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FPGA-Based Protection Scheme against Hardware
Trojan Horse Insertion Using Dummy Logic
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Abstract—Hardware trojan horses (HTH) have recently emerged
as a major security threat for field-programmable gate arrays
(FPGAs). Previous studies to protect FPGAs against HTHs may
still leave a considerable amount of logic resources to be misused
by malicious attacks. This letter presents a low-level HTH pro-
tection scheme for FPGAs by filling the unused resources with
the proposed dummy logic. In the proposed scheme, we identify
the unused resources at the device layout-level and offer dummy
logic cells for different resources. The proposed HTH protection
scheme has been applied on Xilinx Virtex devices implementing
a set of IWLS benchmarks. The results show that by employing
the proposed HTH protection scheme, the chance of logic abuse
can be significantly reduced. Experimental results also show that
as compared to nonprotected designs, the proposed HTH scheme
imposes no performance and power penalties.

Index Terms—Design for hardware trust, field-programmable
gate arrays (FPGAs), hardware trojan horse.

I. INTRODUCTION

F IELD-PROGRAMMABLE GATE ARRAYS (FPGAs)
with lower nonrecurring engineering (NRE) cost and

less time-to-market (TTM) compared to application-specific
integrated circuits (ASICs) provide a promising single chip
solution for implementing embedded systems [2]. The reconfig-
uration property of FPGAs provides designers the flexibility of
implementing a wide range of applications. This property also
enables the embedded system designers to apply design updates
even after circuit implementation and shipment. In contrast to
ASICs, however, the reconfigurability of FPGAs makes them
more susceptible to design modification even after chip being
manufactured [7]. Therefore, the secure implementation of an
embedded system using FPGAs not only requires employing
protection schemes during design and manufacturing process
similar to ASICs, but also requires secured protection mecha-
nisms against malicious attacks after device shipment.
Recently, hardware trojan horses (HTH) insertion and detec-

tion have received significant attention in the literature [6], [9],
[17], mainly because they can maliciously disturb the normal
functionality of a circuit or change its characteristics. This, in
turn, can affect the reliability and security of a chip. Although a
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great deal of research has been conducted towards insertion of
HTHs and/or detection/prevention against them in ASICs, there
have been a limited amount of studies investigating HTH inser-
tion and detection in FPGAs, where not only silicon HTH can
be inserted in the device, application space HTH can also be
inserted in the design [8], [23]. Such studies mostly focus on in-
sertion and detection of a HTH or Design For Hardware Trust
(DFHT).
Previous HTH studies on FPGAs can be classified into either

high-level techniques using hardware description languages or
low-level techniques. While high-level techniques [15] aim at
higher levels of design process, low-level ones [7] perform in-
sertions, detections, or DFHT at bitstream or device levels. In
[18], the authors present a technique, called BISA, to fill the un-
used space in layout of a design with functional standard cells
instead of filler cells. These cells form a circuit with specific I/O
signature; hence, any modification in BISA will alter the sig-
nature. This can make fabrication-stage HTH insertion difficult
and detectable, unless the inserted HTH only affects the original
design cells, where BISA cannot detect the inserted HTH. The
main aim of the method proposed in [13] is to utilize all syn-
thesized resources on all clock cycles, so there will be no room
within the hardware for HTH inclusion. This requires accurate
and fully specified design in all levels of abstraction. While it
is possible to check whether a design meets the mentioned cri-
teria, it would be difficult to specify a design such that all of its
resources are utilized all the time, particularly in such a way
that their operation will be essential to appropriate operation
of the whole circuit. An approach to implement various HTHs
has been proposed in [14]. This approach cannot be detected by
ring oscillator-based protection mechanisms. A low-level tech-
nique to manipulate the configuration bitstream has been pro-
posed in [7]. In this technique, the unused parts of bitstreams
are detected and a properly presynthesized, preplaced, and pre-
routed bitstream of a HTH is inserted to the original one. Such
HTH insertion scheme cannot be applied to a design which is
evenly distributed throughout the FPGA fabric.
In this letter, we propose a low-level HTH protection scheme

by filling the unused resources of the FPGA with low-level
dummy logic (LLDL). In the proposed scheme, we identify
unused resources within the FPGA device and propose dummy
logic cells for different resources of FPGAs. The proposed
scheme significantly reduces the chance of application space
HTH attacks by giving no free configurable resource for HTHs
insertion in the design’s bitstream. The malicious inclusion
can either disturb the functionality of the original design, incur
device fluctuations such as warming up or transistor aging as
in [7]. This is in contrast to high-level protection techniques
that may leave considerable amount of logic resources to be
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misused by attackers. Additionally, by employing the pro-
posed low-level technique, the bitstream reverse engineering
becomes much more difficult for the purpose of leaking de-
sign specifications, e.g., number, location, and configuration
of utilized resources, which can facilitate subsequent power
analysis attacks [8]. The proposed protection scheme could
be automatically applied to the designs after placement and
routing stages. In addition, the proposed LLDL scheme does
not alter the placement and routing of the original design and
only exploits the unused configurable resources in the FPGA.
We have applied the proposed scheme on Xilinx Virtex de-

vices implementing a set of IWLS 2005 benchmarks [1]. The
experimental results reveal that our proposed scheme does not
impose any power or performance overheads as compared to
the original nonprotected designs. Our results also show that the
proposed scheme increases the utilization of FPGAs up to 15X
without having any power or performance overheads.
The rest of this letter is organized as follows. Section II de-

scribes the proposed LLDL scheme. Section III presents ex-
perimental setup and results. Finally, Section IV concludes the
letter.

II. THE PROPOSED SCHEME

In this section, we first discuss low-level configurable re-
sources available in a typical FPGA. Then, the insertion of
dummy logic and dummy routing resources are presented in
the subsequent subsections.

A. Low-Level Configurable Resources in FPGA
LLDLs are added to the original circuit after placement and

routing stage. At this stage, the native circuit description (NCD)
file of the original circuit could be converted to the human read-
able description at the physical-level of device. Some vendors
offer layout-level hardware description language (LHDL) to di-
rectly describe a device functionality using device resources. As
an example, Xilinx provides a language, called Xilinx descrip-
tion language (XDL) [3], which can be employed to efficiently
design a circuit with available device resources. Such vendors
offer toolsets to convert the NCD file to its LHDL equivalent
format. The produced LHDL format similar to the NCDfile con-
tains all of the low-level configuration state of logic and routing
resources in the FPGA. Having the LHDL format of the orig-
inal design, the proposed LLDL could be inserted by exploiting
low-level FPGA resources.
Although the device resources in LHDLs vary among dif-

ferent series of FPGAs, they could be categorized under the
following two groups: 1) programmable logic points (PLP);
and 2) programmable interconnect points (PIPs). PLPs include
the resources implementing a special logic which are typically
grouped in a cluster. State-of-the-art FPGAs offer various
types of PLPs for a single device type. The most common PLP
uses look-up tables (LUTs), called PLPL. This type of PLP is
composed of several LUTs, Flip-Flops (FFs), and Multiplexers
and can implement both combinational and sequential circuits.
Other types of PLPs may implement memory blocks, hard logic
multipliers, or even digital aignal processing (DSP) blocks. For
instance, Xilinx Virtex-II series have more than twenty PLP
types such as block random access memories (BRAM), SLICE,
BSCAN, IOB, ICAP, MULT , PCILOGIC, STARTUP,

Fig. 1. Virtex-II Slice (Top Half) [21].

and VCC [20]. PIPs, on the other hand, are programmable
interconnects which provide the connectivity between PLPs. In
the subsequent subsections, we will discuss the LLDL insertion
in PLP and PIP resources.

B. Dummy PLPL Insertion
After the placement and routing of the original design, FPGA

clusters will be in either partially utilized or unutilized states.
In order to protect partially utilized PLPLs against HTH inser-
tion, the unused resources such as FFs, LUTs, and Multiplexers
should be instantiated in the LHDL file in a way that it does not
disturb the functionality of the original design. However, for the
unutilized PLPL, the entire PLPL could be filled with a random
dummy PLPL. We intentionally use random configuration for
unused resources in order to avoid any distinguishable pattern
in the dummy logic. However, if the original design contains
limited or specific type of configurations, we can fill the dummy
logic with similar configurations.
A PLPL consists of a LUT-4 cell, a FF, multiple multiplexers,

and hard logic cells, as shown in Fig. 1. Configuration data of
a PLP determines its functionality. It is notable to mention that
the intra-PLP connections are described in the LHDL file after
the placement and routing stages. Listing 1 illustrates the de-
scription of a PLPL in the XDL format. As shown in Listing 1,
the configuration of each resource in the PLP is presented in the
XDL format. For instance, the function of a LUT is described as
a boolean function of the four inputs. If a LUT has not been uti-
lized, its corresponding state in the XDL format will be demon-
strated as OFF.
The proposed LLDL protection scheme first automatically

detects the unused clusters and then fills them with dummy
PLPLs. Next, the unused resources in partially utilized clus-
ters can be detected and filled up with dummy logic. Note that
the inputs of any instantiated PLP should be driven by a net,
and also its outputs should drive a net; otherwise, this PLP will
be removed automatically during bitstream generation. There-
fore, we insert a net per each output of a dummy PLP and also
instantiate a single net to drive all inputs of the dummy PLP.
Listing 2 shows a dummy net that drives all used inputs of a
dummy PLP. By filling up partially used and unused clusters
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Listing 1. Cluster description in a sample XDL file.

Listing 2. Net description in a sample XDL file.

Listing 3. Filling an unused BRAM with random data in an XDL file.

in the FPGA, there will be no more free cluster in the FPGA
for possible low-level HTH insertions. Nevertheless, since a
dummy logic does not implement any specific function, one can
replace a HTH instead of the dummy logic without making any
impact on the functionality of the original system. However, dif-
ferentiating between the dummy logic and the original design
especially after bitstream generation is a very challenging task.
This is because the configuration bits are not distinguishable due
to the confidentiality of the bitstream format.

C. Other Dummy PLP Insertion

Except the PLPLwhich could be partially utilized, other PLPs
have only two states: 1) used; and 2) unused. To protect a de-
sign against HTH insertion, unused PLPs are configured with a
random configuration data. Clearly, the used PLPs will not be
manipulated during the dummy logic insertion. As an example,
if an unused BRAM is detected in the LHDL file, it will be filled
up with a bunch of random data. This has been illustrated in
Listing 3.

D. Dummy PIP Insertion

FPGAs comprise numerous wires spread out among logic
blocks to provide appropriate routability. Each wire segment
may drive or be driven by several other segments. For any wire
segment, a PIP determines which of its endpoint segments be
activated. Hence, the definition of a PIP is as “pip tileName sr-
cName destName,” in which, tileName refers to the encom-
passing tile (or cluster), srcName refers to the name of the source

wire, and destName indicates the name of the destination wire.
PIPs compose a major part of bitstream bits. For example, a
Virtex2 XC2V80 device contains 720 752 PIPs which occupy
about 48% of the device bitstream. However, PIPs that drive a
unique destination within a cluster cannot be used simultane-
ously. Knowing this fact, we define a dummy net in the LHDL
file and add a PIP “pip ”, if it meets the following
conditions:
1 there should not be any “pip ,” neither in the

original nor in the currently added PIPs;
2 there should not be any “pip ,” in the primary

PIPs.
The first rule is necessary to avoid the cases that multiple wire

segments drive a unique segment, and the second rule prevents
adding extra load to the nets of the original design to avoid per-
formance overheads.

E. Discussion: Possible Attacks and Configuration Encryption

Although brute-forcing the device logic to discriminate the
dummies based on monitoring the design’s functionality is the-
oretically possible, due to large number of resources inside a
FPGA, it is extremely difficult to change the logic configuration
one by one and give an essentially complete test pattern to verify
the correct functionality of the design, particularly for complex
and sequential circuits. Another way is to arbitrary place a HTH
(without finding dummy logic), which requires no overlapping
between resources of the original and HTH circuits. This is also
infeasible, because for example if we consider half of the de-
vice resources to be empty and the HTH is composed of only
50 LUTs (which is less than 5% of total LUTs in smallest de-
vices), the probability of having no overlap is approximately.

). Furthermore, since we have not left any
room for adding new PIPs, the attacker cannot introduce new
interconnect between the hypothetical HTH resources. A full
reverse engineering, which requires the complete database be-
tween bitstream bits and corresponding resources can make it
possible to generate the modified design XDL, but yet not the
original design. Moreover, the available tools [12], [5], [4] have
very limited resource database and only are available to extract
a few set of PIPs as a plain text, so they are entirely unable to
reconstruct the interconnect which comprises most of the con-
figuration bits. Note it is also possible to distinguish a chunk of
dummy LUTs by accurately monitoring the signal activities, if
a considerable portion of the original device is unutilized. This
issue can be resolved by choosing a near-to-minimum size de-
vice or evenly distributing the original design logic within the
FPGA using simple synthesis constraints.
Another argument regarding the proposed scheme is that con-

figuration encryption is sufficient to ensure the device security.
We should note that not all of device families support bitstream
encryption; even if they do, there are several successful works,
usually based on power analysis attacks that break bitstream en-
cryption [11]. Therefore, our scheme can be used on top of other
protection mechanisms as configuration encryption. Lastly, it
should be noted that the proposed scheme protects the design
against insertion of malicious objects in free resources of the
device and is irrelevant to the modification made on the base
design.
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Fig. 2. Functional verification.

Listing 4. Stimuli module for functional verification.

III. EXPERIMENTAL SETUP AND RESULTS
Here, we will first verify the functionality of a design after ap-

plying the proposed HTH protection scheme. Then, the original
and modified designs will be compared in terms of performance
and power consumption. Finally, the resource utilization of the
original and modified designs will be discussed. In these exper-
iments, Xilinx ISE Design Suite 10.1 is used to implement a
set of IWLS benchmark circuits on the Xilinx Virtex-II device.
Then, performance reports are extracted by post placement and
routing simulations in Xilinx Timing Analyzer [19]. In addition,
power reports are extracted by Xilinx XPower tool [22]. Utiliza-
tion reports are also adopted from Xilinx ISE utilization reports.

A. Functional Verification
In order to perform functional verification, post placement

and routing simulation models are generated for both original
and protected designs using Xilinx netgen command. This
command produces a Verilog file along with the corresponding
standard delay format (SDF) file from the post placement and
routing NCD file. Then, as it is shown in Listing 4, the top mod-
ules of both the original and protected designs are instantiated
and wrapped up in an another Verilog module named stimuli.
The instances of the original and protected designs share the
same inputs. In order to verify the functionality of the protected
design against the original design, the equivalent outputs are
first XORed. Then, the output of all gates are ORed to
examine the exact match between the outputs of both designs.
Note that the generated HDL files contain Xilinx primitives as
LUT modules and BRAMs. To this end, the SIMPRIM library
[16] is added to the Mentor Modelsim [10] simulator. As it is
shown in Fig. 2, simulation results reveal that the output of
two designs are exactly identical. This proves that the proposed
protection scheme does not disturb the functionality of the
original design. To ensure whether all added instances exist
in the final bitstream, we convert back the post placement
and routing NCD to XDL file to remove possible dangling
instances. The results show that all dummy logic still exist in
the XDL file, which proves that they have been added to the
design appropriately.

TABLE I
POWER AND PERFORMANCE OF PROTECTED VERSUS UNPROTECTED DESIGNS

B. Performance
Critical path delay of both original and protected designs are

obtained from the Xilinx Timing Analyzer reports. This tool
gets an NCD file and analyzes the timing constraints of the de-
sign. As shown in Table I, the pad-to-pad critical path delay of
both designs are the same. Hence, our scheme does not impose
any performance overhead to the original design. This is one of
the main advantage of the proposed LLDL scheme as compared
to the HLDL schemes which can negatively affect the perfor-
mance of the original design.

C. Power Consumption
To measure the power consumption of the mapped designs,

Xilinx XPower Analyzer is used. This tool gets the NCD file
beside an optional activity file (VCD or SAIF) to estimate the
power consumption. The activity file is produced by Modelsim
simulations described earlier in Section III-A. Table I illustrates
the power consumption of the original (unprotected) and pro-
tected designs. As it is shown, although the protected design
utilizes more resources than the original design, it consumes al-
most the same power as the original design. This is due to the
fact that static power of a FPGA is constant, regardless of the
implemented design. That is whether a resource is utilized or
not, it consumes almost the same static power in the FPGA.
In addition, the dummy resources in the protected design are
not triggered by any input, i.e., although their input nets are
configured, we choose to not drive them with any active signal
(by the second criteria in Section II-B) to cause any switching.
Therefore, a protected design does not consume further dynamic
power as compared to the original design.

D. Resource Utilization
Unused resources are potential candidates to be used by

low-level HTHs. Therefore, resource utilization of a design in
FPGAs can be used as a measure of susceptibility to the HTH
insertion. High resource utilization reduces the chance of a
HTH insertion. In the experiments, the resource utilization is
measured before and after applying the protection scheme. The
proposed protection scheme instantiates all unused PLPs in the
target FPGA. However, as mentioned before in Section II, it
cannot utilize all of the available PIPs. To evaluate the resource
utilization, a set of IWLS benchmark circuits is implemented on
a minimum sized FPGA. As shown in Table II, on average, the
number of PIPs is increased by 15X in the protected design as
compared to the original unprotected one. In addition, the PLP
utilization is increased to 100% for all of protected designs. As
a result, the resource utilization is significantly increased after
applying the proposed protection scheme as compared to the
original design. Note that the provided numbers for unprotected
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TABLE II
PLP AND PIP UTILIZATION: PROTECTED VERSUS UNPROTECTED DESIGNS

Fig. 3. Protected versus unprotected design. (a) Unprotected usb_phy. (b) Pro-
tected usb_phy.

PLPs account only for the LUTs, i.e., several other primitives
such as multipliers and BRAMs are entirely unused and signif-
icantly reduce the overall PLP utilization. Fig. 3 illustrates the
resource utilization of a sample unprotected circuit (usb_phy)
from IWLS circuits vs. the same circuit after being protected
by applying the proposed LLDL scheme. Note that the high
resource utilization is achieved in the proposed scheme while
no power and performance penalties are imposed to the system.

IV. CONCLUSION AND FUTURE WORK

In this letter, we proposed a low-level protection scheme
against HTH insertion in the bitstream of FPGAs. This scheme
is based on utilizing unused resources of an FPGA. Functional
verification has been performed in order to assure the cor-
rectness of the functionality of the circuit after applying the
protection scheme. Experimental results show that the proposed
scheme increases the utilization of FPGAs up to 15X without
having any impact on power or performance.
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