However, due to diversity of 
logic elements and connections, and due to unpermutability 
of the proposed logics, the proposed architecture increases 
routing area by 6%. In the total, the area is improved by 
9% on average. On the other hand, COGRE5 increases the 
total number of logic blocks as compared to the proposed 
architecture, but due to its smaller logic blocks area, overall, it 
reduces the logic area by 20%. However, the increased number 
of logic blocks imposes routing overhead which compromises 
the total area gain. 

Fig. 7 and Fig. 8 report the delay and area-delay product 
of different architectures, respectively, when are mapped to 
minimum sized device. The results reveal that the proposed 
architecture improves the area-delay product by 13%, 24%, 

and 36% compared to LUT4, LUT5, and LUT6 architectures, 
respectively. The summary results reported in Table V show 
that the improvements are due to improving in either area or 
delay (e.g. vs. LUT5), area (e.g. vs. LUT6), or delay (e.g. vs. 
LUT4). 

C. Performance 

Similar to the argument in Sec. III-B, comparing the 
performance of different architectures requires fair circum
stances. For instance, mapping a circuit on LUT6 results in 
smaller critical path than LUT4 based architecture, but also it 
takes more area. In an area-equivalent condition, i.e., giving 
the same transistor cost that LUT6 spends to implement a 
design, LUT4 will represent improved performance due to 
enhanced flexibility of routing. Hence, in order to conduct 
such evaluation, for each benchmark we found the architecture 
with the largest total area. Then, for other architectures, we 
increased the channel width to reach the same area. This gives 
them a flexibility to conduct the routing in more efficient 
way and results in enhanced performance. Fig. 9 illustrates 
the critical path delay of MCNC benchmarks on the studied 
architectures in terms of logic and routing delay. Based on 
this figure, the proposed architecture improves the delay by 
17%, 11 % and 2% as opposed to LUT4, LUT5, and LUT6 
architectures, respectively. 

IV. DISCUSSION 

State-of-the-art FPGAs target high performance applica
tions using LUT6 in their structure as Xilinx Virtex-6 family 
[16]. However, there are other applications where performance 
is not the major criterion. On the other hands, vendors usually 
use a unique architecture for all FPGAs in the same family [16] 
and only vary their size. For example, Xilinx does not change 



Fig. 9. Critical Path Delay Comparison 

the LUT6-based architecture of Virtex-6 to LUT4-based area
efficient architecture for customers whose major constraint 
is either cost or power. The proposed architecture provides 
an efficient trade-off between performance, cost, and power. 
For high performance application domains, the proposed ar
chitecture provides the same performance as LUT6 with the 
same transistor cost. In addition, for economical applications 
it has only 4% area overhead compared with LUT4-based 
architecture, but provides considerable area-delay efficiency. 
Therefore, the proposed architecture can play a major role in 
both performance- and area-attentive applications. 

Despite advantages of the proposed architecture, it lacks 
from few shortcomings. First, we have established our scenario 
based on analyzing the MCNC benchmarks. Using other 
benchmarks suites (such as IWLS) may result in different 
distribution of functions and NPN classes. Thus, for other set 
of benchmarks, type and/or ratio of proposed logic blocks may 
differ from currently suggested HLs. Nevertheless, we can 
classify applications into several categories, e.g., arithmetic 
cores, encryption/decryption modules, etc. and propose an 
efficient architecture for each one. Therefore, for different class 
of applications, different structures can be provided. 

Another area that needs significant improvement is the 
mapping and clustering algorithm. This can be done by per
forming a clustering-aware logic balancing which needs con
ducting balancing simultaneously with clustering the logics. 
For example, changing a H L B to H L A block may evict it 
from a cluster (due to lack of H LA in that cluster) or vice 
versa which complicates the global routing. In addition, since 
only 2% of functions has been mapped to LUT5, we could 
examine breaking such functions into multiple un utilized logic 
blocks (for example, can be mapped into two unused E-LUTs) 
and modify the clustering algorithm to place these logic parts 
inside the same cluster to prevent global routing overhead. This 
eliminates the need for pure LUT5 and makes the architecture 
simpler and enhances the clustering and routing process. 

Furthermore, we encountered some VPR related limitations 
during the experiments. First, unfortunately VPR does not 
support specified or partial permutation. Each of the gates in 
the proposed logic blocks are permutable. Moreover, there are 
functions with inherent permutability, e.g., ABC D, which is 
entirely permutable, or A· (B + C + D) in which the inputs 
B, C, and D can be permuted. Including such option to the 
VPR router enhances the routing flexibility and can improve 
either the delay or routing area. Second, for non-LUT-based 
architectures, sometimes VPR is unable to find HL-latch pairs 
and places the HL and the corresponding latch in different 
logic blocks, so it wastes a logic block and imposes logic 
and/or routing overhead. 

V. CONCLUSION 

In this paper, we proposed an efficient architecture that 
can be substituted for current LUT-based architectures in both 

the area-oriented and high performance applications domain. 
The proposed architecture improves the area-delay factor by 
l3%, 24%, and, 36% as compared to LUT4, LUT5, and LUT6-
based architectures, respectively. Considering equal transistor 
count, it improves the performance by 17%, 11 %, and 2% 
compared with LUT4, LUT5, and LUT6-based architectures, 
respectively. 
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