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Architecture for Hyperconverged Infrastructures
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Abstract—Hyperconverged Infrastructures (HCIs) combine processing and storage elements to meet the requirements of
data-intensive applications in performance, scalability, and quality of service. As an emerging paradigm, HCI should couple with a
variety of traditional performance improvement approaches such as I/O caching in virtualized platforms. Contemporary I/O caching
schemes are optimized for traditional single-node storage architectures and suffer from two major shortcomings for multi-node
architectures: a) imbalanced cache space requirement and b) imbalanced I/O traffic and load. This makes existing schemes inefficient
in distributing cache resources over an array of separate physical nodes. In this paper, we propose an Efficient and Load Balanced I/O
Cache Architecture (ELICA), managing the solid-state drive (SSD) cache resources across HCI nodes to enhance I/O performance.
ELICA dynamically reconfigures and distributes the SSD cache resources throughout the array of HCI nodes and also balances the
network traffic and I/O cache load by dynamic reallocation of cache resources. To maximize the performance, we further present an
optimization problem defined by Integer Linear Programming to efficiently distribute cache resources and balance the network traffic
and I/O cache relocations. Our experimental results on a real platform show that ELICA improves quality of service in terms of average
and worst-case latency in HCIs by 3.1× and 23%, respectively, compared to the state-of-the-art.

Index Terms—Hyperconverged Infrastructures, Virtualization, I/O Cache, Load Balancing, Quality of Service, I/O Traffic.
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1 INTRODUCTION

Hyperconverged Infrastructures (HCIs) replace legacy data
center infrastructures by combining storage arrays, storage net-
works, and computing servers into an array of single physical
nodes, managed under software-defined platforms [30], [74], [92].
As a cost-efficient architecture, HCI finds its applications in many
different areas, including Big Data [89], Virtual Desktop Infras-
tructure (VDI) [9], Video Surveillance [2], and edge computing
[32]. It is also a promising alternative for applications whose
computational resource requirement scales linearly with the stor-
age demand. As the International Data Corporation reports, the
market has a large tendency to HCI, due to the low provisioning
cost and great scalability of HCI platforms [35], [36], [37], [38].

An HCI architecture with identical nodes is commonly used
in enterprise products such as vSAN from VMWare [64], [85],
VxRAIL, VxFlex, and XC from Dell EMC [22], [23], [24], [61],
SimpliVity from HPE [34], and Acropolis from Nutanix [66]. In
HCI, multiple nodes (e.g., four x86 nodes in Fig. 1) are connected
to each other, whereas the storage subsystem is distributed over
the nodes, providing scalable capacity and performance. Each
physical node contains both storage and processing elements
managed by a hypervisor hosting a Storage Virtual Machine
(SVM) to enable storage sharing across all nodes and multiple
Virtual Machines (VMs). Both storage and performance capacities
monotonically scale by adding extra nodes at no service downtime.

Despite various advantages, HCI platforms need to couple
with a variety of performance improvement paradigms such as I/O
caching in virtualized platforms. I/O caching based on Solid-State
Drives (SSDs) is widely used in enterprise systems [21], [33],
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[63]. Existing I/O caching schemes, however, are designed to work
with legacy storage architectures and new techniques are necessary
to adapt caching schemes into emerging HCI platform. VMs in
contemporary HCIs are restricted to only use the local cache space
of their host node, resulting in unfair resource allocation when one
node faces a burst of I/O requests. The main challenges of I/O
caching in HCI we aim to solve are: a) imbalanced cache space
requirement: while some nodes host VMs with high cache space
demands, there exist other nodes hosting less demanding VMs
and b) imbalanced I/O load: some nodes encounter a burst of
I/O requests leading to a large cache performance drop, while the
rest of the nodes may have idle cache bandwidth. This imbalanced
cache management negatively affects Quality of Service (QoS) and
average I/O latency.

Previous efforts on optimizing the storage subsystem and I/O
caching of HCI and multi-node architectures are very limited and
are not targeted towards optimizing I/O caching across multiple
nodes [29], [88], [27], [90], [93], [55], [56], [89], [57]. To the best
of our knowledge, none of the previous studies have addressed
the imbalanced load of I/O caches in HCI. Moreover, the capacity
of neighboring HCI node resources in balancing the I/O cache
load and decreasing the average and worst-case storage latency
has never been explored before.

In this paper, we present an Efficient and Load Balanced
I/O Cache Architecture (ELICA) that provides improved I/O
latency and balanced network traffic and I/O cache load in HCI
platforms. ELICA distributes the SSD resources within the cluster
and shares the total SSD cache space throughout the nodes. To
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Fig. 1: Example HCI system (VM: Virtual Machine, SVM: Stor-
age Virtual Machine).
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achieve the minimum average latency, we define an optimization
problem presented by Integer Linear Programming (ILP) that
determines the efficient local and remote cache size for each VM.
By assigning optimum cache size to active VMs and distributing
the I/O cache resources within the cluster, ELICA significantly
improves both worst-case and average I/O latency. To reduce the
amount of network traffic and to balance the I/O load on SSD
cache resources, we propose an online workload characterization
scheme in which we manage the distribution of cache resources.
In contrast to state-of-the-art load balancing schemes [4], [42]
that try to cope with large I/O loads by bypassing the cache and
directing requests to the disk subsystem leading to performance
loss, ELICA responds to all requests from the cache thanks to its
efficient I/O cache distribution across the nodes.

In summary, we offer the following novel contributions:

• This paper is the first to propose an efficient I/O caching
architecture for HCI, distributing the cache resources
throughout the nodes and balancing the load across the
SSDs. By online I/O characterization of active VMs,
we further propose a novel cache resource distribution
scheme, which assigns an efficient cache size for VMs
and distributes I/O cache resources within the cluster.

• To achieve the minimum average latency, we define an
optimization problem using ILP, which assigns an efficient
amount of cache space from local and remote nodes to
VMs.

• We propose two cache migration policies, namely, Instant
Migration and Gradual Migration to achieve either low
network traffic or low cache space penalty in the cache
migration process.

• We implement ELICA and our software-defined HCI mod-
ule on a real cluster with three physical hardware nodes
running Proxmox VE as the hypervisor [69] and Ceph [12]
as its backend storage system, and evaluate their efficiency
using realistic application workloads.

• We offer a dynamic resource allocation mechanism, which
allocates and utilizes the available resources significantly
more effectively than state-of-the-art schemes, providing
an average of 82% cache utilization on all the workloads
tested compared to 34% in the state-of-the-art. Experimen-
tal results show that ELICA improves average and worst-
case latency by 3.1× and 23%, respectively.

The rest of this paper is organized as follows. Section 2
discusses the motivation and the experimental setup. We present
our proposed architecture in Section 3 and then detail our I/O
cache resource distribution scheme. In Section 4, we discuss the
real-system implementation details used in the experiments and
then present our experimental results. In Section 5, we briefly
review the related work and compare them with our proposed
architecture. Finally, we conclude the paper in Section 6.

2 MOTIVATION

In this section, we first briefly review I/O caching in HCI. We
then setup and conduct a set of experiments on a cluster of three
physical servers to demonstrate the I/O imbalance. Finally, we
present our motivational results.

2.1 I/O Caching in HCIs
In existing HCIs, storage elements, namely disk groups, are fully
controlled by a Storage Virtual Machine (SVM). The disk group
typically takes advantage of both SSDs and Hard Disk Drives
(HDDs), where SSDs are used as a caching layer for HDDs [84],

[64], [34]. SSDs work as a global I/O cache within each node,
where the total cache space is shared between the active VMs.
However, the I/O cache is not distributed within a cluster of HCI
nodes; i.e., VMs are restricted to only use the local cache space
of their hosting node. This architecture can result in imbalanced
cache load and cache space usage between HCI nodes hosting
VMs with different I/O demands.

Unlike traditional architectures, where compute and storage
resources are physically and logically separated, HCI tightly
integrates compute and storage into a unified platform. In conven-
tional stacks, compute nodes interact with external storage arrays
via network-based protocols (e.g., iSCSI or NFS), which allows
independent scaling and optimization. In HCI, however, Virtual
Machines (VMs) and their associated storage layers (e.g., SSD
caches) coexist on the same physical node. This tight coupling in-
troduces several unique performance and management challenges:

• Resource contention: Compute, I/O caching, and network
traffic contend for shared CPU and memory bandwidth
within a node, leading to interference and performance
unpredictability.

• Restricted cache boundaries: Current HCI caching sys-
tems statically allocate SSD cache per node, preventing
underutilized nodes from assisting overloaded ones.

• Costly migrations: Because compute and storage are co-
located, migrating workloads or cache across nodes incurs
high overhead, unlike traditional virtualization platforms
where only compute or data can be moved independently.

Recent studies illustrate the limitations of existing HCI
caching strategies:

• Dasarraju et al. [20] observe that current HCI caching
setups such as VMware vSAN and Azure Stack HCI
statically provision SSD caches per node, with no support
for dynamic redistribution—limiting scalability in practice
to 16–64 nodes, and potentially leaving remote cache
capacity underutilized during imbalanced workloads.

• Shvidkiy et al. [73] evaluate an OpenStack-based HCI
platform and demonstrate up to 40% throughput loss for
write-heavy workloads due to contention between storage
and compute pipelines on the same node.

• Taheri et al. [80] benchmark VMware vSAN under high
VM density and show a 2–3× latency increase due to
inefficient caching and lack of dynamic allocation support.

These findings emphasize the need for intelligent caching
mechanisms that adapt to workload imbalance and enable cross-
node coordination. ELICA directly targets these shortcomings
by supporting cache migration, load-aware allocation, and global
cache visibility across nodes. We incorporate these insights in
our motivational setup to further illustrate the cache imbalance
challenges in real-world HCI deployments.

2.2 Experimental Setup
Servers Configuration: In our experimental setup, we use a
cluster of 2U rack-mount servers connected with 10GbE network.
Each node is equipped with our software-defined HCI platform
coupled with the free open-source Proxmox [69] hypervisor (ver-
sion 6.2). Proxmox is a server virtualization and management soft-
ware, which integrates the KVM hypervisor and Linux containers
(LXC), software-defined storage and networking functionality in a
single platform [69]. Each node employs 32 Intel(R) Xeon cores,
16GB Samsung DDR4 DRAM, one Samsung EVO 860 256GB
SSD, and one TB of storage devices (two 500GB SATA 7.2K
HDDs).
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Storage Subsystem: The storage subsystem is built using
the open-source software-defined storage platform Ceph (version
14.1.0) [12], providing various access types. We setup Intel Open-
CAS in our software stack, which is a block-layer I/O cache and
is well maintained and supported by the community [8]. We use
SSDs as the I/O cache layer for HDDs. The high-level overview
of our setup including the hardware and software stack is shown
in Fig. 2.

Workloads: Each VM on the cluster (running CentOS 7.2) is
equipped with four virtual CPU cores, 2GB of RAM, and 50GB of
disk space, while the SSD cache space is allocated by ELICA. We
first run a subset of Microsoft Azure workloads (detailed in [71]
and publicly available on GitHub [59]) using 20 VMs on the HCI
platform. Details on the number of VMs alongside the percentage
of writes are briefly given in Table 1. We also run experiments
using a big spectrum of MSR workloads from SNIA [75], [62]
(Table 2). We assume write-back and Least Recently Used (LRU)
replacement policies for the I/O cache.

To examine the effectiveness of our architecture in realis-
tic deployment scenarios, we intentionally construct imbalanced
workload configurations across the HCI nodes. While we use
authentic Azure and MSR traces as our workload sources, we
manually control the placement of VMs—assigning I/O-intensive
VMs disproportionately to certain nodes (e.g., Node 2), while
placing lighter workloads on others (e.g., Node 0). This de-
sign reflects common real-world conditions reported in prior
work [7], [28], [81], where uncoordinated VM migrations, het-
erogeneous demands, and dynamic workload shifts lead to load
imbalance across nodes in HCI environments.

2.3 Motivational Results
Quantitative Motivation. To further highlight the limitations
of existing cache management strategies in HCI platforms, we
conducted additional experiments comparing three approaches:
(1) static per-node caching without migration (representing cur-
rent industry practice, e.g., OpenCAS), (2) a naive round-robin
migration scheme across nodes, and (3) our proposed dynamic,
demand-driven allocation with cross-node coordination.

As shown in Fig. 4, static allocation results in up to 2.7×
higher average I/O latency compared to ELICA, particularly under
skewed workloads where certain nodes face cache saturation. The
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Fig. 2: Implementation stack (hardware and software)

TABLE 1: Microsoft Azure applications and their assignment into
the VMs and hosting nodes; (X/Y) denotes total I/O requests over
write percentage.

Node-0 (N0) Node-1 (N1) Node-2 (N2)

VM0 (100/64)
VM1 (500/7)
VM2 (800/9)
VM3 (1K/11)

VM4 (3.5K/8)
VM5 (10.6K/99)
VM6 (20K/99)
VM7 (43K/7)
VM8 (55K/6)
VM9 (88K/7)

VM10 (230K/20)
VM11 (472K/6)
VM12 (513K/13)
VM13 (1200K/10)
VM14 (1300K/9)
VM15 (1600K/11)
VM16 (1800K/6)
VM17 (1900K/10)
VM18 (2200K/9)
VM19 (2700K/12)

naive round-robin migration introduces cache thrashing effects,
degrading latency by 1.6× relative to ELICA. The mentioned
results confirm that existing HCI caching strategies fail to handle
workload imbalance and skew effectively, stressing the need for
the ELICA adaptive, traffic-aware cache orchestration.

To conduct our motivational experiments, we use the Microsoft
Azure dataset. In this dataset, there are 855 distinct applications
requesting I/O accesses over a two-week period. Among these
applications, there is a variation in how frequently they are
invoked. While some of them are invoked once per hour, others
are called more or less frequently. The nature of these workloads
is mostly read-intensive. We group the applications into three
categories and select several applications from each group: a) less
than 1K accesses, b) between 1K and 100K accesses, and c) more
than 100K accesses.

To emulate realistic imbalance in VM distribution, we assign
the traces to nodes in a non-uniform manner—placing more
I/O-intensive VMs on a subset of nodes to simulate skewed
cache demand and stress-test the behavior of our system. This
controlled imbalance is crucial to evaluate how ELICA mitigates
cache pressure through dynamic resource allocation. For the main
experimental results (Sec. 4.2), we conduct the experiments using
both workloads (Table 1 and Table 2).

Fig. 3 reports the I/O cache (SSD) utilization and disk subsys-
tem (HDD) utilization for the three server nodes in our experimen-
tal setup. The utilization is captured in the SSD/HDD device level
using Linux iostat [40], reporting the device bandwidth utilization,
calculated as the percentage of elapsed time during which I/O
requests are issued to the device. The I/O cache utilization on
Server 0 in Fig. 3 never reaches 10%. The utilization is capped at
60% for Server 1 with some fluctuations. This could be due to the
nature of these workloads being more memory-intensive, reading
large chunks of data from the storage in different periods and
bringing it into the memory. This way, reading from the cache is
sometimes beneficial and sometimes not, justifying the fluctuating
disk subsystem utilization. Server 2, on the other hand, has a high
density of I/O-intensive applications, showing a rise in I/O cache
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Fig. 3: I/O cache and disk subsystem utilization for a 3-hour run of workloads specified in Table 1.
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Fig. 4: Latency comparison under different caching strategies and
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TABLE 2: MSR Workloads and their assignment into the VMs
and hosting nodes; (X/Y) denotes total I/O requests over write
percentage.

Node-0 (N0) Node-1 (N1) Node-2 (N2)

VM0:mds 0 (1.2M/12)
VM1:rsrch 1 (14K/7)
VM2:hm 1 (604K/5)
VM3:proj 0 (4.1M/13)

VM4:mds 1 (1.6M/7)
VM5:rsrch 2 (206K/34)
VM6:src1 0 (37M/44)
VM7:proj 1 (23M/11)
VM8:stg 0 (2M/85)
VM9:prn 0 (5.5M/89)

VM10:rsrch 0 (1.4M/91)
VM11:hm 0 (3.9M/65)
VM12:src2 0 (1.5M/89)
VM13:proj 2 (29M/12)
VM14:stg 1 (2.1M/36)
VM15:prn 1 (11.1M/25)
VM16:usr 0 (2.2M/60)
VM17:usr 1 (44M/9)
VM18:usr 2 (10M/19)
VM19:web 0 (2M/70)

utilization and a decline in HDD utilization in general.
The motivational results serve to show two main challenges of

I/O caching in HCI: 1) the imbalanced cache space requirement,
and 2) the imbalanced I/O load. As for the first one, for example,
in Fig. 3c it is seen that the I/O cache utilization reaches to almost
80% during the run, while in Fig. 3a, the I/O cache is underutilized
(less than 10%). This paves the way for an opportunity for
using the available cache space on that server, if necessary, to
accommodate for workloads with more cache requirements on
servers other than the one hosting those specific VMs. As for
the I/O load imbalance, one can use the available bandwidth of
the I/O cache to serve I/O requests from other nodes. This creates
a balanced utilization across all nodes, which helps to improve
overall performance. This is what we target to achieve in ELICA,
namely, to balance the load of SSDs by allocating remote cache
resources from idle nodes to the ones hosting cache-hungry VMs.

3 PROPOSED ARCHITECTURE

In this section, we present ELICA and elaborate on how it
dynamically partitions the total SSD cache space within the cluster
and how it distributes I/O cache resources. We then present how
the proposed architecture estimates the cache size of each VM.

3.1 Overview of ELICA
Fig. 5a shows an overview of ELICA. We use HDDs as the
main storage media alongside SSDs in the caching layer to
address the desired performance at a reasonable cost. To control
both hypervisor and shared storage pool, we propose a Unified
Management System (UMS), which enables configuring the HCI
through a central interface. UMS is connected to SVMs and

collects information on a) total number of storage elements, and
b) allocation of the storage to each individual VM within the
cluster. I/O stack management and storage elements handling is
also performed by SVM.

The Storage Manager of UMS enables ELICA to dynamically
partition the total I/O cache space between running VMs and
distributes the cache resources through the array of nodes. Fig. 5b
shows the steps ELICA takes to manage the I/O cache resources
across VMs. It has three main phases:

(a) Inter-VM Cache Management to Determine Size of
Cache Resources: We use ILP to determine the size of cache
resource allocated to each VM of the local HCI node as well as of
remote HCI nodes. This step provides a mapping table of cache
resources to VMs. The objective function of ILP is minimum
average latency of storage accesses. According to Fig. 5b, 1
efficient cache size is estimated, 2 it is checked whether the
current and new cache sizes are the same, 3 in case the allocated
cache size is not changed, we check whether remote cache is
allocated, 4 in case no remote cache is allocated, no action is
required.

(b) Intra-VM Cache Management to Determine Cache
Chunks of Remotely Allocated VMs: We determine which stor-
age requests of VM are handled using local cache resources and
which requests use remote resources ( 5 in Fig. 5b). This phase is
based on two alternative heuristics, a trying to reduce the network
traffic, called ELICA-Traffic, and b managing to balance the SSD
cache load, called ELICA-Load. We independently evaluate the
performance of both methods for various workloads (Sec. 4.2).
Despite Inter-VM cache management that takes place in larger
decision periods, Intra-VM cache manager continuously operates
during system runtime.

To distinguish local and remote cache hits, ELICA maintains
a global stripe-based address mapping table. Each cache block is
tagged with ownership metadata that indicates the node responsi-
ble for that stripe. When an I/O request arrives, the UMS checks
this mapping table to identify whether the data is stored locally
or needs to be fetched from a remote cache. This lookup enables
accurate redirection of remote cache hits without requiring global
broadcast or excessive coordination overhead. The mapping table
is kept in-memory and accessed using constant-time (O(1)) hash
lookups, contributing negligible overhead to the I/O path.

(c) Cache Migration between HCI Nodes: If either of Inter-
VM or Intra-VM cache management phases decide on reallocating
a local cache chunk into a remote node (or vice versa), the
cache migration is needed ( 6 in Fig. 5b). We propose two
alternative heuristics for cache migration, independently evaluated
for various workloads (Sec. 4.2), c Gradual Migration and d
Instant Migration to achieve either low network traffic or low cost
(low cache space penalty).

3.2 Online Cache Size Estimation

To dynamically partition the SSD cache across active VMs in HCI,
we propose an online I/O characterization scheme to determine
the performance demands of VMs. We track the I/O accesses of
VMs inside the SVM and collect the workload parameters such
as request type, destination address, request size, and owner VM.
To assign an efficient cache size to VMs assuming LRU policy,
we evaluate the LRU Stack Distance (SD) [3]. ELICA predicts a
cache size for each VM based on stack distance. If the predicted
cache space is greater than the physical cache space available on
the node, we find the optimal cache size for each VM to achieve
the minimum average latency. To do so, we define an optimization
problem and present it using ILP.
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(a) Ideal Cache Size Estimation: SVMs periodically calcu-
late the reuse distance (LRU Stack Distance) of the running VMs
at the hypervisor they belong to. The output of this step is a set
of SDi, j where i and j denote the node (hypervisor) ID and VM
ID, respectively. SDi, j is the maximum stack distance in V Mi, j [3].
Stack distance of the current storage block access is equal to the
number of distinct blocks accessed since the previous access to
the current block [3]. Hence, for a cache size greater than stack
distance, the current storage block access is a hit. Assuming LRU
and a minor change in the workload behavior in a period of the
run, by allocating B > SDi, j blocks of cache to V Mi, j, those blocks
accessed in the future are not evicted. Hence, cidli, j , the ideal I/O
cache size for V Mi, j (VM j of node i) is calculated by Equation
(1), where cacheBlockSize is set to 8KB.

cidli, j = (SDi, j +1)× cacheBlockSize (1)

(b) Efficient Cache Size Estimation: UMS collects total I/O
cache demands of active VMs from SVMs and allocates the cache
space to the VMs throughout the nodes. UMS checks whether
the aggregation of estimated ideal cache sizes fits in the cache
resources on each node. If the aggregation of ideal cache sizes
estimated does not fit in the available cache resources of that node,
UMS finds the optimal cache size for each VM by allocating cache
resources from both local and remote nodes.

(c) System Model: We consider nnodes disaggregated nodes
N = {N1,N2, ...,Nnnodes}. Ni (1 ≤ i ≤ nnodes) has the local cache
capacity of ccachei and nV Mi virtual machines, where V Mi =
{V Mi,1,V Mi,2, ...,V Mi,nV Mi

}. The cache space allocated to V Mi, j
is denoted as ci, j. The real workloads have usually very large
stack distance for some storage block accesses. Consequently, in
practice, the aggregation of ideal cache sizes estimated for each
node does not fit in the local cache, hence, Equation 2 is not
satisfied. Otherwise, the ideal cache size is allocated to each VM

TABLE 3: Definition of parameters used in Equation 3

Parameter Description

AV L(V Mi, j) Average latency of V Mi, j

ci, j Cache size allocated to V Mi, j

clocali, j Local cache space allocated to V Mi, j

cremotei, j Remote cache space allocated to V Mi, j

LHDD Average read/write latency (i.e., service time) of HDDs
LSSDlocal Average read/write latency of local SSD cache
LSSDremote Average read/write latency of remote SSD cache
LNetwork Network latency when remote cache is accessed
HR(ci, j) Cache hit ratio of V Mi, j from miss ratio curves [3], [87]

using the local cache of each node. In Equation 2, cidli, j refers to
the ideal cache size of jth VM on the ith node.

∀i ∈ N :
nV Mi

∑
j=1

cidli, j ≤ ccachei (2)

We ensure that the aggregated cache space allocated to VMs
does not surpass the aggregated cache capacity of all nodes. We
also assume that the cache space allocated to each VM does not
surpass the ideal cache space estimated for that VM. The main
objective is to minimize the aggregate AVerage Latency (AVL) of
VMs, defined as follows (parameters listed in Table 3):

AV L(V Mi, j) = HR(ci, j)×
1

clocali, j + cremotei, j

× (3)

[clocali, j ×LSSDlocal+

cremotei, j × (LSSDremote +LNetwork)]+(1−HR(ci, j))×LHDD

(d) Problem Definition: We use ILP as an efficient mathemat-
ical method to formulate optimization models. The ILP formula-
tion for minimum aggregate AVL is as follows:

min
nnodes

∑
i=1

nV Mi

∑
j=1

AV L(V Mi, j) (4)

s.t.
nnodes

∑
i=1

nV Mi

∑
j=1

ci, j ≤
nnodes

∑
k=1

ccachek (a)

ci, j = clocali, j + cremotei, j , ∀i ∈ N,∀ j ∈V Mi (b)

cremotei, j =
nnodes

∑
k=1,k ̸=i

cremotei, j k
, ∀i ∈ N,∀ j ∈V Mi (c)

nV Mi

∑
j=1

clocali, j +
nnodes

∑
j=1, j ̸=i

nV Mi

∑
k=1

cremote j,k i
≤ ccachei ∀i ∈ N, (d)

ci, j ≤ cidli, j , ∀i ∈ N,∀ j ∈V Mi, (e)

The ILP constraints are explained in Table 4. At the first
run, cache sizes are evenly distributed across VMs. During each
interval t, I/O traces are collected by UMS and the information
about cache hits are also monitored. After this interval, the stack
distance for each VM is calculated using an efficient and optimal
algorithm [65] and then ideal cache sizes are determined. If the
aggregation of ideal cache sizes does not fit in available local
resources, efficient cache sizes are obtained by solving the ILP
problem.
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TABLE 4: Constraints (Cs) of ILP problem defined in Eq. 4

Cs Description

(a) Sum of all cache sizes assigned to all VMs cannot exceed
aggregate cache size available on all nodes.

(b) VM cache consists of local and remote cache resources.

(c)
VM remote cache is sum of cache resources allocated from all
nodes other than hosting node (cremotei, j k

stands for remote
cache space allocated from node k (Nk) to V Mi, j).

(d) Node cache size is greater or equal to cache space allocated to
local hosed VMs and remote VMs hosted by other nodes.

(e) Cache space of no VM can exceed ideal cache size.

3.3 I/O Cache Resource Distribution
This section presents how ELICA allocates the I/O cache re-
sources, reducing the network traffic and balancing the I/O load
of SSD cache devices. We then reconfigure the cache and based
on cache demands of VMs, we reallocate the cache space within
the nodes or migrate the cache. Distributing I/O cache resources
comes with the following: First, the allocation of remote cache
resources requires communication through the network. This over-
head can be critical, especially when we have limited network
bandwidth. Second, the balanced load between SSD cache devices
can help both system performance and SSD lifetime. Third,
migrating cache resources should be decided based on the network
traffic and cache performance. Fourth, cache policy and cache
coherency should also be decided. These are addressed next in
detail. The proposed scheme for the migration of cache resources
is distinguished from VM migration, which is occasionally used
for maintenance and failure handling [18], [94], [86].

3.4 ELICA-Traffic: Minimizing Network Traffic
ELICA-Traffic monitors the history of accesses and allocates the
local cache to the requests with sequential access pattern.

We prioritize placing sequential workloads in local cache
over random ones. This design choice is motivated by two key
factors: (1) Sequential workloads tend to generate high-bandwidth,
predictable access patterns that are more sensitive to network-
induced latency and congestion. Keeping them local ensures lower
access latency and avoids additional network hops. (2) Caching
sequential data locally reduces cache fragmentation, as these

VMi VMj

Cache 
Management

I/O Cache

A4 A3 A2 A1 G H F D
Random

HDDHDD HDDHDD

VMk VMp

Cache 
ManagementI/O Cache

B4 B3 B2 B1
Sequential

HDDHDD
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Node 0 Node 1I/O Request I/O Request
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HDDHDD
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I/Os 
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I/Os with highest/lowest load
(before load balancing)

I/Os after load
balancing
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Fig. 6: Overview of ELICA-Traffic and ELICA-Load.

accesses exhibit higher spatial locality and can utilize cache space
more efficiently.

Our experimental results (Figure 12) confirm that prioritizing
sequential requests in local cache improves average latency by
23% and reduces worst-case tail latency under both MSR and
Azure workloads compared to demand-driven allocation policies.

Compared to random workloads, sequential accesses impose
higher bandwidth overhead to the network (which is similar to
large-size I/O). To reduce the network traffic, ELICA-Traffic allo-
cates the cache space from the local SSDs. If the local resources
are not sufficient, we allocate local cache to the sequential requests
while the cache for random accesses is allocated from remote
nodes (Fig. 6a). ELICA-Traffic recognizes a sequence of requests
to consecutive addresses as sequential, when the aggregate size
of requests surpasses a threshold (64KB in our experiments). The
sequential requests use the local cache resources until a change in
the pattern is recognized.

3.5 ELICA-Load: Balancing SSD Cache Load
The purpose of ELICA-Load is balancing SSD cache load within
the HCI in a way that the capacity of cache allocated to each
VM does not change. The main idea is to exchange cache chunks
between busy and idle nodes to balance the SSD cache load. To
this end, we first estimate the load on the SSDs. We consider
Queue Depth (QD), the number of waiting requests in each SSD
queue, as a representative for SSD load. A large QD leads to
higher latency. ELICA selects n cache chunks from Node A with
the maximum load (QD) and exchanges them with n cache chunks
from Node B, which has the least load. This way, the load on the
busy node is decreased and, consequently, waiting time becomes
shorter and the overall performance will improve. Note that n
cache chunks of Node A (which has the maximum load) are
selected from the VM with the maximum load, while n cache
chunks of Node B are selected from the VM with the minimum
load.

Fig. 6b shows an exemplary HCI with three nodes and the
load on each VM cache. Using the load balancing scheme, ELICA
decides to exchange the cache with the highest load (C0) from the
busy node (Node-0) with the cache of the lowest load (C9) from
the least-busy node (Node-2). Doing so, we reduce the load on
Node-0 by 35% (from 23 down to 15) while the load on Node-2
increases from 6 to 14.

3.6 Online I/O Cache Migration
ELICA migrates the cache of a VM from the hosting node to a
remote node for two reasons: a) cache space of the local node is
not sufficient and b) to balance SSD load. We propose an online
migration scheme by considering three key parameters affecting
the migration cost: 1) migration time, 2) reserved capacity, and
3) bandwidth imposed on SSDs and network during migration.
Migration time denotes the duration of moving the VM cache
from nodei to node j. Reserved capacity stands for the cache
space allocated to the VM in the previous location. Once the
migration is accomplished, the reserved capacity is released.
Bandwidth denotes the I/O traffic imposed on the source SSD (due
to reading data blocks), destination SSD (due to writing migrated
data blocks), and network.

To mitigate the migration cost, ELICA employs two migration
schemes: 1) Gradual Migration (GM) and 2) Instant Migration
(IM). GM aims to reduce the bandwidth requirements while
increasing migration time and imposing high reserved capacity
due to long migration time. In contrast, IM targets minimum
migration time and aims to reduce reserved capacity overhead
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while consuming high bandwidth and imposing greater I/O load
compared to GM. Fig. 7 depicts the migration schemes using a
state diagram.

3.6.1 Gradual Migration (GM):
GM migrates cache blocks once they are referenced by a read or
write access. To gradually migrate an I/O cache resource from
one node to another, we first allocate the required cache space
(reserved capacity) in the destination SSD and then perform the
following. First, all accesses to the storage blocks are directed
to the remote cache. Second, we check the request type and in
the case of write access, we check whether the request hits in the
cache or not. In the case of a cache miss (i.e., in both local and
remote caches), the access (for writes) is served by the remote
cache. Otherwise, in the case of a cache hit in the local cache, the
request is served by the remote cache and the corresponding block
in the local cache is invalidated. Third, in case of read access and
upon a cache hit, the request is handled through the remote cache.
Otherwise, in case of cache miss, we check whether the request
can be served by the local cache or not. In the case of a hit in
the local cache, we serve the request by the local cache and also
migrate the corresponding block to the remote cache. Finally, in
case of a miss in the local cache, the request is served by the disk
subsystem and the data is promoted to the remote cache.

GM provides two key benefits: 1) it reduces the number of
accesses to the source SSD and 2) it prevents serving the accesses
including write, RAW, eviction, and promotion from the local
cache while only read hits are responded through the local cache.
GM is not efficient regarding reserved capacity. It may take a long
time while we need to dedicate the cache reserved capacity in both
local and remote caches. We propose an alternative method, called
Instant Migration (IM) offering an efficient reserved capacity at a
bandwidth penalty.

3.6.2 Instant Migration (IM):
IM aims to aggressively migrate the cache resources to minimize
the migration time and enhance reserved capacity while imposing
a high bandwidth requirement and I/O load. To instantly migrate a
cache resource from nodei to node j, we first allocate the required
space in node j. We then take the following steps. First, we start
reading the cache blocks sequentially from the local cache and
writing into the remote one. We then invalidate the migrated cache
blocks in the local cache. Second, the I/O access is first routed to
the remote cache and in case of a miss, we check the content of the
local cache. If the data block hits in the local cache, we respond it,
move the block to the remote cache, and invalidate the local cache.
Third, in case of a miss in both the remote and local caches, we
respond from the disk subsystem and promote the data block to
the remote cache. Using IM, we can migrate the I/O cache quickly
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Fig. 7: State diagram of ELICA migration schemes

and release the reserved capacity in the local node as soon as
possible.

3.6.3 Network Traffic Considerations
While ELICA allows redirecting I/O requests to remote caches,
this redirection introduces additional network traffic, particularly
under write-intensive or bursty workloads. To mitigate network
traffic overheads, ELICA integrates two complementary mecha-
nisms:

• Rate-limited Migration: ELICA limits the number of
cache migrations initiated per unit time, ensuring that
network bandwidth used for migration does not overwhelm
the data plane. This prevents sudden spikes in traffic that
could interfere with VM I/O requests.

• Latency-aware Migration Selection: Migration decisions
incorporate awareness of the current network congestion
state. During periods of high congestion, ELICA employs
Gradual Migration to spread data movement over time,
while Instant Migration is used during low-congestion
periods to expedite data redistribution.

These mechanisms ensure that remote cache access and mi-
grations introduce minimal disruption to network performance,
while still enabling the benefits of dynamic, load-balanced cache
allocation.

3.7 Cache Policy and Cache Coherency

There are generally two types of caching policies, namely, write-
through and write-back. In write-through, data is persisted syn-
chronously in both the SSD cache and disk subsystem. Write-back
works asynchronously and keeps the modified data temporarily
in the SSD cache while destaging dirty data blocks to the disk
subsystem later. One consideration when choosing a cache policy
is the workload type. To reduce write traffic and in order to gain
maximum improvement in terms of throughput and latency, we
choose write-back as our caching policy [48].

Another important parameter is cache coherency, which refers
to handling data stored on multiple caches and ensuring the consis-
tency of data across the system. In our proposed I/O caching, co-
herency could potentially be threatened in the following scenario.
When allocating remote cache resources to VMs and dynamic
reallocation of cache at runtime which needs data migration, it is
possible that data blocks in the migration phase are changed in the
application layer. This issue can be studied in three situations.

(a) When data has not been migrated yet. The VM request
for changing a block or blocks of data is first applied and then the
migration starts.

(b) When data is being migrated to the destination node.
After receiving a request, the source node running the application
is responsible to notify the destination node on the change and
provide it with the new data. The destination node then invalidates
incoming data and replaces it with the new one.

(c) When data has been migrated to the destination node.
The request will be directed to the remote cache (as discussed in
Sec. 3.6). Since the data has been fully placed inside the remote
cache and invalidated in the local one, there will be only one copy
of the data and coherency is thus preserved.

Instant Migration and Update Safety. In ELICA, both
Instant Migration (IM) and Gradual Migration (GM) adhere to
the same three-phase consistency mechanism to ensure that data
is never moved while being updated. Specifically, during Instant
Migration, ELICA ensures that:
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• All in-flight or pending writes to the cache block are
flushed and acknowledged before migration starts.

• Any write arriving during the transfer is intercepted at
the source, tracked, and resent to the destination after
migration is completed.

• Only after all blocks are safely received and confirmed at
the destination node, ELICA updates the global mapping
and invalidates the local copy.

This design ensures that even in Instant Migration—which
performs migration aggressively without throttling—data is never
moved concurrently with active writes. Migration only starts
after confirming that no write conflicts are present, guaranteeing
data correctness.

4 EXPERIMENTAL RESULTS

4.1 Implementation Details
Here, we detail our software stack implemented on physical
servers. We first discuss the employed open-source tools and
the changes made to accommodate our needs. Then, we detail
the UMS implementation. Fig. 8 shows a high-level view of our
implementation for a three-node cluster.

4.1.1 Hypervisor
There are several choices when it comes to selecting a hypervisor.
One can use a full-fledged hypervisor such as ESXi. While
providing many features, such hypervisors are not free. Since
we aim to run UMS (details in Sec. 4.1.4) inside the hypervisor,
while also keeping the cost at a minimum, we opted for a free
and open-source hypervisor. We chose Proxmox [69], which is a
virtualization platform based on Debian and has built-in features
to integrate with Ceph.

4.1.2 Storage Subsystem
Choosing a platform for the backend storage is a critical decision
as it should provide: 1) scalability: to scale out the nodes easily
without any downtime or performance degradation, 2) fault toler-
ance: to ensure data accessibility using various techniques such as
replication, 3) compatibility: to provide access to data in different
formats. Ceph is an open-source distributed storage system, which
is purely software-defined and has all three features. It uses object
storage as its underlying layer but has the ability to provide file,
block, and object level access through its interfaces. We use Ceph
Rados Block Device (RBD), which provides block level access to
data.

4.1.3 I/O Caching Mechanism
In order to build the I/O caching layer, we chose OpenCAS [8],
as it is well maintained and updated. OpenCAS is a block caching
software module that accelerates access to main storage. Using
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Fig. 8: High-level implementation schema

OpenCAS, we are also able to collect statistics such as cache hit
ratio at a low memory and CPU overhead (less than 10% of a CPU
core utilization per HCI node). Parameters such as caching mode
and line size can easily be configured. In our experiments, we
chose the write-back policy with 8KB cache line size. To integrate
OpenCAS in ELICA, we made small changes to its source code.
As detailed in Sec. 3.3, it is required to access certain blocks
of data belonging to an arbitrary VM in the I/O cache. For this
purpose, about 100 lines of code were added to OpenCAS so that
the required data could be retrieved from the I/O cache.

4.1.4 Unified Management System (UMS)

UMS is made up of four modules written using C++ and Python
in about 8K lines of code and runs inside the hypervisor. These
modules communicate with each other using User Datagram
Protocol (UDP) packets, suited for low-latency applications. They
maintain a map of current cache sizes (local and remote) for VMs.

(a) I/O Request Capture: It is responsible for taking care of
incoming I/O requests. Each VM running inside the hypervisor
has a unique Process ID (PID) assigned. By using Linux tools
such as blktrace [10], it can identify the source of each incoming
request and make a queue of the requests based on the time they
are issued at the VM level. Blktrace has a very low overhead, less
than 2% as reported in [1], [54], not seriously affecting the overall
system performance.

(b) Dynamic Cache Allocation: Cache stats from previous
run are used to find out whether current cache sizes need to
be changed by calculating their new stack distance for each
configurable interval. New remote cache sizes that need to be
accommodated by another node are communicated with the corre-
sponding node UMS. The destination node allocates the specified
amount of cache space for a VM residing in another node, updates
the map, and then notifies the other nodes.

(c) Local/Remote Handling: On distribution of I/O cache
resources, cluster network and SSD load are two main concerns
addressed in ELICA. Based on the method used, this module
handles allocation of local or remote cache to requests. E.g., reads
have higher priority for local cache.

(d) Stats Collector: Cache statistics such as hit and miss ratios
are collected for each individual VM to be used in the next run by
the Dynamic Cache Allocation module.

4.1.5 Workloads

We use two widely adopted real-world traces in our evaluation:
the Microsoft Azure VM I/O traces and the MSR Cambridge
enterprise workload suite. These workloads represent realistic,
production-level I/O behavior observed in cloud and enterprise
HCI deployments. Specifically:

• MSR traces include I/O patterns from various server
classes (e.g., web, development, project servers), capturing
diverse access patterns, temporal locality, and request
sizes [62].

• Azure traces capture VM-level I/O activity in production
cloud environments, reflecting multi-tenant, bursty work-
loads typical of virtualized infrastructures [11].

These traces are commonly used in systems research
(e.g., [68], [43], [25], [19], [91], [39]) to benchmark caching,
scheduling, and storage policies under heterogeneous and imbal-
anced loads. Their diversity and realism make them especially
suitable for evaluating dynamic cache allocation in HCI systems
like ELICA.
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4.2 Experimental Results
In this section, we evaluate ELICA and show how it effectively
manages the I/O cache resources in HCI and improves worst-case
and average latency. We compare ELICA with the state-of-the-art
hypervisor-based caching scheme, ECI-Cache [3], in which the
cache resources of each node are locally managed (denoted as
ECI). We implement and evaluate both ELICA and ECI-Cache
on a physical HCI platform for both Microsoft Azure and MSR
workloads (Table 1 and Table 2). We choose our monitoring
interval to be 10 minutes, meaning that after this interval, the
new cache stats are collected, the ILP is solved in the background,
and the new cache sizes are determined for the next interval. A
smaller monitoring interval translates to a more accurate cache
resource allocation at the cost of a higher computation overhead.
The efficient length of monitoring interval, however, is related
to the frequency of changes in the workloads. We examine all
workloads with different monitoring intervals and realize that
the ILP accuracy does not have a considerable improvement for
monitoring intervals smaller than 10 minutes.

4.2.1 Cache Resource Allocation
Here we compare cache allocation of ELICA and ECI, residing in
the hypervisor. We use GM to move I/O cache resources. Fig. 9
shows the cache resource usage for each method for MSR and
Azure workloads. We make the following major observations.
ELICA increases the I/O cache allocation by 2.7× compared to
ECI for MSR and 2.4× for Azure workloads. This is thanks to
our global resource allocation. VMs in ECI are restricted to only
use the cache of the local nodes. Hence, some nodes face the lack
of cache space while some other nodes have idle cache space.
Considering the average of workloads on all three nodes, ELICA
demonstrates 76% and 70% higher cache resource utilization
compared to ECI for MSR and Azure workloads, respectively.

To better compare performance results, Fig. 10 compares the
hit ratios of ELICA-Traffic and ELICA-Load schemes as well
as ECI. By efficient cache allocation, ELICA shows 33% and
35% higher hit ratio compared to ECI for the MSR and Azure
workloads, respectively. This improvement was expected since in
both ELICA-Traffic and ELICA-Load, more cache resources are
allocated to VMs. An important observation is the greater impact
of ELICA on heavy workloads. For example, for prn 0 (on VM9),
which is an I/O intensive workload, the improvement of ELICA in
both Traffic and Load schemes is approximately 76%. This shows
when local cache is not enough, remote cache allocation is very
beneficial.

4.2.2 I/O Cache Resource Distribution
We examine ELICA to show how the proposed resource man-
ager effectively distributes the VM cache resources across the
HCI array. ELICA aims to use both local and remote SSDs
for cache allocation, achieving an efficient resource distribution

m
ds

_0
rs

rc
h_

1
hm

_1
pr

oj
_0

m
ds

_1
rs

rc
h_

2
sr

c1
_0

pr
oj

_1
st

g_
0

pr
n_

0
rs

rc
h_

0
hm

_0
sr

c2
_0

pr
oj

_2
st

g_
1

pr
n_

1
us

r_
0

us
r_

1
us

r_
2

we
b_

0
AV

G-
M

AV
G-

A0
20
40
60
80

100

Hi
t R

at
io

 (%
)

Traffic Load ECI

Fig. 10: Hit ratio (AVG-M and AVG-A are average over MSR and
Azure workloads, respectively.)

when the demands of nodes have a large variance. Fig. 11
shows the percentage of remote resources allocated by ELICA-
Load and ELICA-Traffic. We can make the following major
observations. ELICA-Load allocates 37% remote resources, while
ELICA-Traffic allocates 31% remote resources on both MSR and
Azure workloads. To reduce the I/O load on the local SSDs,
ELICA-Load moves the VMs cache resources to remote nodes.
Meanwhile, ELICA-Traffic that targets reducing the network traf-
fic aims to allocate fewer number of remote resources to VMs.

VMs running on Node 0 have the least amount of remote cache
allocated to them (Fig. 11). Since the server hosts fewer VMs
running on this node, and except for one workload (proj 0 on
VM3), the other three are less I/O intensive, it rarely faces lack
of cache space and it can accommodate all the requests using its
local cache. Another observation is the higher amount of remote
cache allocated to write-heavy workloads. For example, VM12 is
running src2 0, which is write-intensive and it has a high amount
of remote cache.

4.2.3 Performance Improvement
We compare the performance of ELICA-Load and ELICA-Traffic
with ECI in terms of worst-case and average latencies of active
VMs using iostat [40]. Compared to ECI, ELICA achieves higher
hit ratio and lower latency since it distributes the I/O caches among
the nodes. Hence, VMs can use the free space of SSDs in the
remote nodes. Besides, ELICA balances I/O load in the HCI array.
In case of high I/O load on the nodes hosting VMs with high
access frequency, the cache resources are moved to the nodes with
idle SSD bandwidth.

4.2.4 Average Latency Improvement:
Fig. 12a compares the average latency of ELICA-Load and
ELICA-Traffic with ECI. Using GM and IM on MSR workloads,
and compared to the ECI based HCI, ELICA-Load improves the
average latency by 2.76× (176%), while ELICA-Traffic shows a
3.37× (237%) latency improvement. These numbers are 2.83× for
ELICA-Load and 3.44× for ELICA-Traffic on Azure workloads.
This can be explained by the fact that ECI only allocates local
cache and fails to provide efficient amount of cache to the VMs,
leading to more frequent HDD accesses. For a workload such as
N0-VM3 (running proj 0), ELICA mostly allocates local cache
with very minimal remote cache and is able to achieve almost
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Fig. 12: GM vs. IM: average and worst-case latency (AVG-M:
average over MSR, AVG-A: average over Azure)

1.9× latency improvement over ECI. The significant improvement
is due to more cache space released by moving highly loaded I/O
caches to other nodes. Workloads that are assigned more remote
cache tend to have higher average latency compared to workloads
with more local cache. This latency, however, is still much lower
than the case where all workloads on a server use only the local
cache available on that server (e.g., ECI), exhausting its cache
resources.

4.2.5 Worst-Case Latency Improvement

Fig. 12b and Fig. 12c compare the worst-case latency
achieved by ELICA and ECI based HCI for the 99.9th and
99.99th percentiles, respectively. The average results over both
MSR and Azure workloads are also shown in this figure.
ELICA-Load and ELICA-Traffic achieve an average worst-case
latency improvement of 23% and 13% for three and four 9’s,
respectively. Moving from three-nine to four-nine percentile, the
tail latency for both ELICA methods seems to get closer to ECI.
This is because worst-case latency is highly correlated to HDD
queue depth. As these parameters increase, the waiting time for
I/O requests also increases, resulting in longer latency. It is also
the case that remote cache may not be available to be assigned to
a VM cache at some point (due to reasons such as cache space
used up by other VMs). This will cause ELICA to act very similar
to ECI, allocating and using only the local cache.

4.2.6 Per-Node Throughput Under Varying Load

To evaluate the ELICA scalability and performance under varying
stress levels and application profiles, we measured I/O throughput
across nodes under three load conditions, using workloads repre-
sentative of real-world HCI applications.

Workload Profiles:

• OLTP-like workload (similar to TPC-C pattern): Simu-
lates small, random, write-heavy transactional workloads,
representative of database backends.

• OLAP-like workload (similar to TPC-H pattern): Sim-
ulates large, sequential, read-intensive analytical queries.

• Mixed workload (enterprise-like file server pattern):
Emulates a mix of sequential and random I/O with varying
read/write ratios.

Load Profiles and Mapping to Applications:

• Low Load: Nodes primarily run OLAP-like VMs with low
I/O frequency, emulating off-peak analytical workloads.

• Moderate Load: Nodes host a balanced mix of OLTP,
OLAP, and mixed workload VMs, reflecting typical enter-
prise activity.

• High Load: Nodes run multiple OLTP-like VMs with
aggressive random I/O, simulating peak transactional de-
mand.

Results: Fig. 14 shows the per-node aggregate throughput (in
MB/s) under each scenario:

• Under low load, Nodes 0–2 achieve throughput between
280–300 MB/s, reflecting optimal cache usage and mini-
mal queuing with read-dominant traffic.

• Under moderate load, throughput remains stable at 260–
270 MB/s, as the ELICA adaptive cache allocation ensures
balanced performance across diverse I/O types.

• Under high load, throughput drops to 215–230 MB/s due
to SSD queuing pressure from write-heavy, random OLTP-
style workloads. However, the degradation is controlled, as
the ELICA traffic-aware balancing and migration prevent
bottlenecks.

These results, illustrated in Fig. 14, confirm that ELICA main-
tains robust throughput and scalability across varying application-
level workloads and system stress conditions, validating its ability
to support realistic, end-to-end HCI applications.

4.2.7 ILP Computational Overhead
In ELICA, we solve ILP in each 10-minute interval. By limiting
the search space and defining bounds using Branch and Bound
method, we can solve ILP with a reasonable time and memory
complexity. To show the ILP overhead, we perform computations
using different number of VMs. Fig. 13 shows what percentage
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of the total execution time solving ILP takes. The execution times
(in minutes) for each run is demonstrated on top of each bar.
To evaluate the ILP overhead, we stop the system and run the
ILP offline and compare it with the concurrent system run. ILP
calculation consists of three main phases. First, all information
regarding cache sizes are collected from different nodes. Second,
the ILP objective function is solved and new cache sizes are
obtained. Third, the most recent ILP solution is evaluated. The
results show the overhead is by 18% of the total execution time
when 500 VMs run in the cluster. ILP computations are executed
using only a single thread on one of the servers. While ILP is
not memory-intensive, it is compute-intensive, imposing overhead
on a single CPU core. This overhead can be evenly distributed
over multiple CPU cores by extending our implementation to a
multi-threaded program. Fig. 18 shows the CPU overhead of ILP
in a single-thread implementation. Increasing the ILP computation
interval is another approach to reduce this overhead. Besides, as
HCI is mostly targeted for small to medium-size deployments,
we conclude that the ILP computation overhead is negligible and
can easily be compensated by either increasing time interval or
multi-threaded programming.

Our choice of ILP is motivated by its structured modeling
of system constraints and the availability of efficient solvers that
return near-optimal solutions using hybrid optimization techniques
(e.g., branch-and-bound, heuristics). While ILP is NP-hard, our
workload-aware formulation remains lightweight and solvable
within seconds even at large VM scales. The solver operates
asynchronously in the control plane and is decoupled from the I/O
path, making it a practical choice for dynamic cache allocation.

We acknowledge that alternative approaches such as heuristic
algorithms or Machine Learning (ML) models could also be
explored. However, for this work, we prioritized explainability and
minimal runtime dependencies. ML-based cache management,
especially using reinforcement learning, remains a promising
direction for future research.

4.2.8 ILP Accuracy and System Impact

ILP Prediction Accuracy. To evaluate how well ILP models real-
world cache demands, we compared the cache sizes predicted by
the solver to the actual usage measured at runtime. As shown
in Fig. 15, the majority of predicted allocations closely match
observed usage.

• The Mean Absolute Error (MAE) between predicted and
actual cache usage is 24.3 MB, which is low given that
average per-VM allocations are around 512 MB.

• 85% of VMs experienced cache size prediction errors
within 10% of actual usage.
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Fig. 15: ILP prediction accuracy: per-VM predicted cache size vs.
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4.2.9 SSD Endurance and Wear-Leveling
SSD endurance is primarily affected by write amplification and
sustained write volume. ELICA mitigates these effects through a
combination of traffic-aware migration and adaptive cache alloca-
tion:

• Write-aware migration: Gradual migration spreads
writes over time, avoiding sudden bursts that can prema-
turely degrade flash cells. This leads to more uniform wear
leveling across devices.

• Workload-aware placement: Write-heavy workloads are
not preferentially allocated to a single node. Instead, cache
space is distributed based on traffic patterns, avoiding
overuse of any specific SSD.

• Observed workload balance: In our experiments, work-
loads exhibited a wide range of read/write ratios (6%–85%
writes across VMs). ELICA adapts to this heterogeneity
and ensures no node becomes a hotspot for write activity.

To quantify the impact of ELICA on SSD endurance, we track
cumulative SSD writes per node under skewed load. As shown in
Fig. 16, static cache partitioning results in a significantly higher
write volume on Node 1. In contrast, ELICA redistributes the load,
leading to a more balanced write profile across all nodes.

We also estimate SSD wear by comparing the percentage of
P/E cycle budget consumed across nodes. As shown in Fig. 17,
the static policy results in uneven wear, with Node 1 consuming
45% of its P/E budget. ELICA maintains uniform wear levels at
approximately 30% per node.

4.2.10 Network Bandwidth Utilization across servers
The main overhead of ELICA on the network is transmitting
data blocks. To monitor network usage, we use IPTraf [41].
Fig. 19 shows the total network bandwidth utilization for three
servers in the experiments. We only report usage for ELICA
related communication while leaving out the usage for non-ELICA
processes. The network utilization in our study does not go beyond
40% in total (14%, on average).

4.2.11 GM vs. IM
We first redo our previous experiments using IM to make a
comparison on performance in terms of average and worst-case
latency. We then perform experiments to compare the performance
of our proposed migration schemes in terms of bandwidth and
migration time to show possible trade-offs.
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Fig. 12 compares the average and worst-case latency achieved
using two migration schemes. For the average latency, IM is about
23% faster (Fig. 12a), while for the worst-case latency, we observe
a 10% improvement. We expected to see better latency results
for IM since it aims to quickly migrate cache resources to the
destination node, while GM only migrates when a corresponding
request is issued. This causes an overhead in searching as ELICA
needs to search both local and remote caches to find the desired
data blocks. Although this can also happen in IM, it would not last
for a long time compared to GM, hence resulting in lower latency.

Fig. 20a shows the total amount of time spent and bandwidth
used for two migration schemes of three sample workloads.
These workloads have the most remote cache resources allocated
(Fig. 11). Using GM, it takes a maximum of 14 minutes to
migrate local cache to the other nodes for prn 1 (VM15). The
migration happens at a bandwidth of up to 7 MB/s, while using IM
finishes the migration in less than two minutes at up to 223 MB/s
bandwidth (7× faster but with 31× higher bandwidth overhead
than GM). The same scenario is valid for other two workloads. To
summarize, IM provides faster migration at a higher bandwidth
while GM takes bandwidth into account and does the migration at
a slower pace.

To ensure data correctness during migration, we run 10,000
synthetic migration events under write-heavy workloads. Each
migrated block is verified using SHA-256 checksums. Table 5
summarizes the results for both gradual (GM) and instant (IM)

1 50 100 150 200
Time (Minutes)

0

20

40

60

80

100

Th
re

ad
 U

til
. (

%
)

Fig. 18: Utilization of single-thread implementation calculating
ILP over time.

1 20 40 60 80 100 120 140 160 180 200
Time (Minutes)

0
10
20
30
40
50

Ba
nd

wi
dt

h
Ut

iliz
at

io
n 

(%
)

Node 0
Average

Node 1
Total

Node 2 

Fig. 19: Servers Bandwidth Utilization

migration. In all runs, we observed zero block corruption, con-
firming that ELICA preserves cache consistency.

TABLE 5: Cache consistency validation under synthetic migration
tests

Metric Instant Gradual
Migrations tested 10,000 10,000
Corrupted blocks detected 0 0
Integrity verification success 100% 100%

5 RELATED WORKS

In this section, we show why previous schemes cannot be ef-
fectively applied to the existing HCIs. Several studies [77], [78],
[72], [45], [47], [46], [44] developed various schemes to enhance
the reliability of storage arrays and HCIs while none of them
takes the performance improvement of HCIs into account. Table 6
summarizes contribution domains of previous works.

5.1 I/O Caching in Virtualized Platforms

Several SSD-based I/O caching schemes are proposed for vir-
tualized platforms, improving performance, while considering
endurance and reliability [53], [58], [49], [3], [6], [42], [4]
(Table 6). Contemporary I/O caching schemes for virtualized
platforms mainly focus on partitioning the total SSD cache
space between running VMs to maximize the performance. Such
schemes, however, are optimized to single host structures. They
are also not compatible with HCIs as they lead to imbalanced
I/O load and cache space allocation (as discussed in Sec. 4.2). A
group of studies also manage to estimate an efficient cache size
for virtualized platforms [6], [53], [58], [49], [3] using parameters
such as working set size, locality, and reuse intensity of the running
workloads. Few studies (e.g., CloudCache [6]) propose to migrate
the entire VM (not only the I/O cache) to other hosts in case of
insufficient cache space. Recent work [51] has explored machine
learning-based approaches for fair and efficient cache management
in NVMe SSDs, demonstrating the potential for intelligent caching
strategies in virtualized environments.
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5.2 Load Balancing in Distributed / Storage Systems
Several schemes migrate high-load VMs to nodes having less load
[7], [16], [67]. However, costs associated with live migration of
VMs could be prohibitive in practical deployments of HCI such
as edge computing [17], [76], [95]. SIB [42], LBICA [4], and
DistCache [52] are three recent I/O cache load balancing schemes.
In case of burst and heavy I/O accesses, both LBICA and SIB
balance the load of the SSD cache by bypassing the requests
into the disk subsystem. Hence, the requests that are considered
to be responded by the cache (hit) experience the high latency
of disk subsystem, which leads to considerable I/O performance
drop. These schemes also do not take the distributed architecture
of HCIs into account.

In [15], the intersection of data deduplication and migration
strategies have been explored as a way to achieve load balancing
in distributed storage systems, highlighting the complex interplay
between data management and system performance.

Recent studies have proposed another category of cache man-
agement techniques to improve fairness among competing appli-
cations accessing shared SSDs [50], although they use DRAM as
cache.

5.3 I/O Cache Migration
Online migration of data across data centers in a geo-distributed
manner is addressed in [82], where distributed storage overlays
are introduced to cache data objects and facilitate data migration.
Akkio [5] is a locality management service, deciding on when
and how to perform data migration regarding the data access
footprint, reducing the response time and resource usage. Clark
et al. [18] investigate the live migration of entire VMs, which
is completely different from I/O cache migration proposed in
ELICA. VM migration comes with downtime in the operation
or serious performance degradation and has a large migration
time and network traffic, only used for occasions such as failures,
maintenance, and hardware/software updates [18], [94], [86].

5.4 I/O Caching in Commercial Hypervisors
While commercial hypervisors [60], [84], [83] support I/O caching
in both guest and host file-systems, they do not support distributed
I/O caching. The deprecated VMware flash read cache (known
as VFlash), as well as a third-party cache software such as
Virtunet [79] developed to integrate with VMware, only use the
local host resources. VMware vSAN [84], [83] also uses local
cache resources in both all-flash and hybrid HCI solutions.

5.5 I/O caching in alternative platforms
Remero et al. [71] proposed a distributed cache for Function-as-a-
Service (FaaS) applications. The service paradigm in FaaS appli-
cations is based on microservice containers that have a different
software stack from VMs in HCIs. The work presented in [71]
is useful for DRAM cache management, while ELICA manages
SSD I/O cache. Hence, the contribution of [71] is not necessarily
applicable to HCI platforms. In a similar effort, Wang et al. [88]
propose a cache memory for FaaS application, relying on DRAM
cache and a distributed architecture. To address cold start problem
in FaaS applications, Fuerst and Sharma [29] propose FaasCache
that keeps frequently used FaaS functions alive after they have
finished execution. None of these studies use cache migration as
a facility to balance the cache load. Farshin et al. [27] explore the
use of Direct Cache Access (DCA) facility in Intel processors to
improve packet processing latency in Software-Defined Networks
(SDNs). Wang et al. [90] also explore DCA for SDNs in a recent

study. Ge et al. [31] use I/O access hints in favor of I/O latency. Wu
et al. [93] propose a caching mechanism for data storage systems,
adapting to the characteristics of emerging storage media. As both
works focus on a single data storage node, they do not deal with
challenges such as imbalanced load between the nodes.

5.6 Discussions and Future Work
(a) Mirrored I/O Cache: One future direction of this research
is distributing the mirrored cache into two different HCI nodes.
When caching the write-pending data, it can be written into two
cache modules for the sake of performance and reliability. ELICA
makes room for distributing the mirrors into two different HCI
nodes rather than a single node, doubling the read bandwidth of
the local I/O cache. While this scheme can improve the average
read latency, the overhead of addressing cache coherency upon the
write requests should be explored.
(b) Endurance of I/O Cache: Data migration may have an
impact on the endurance of SSD devices, depending on the
selected migration mechanism. In GM, no extra cache write is
imposed, as the cache is gradually migrated by redirecting new
write operations. IM, however, comes with write overheads, as it
aggressively migrates all cached data to the new destination.
(c) I/O Cache vs. Page Cache: In ELICA, we mainly focused
on the I/O cache of HCI block storage that resides in the I/O
block layer, just below the page cache. The page cache and I/O
cache work independently in different layers of Linux storage
stack, while optimizations in each layer can independently help
overall storage performance [26], [14], [13].
(d) Reliability: Cache coherency concerns are fully addressed in
ELICA, as discussed in Sec. 3.7. Both ELICA and ECI use SSD
in the caching layer, resulting in similar reliability obligations. By
employing mirrored I/O cache, ELICA outperforms ECI in the
case of motherboard and/or system failures, which is single-point-
of-failure in the ECI architecture. Nevertheless, a higher reliability
level can be achieved only when data blocks are also replicated in
multiple nodes.
(e) I/O Cache Size: To show the efficiency of ELICA with smaller
cache sizes (64GB and 128GB), we perform experiments on four
sample workloads (VM0 and VM14 chosen from Table 1 and
stg 1 and usr 2 chosen from Table 2). Our experiments show
ELICA improves average latency by 2.5× (151%), 3.4× (241%),
and 3.5× (253%) over 64GB, 128GB, and 256GB cache sizes,
respectively, compared to ECI. ELICA also improves worst-case
latency by 26%, 30%, and 31% over 64GB, 128GB, and 256GB
cache size, respectively (detailed results are removed for the sake
of brevity). Further analysis and use of heterogeneous cache size
on different nodes is another future direction for this research.
(f) All Methods in One: While in this study we examined ELICA-
Traffic and ELICA-Load separately, combining both ELICA-
Traffic and ELICA-Load methods is left for future work, as they
seem to have a co-dependency. As an example, in trying to balance
the load, we need to accept some traffic overheads and vice versa.
(g) Comparison with Commercial Systems: We compare EL-
ICA against ECI-Cache [3], a prior hypervisor-based caching
system that supports per-VM cache partitioning and workload-
aware allocation. Its architecture closely aligns with our goals,
enabling a meaningful technical comparison. In contrast, com-
mercial platforms such as VMware vSAN, OpenShift, and Ig-
nite, differ significantly in design: vSAN offers static, node-local
caching without per-VM migration; OpenShift targets container-
ized storage without block-level cache control; and Ignite requires
application-level integration. These differences make direct, fair
comparison infeasible. Future work will explore integrating EL-
ICA as a pluggable cache orchestrator into such environments.
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TABLE 6: Domain of contributions in previous works

System Type / Contributions Cache/VM Migration Load Balancing Unified Cache Cache Size Alloc. Reliability/Endurance/Coherency

HCI ELICA ELICA ELICA ELICA [77], [78], [72]
Distributed Storage/Virtualized [82], [5], [18] [70], [7], [16], [67], [52] [6] [6], [42], [4]
Serverless [71], [88] [71], [88], [29] [71], [88], [29] [88]
Single Storage/Virtualized [42], [4], [31], [93] [49], [3], [53], [58] [45], [47], [46], [44], [49], [3], [53], [58]

(h) Relationship to In-Memory Caching Systems: Distributed
in-memory caches such as Apache Ignite, Memcached, and Redis
are designed for application-level data acceleration, typically re-
quiring explicit integration by developers. Distributed in-memory
caches, cache the structured data (e.g., key-value pairs) in RAM to
reduce access latency. In contrast, ELICA operates at the storage
layer of HCI platforms, transparently managing SSD-based block-
level cache for virtual machines. Unlike in-memory caches, EL-
ICA requires no application modifications and addresses system-
level concerns such as cache migration, load imbalance, and
endurance. The two approaches are complementary: in-memory
caching improves data access at the application tier, while ELICA
improves storage I/O performance at the infrastructure tier.

6 CONCLUSION

In this paper, we presented an I/O caching architecture for HCIs,
called ELICA, which allocates efficient cache spaces to VMs and
effectively distributes the I/O cache resources throughout the HCI
array, improving the QoS in terms of average and worst-case
latency. To effectively partition the SSD cache space across active
VMs, ELICA estimates an efficient cache size for each VM based
on workload characteristics and distributes the I/O cache resources
across the HCI array. To this end, an ILP optimization problem
is presented. To reduce the performance overhead imposed by
migrating the I/O cache, we proposed two online cache migration
schemes, namely, Gradual and Instant Migration. The first migra-
tion scheme benefits network traffic, while the latter one manages
to achieve the best cache space efficiency by migrating the I/O
cache as soon as possible. Our experiments on a real platform
revealed that ELICA improves the QoS in term of average and
worst-case latency by 3.1× and 23%, respectively.
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