
IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 1

A Reliability-Aware Replacement Policy for
STT-MRAM Caches in Server-Class Processors

Abdollah Mohammadi, Elham Cheshmikhani, and Hossein Asadi, Senior Member, IEEE

Abstract—Spin-Transfer Torque Magnetic RAM (STT-MRAM)
has several advantages over conventional SRAM technology in
on-chip caches such as low leakage, soft error tolerance, and
high density and scalability. These advantages make it the most
promising non-volatile memory for SRAM replacement. However,
STT-MRAM cache memory faces two main reliability challenges
in emerging nano-scale technology nodes, i.e., retention failure
and read disturbance. Because of the lower data access rate in the
Last-Level Caches (LLCs) compared to the higher cache levels,
as well as the higher contribution of read accesses, these two
reliability challenges have become severe in the LLCs of server-
class processors. The existing approaches to overcome these
challenges impose significant area and performance overhead
or adversely affect the other failure types. In this paper, we
first investigate the parameters that affect the reliability of
STT-MRAM-based LLCs due to the retention failure and read
disturbance. Our investigation shows that a) the duration of
dead dirty blocks is the main contributor to the retention failure
rate of STT-MRAM LLCs while b) the high number of risky
reads, i.e., those that can affect the cache reliability, in the dirty
blocks is the main contributor to the read disturbance.Based
on these observations, we propose a simple yet effective cache
replacement policy, called Retention failure and read disturbance
reduction (Reference), to decrease the length of dirty intervals
and the number of reads, which results in a significant reduction
in retention failure and read disturbance rate. Our evaluations
demonstrate that the proposed replacement policy cuts down the
probability of retention failure and the number of risky reads per
dirty block by 56% and 61%, respectively. The area overhead
of this scheme is negligible (0.2%) with no adverse effect on the
energy consumption.

Index Terms—Cache Memory, Reliability, Retention Failure,
Read Disturbance, Replacement Policy, STT-MRAM.

I. INTRODUCTION

BY technology down-scaling, Static Random-Access Mem-
ory (SRAM) technology faces several challenges such

as high power consumption, low density, low reliability, and
low scalability [1], [2]. Recent efforts to address SRAM
issues have led to the introduction of emerging Non-Volatile
Memory (NVM) technologies such as Spin-Transfer Torque
Magnetic RAM (STT-MRAM) [3]–[5]. The main advantages
of STT-MRAM are non-volatility, high scalability and density,
low leakage, and immunity to soft errors [6]. However, it
faces some reliability challenges such as retention failure,
read disturbance, and write failure [7]–[10]. When a cell is
idle (no current or voltage is applied) and the cell content

A. Mohammadi and H. Asadi are with the Department of Computer
Engineering, Sharif University of Technology, Tehran, Iran.
E-mails: {abd.mohammadi, asadi}@sharif.edu

E. Cheshmikhani is with the Department of Computer Science and Engi-
neering, Shahid Beheshti University, Tehran, Iran.
E-mail: e cheshmikhani@sbu.ac.ir

Manuscript received July 22, 2024.

unintentionally changes, retention failure occurs [11], [12] and
read disturbance refers to an unintentional cell content change
during read access [13], [14]. The last failure type, i.e., write
failure, refers to the unsuccessful switching of cell content in
a write operation [15]–[18]. To employ emerging NVMs on
the shelf, these failure types need to be carefully addressed.

With the down-scaling of manufacturing technology, re-
tention failure has become the main source of STT-MRAM
failures [19] as shown in Fig. 1. This failure occurs while the
cell is idle. Since Last-Level Cache (LLC) has a low access
rate and its blocks are idle for a longer time in comparison
with higher cache levels [5], retention failure has become the
main source of LLC failures in server-class processors. On
the other hand, by increasing the number of read accesses, the
probability of read disturbance grows. Since all blocks in a
set are accessed in parallel to improve read performance, the
increased number of read accesses leads to a higher probability
of read disturbance.

Several studies attempted to reduce the retention failure
and read disturbance rate in STT-MRAM caches. Utilizing
refresh and scrubbing methods [19], [20], increasing thermal
stability factor [21], [22], employing Error-Correction Codes
(ECCs) [19], [23]–[26], reducing read and write currents in
conjunction with a more precise sense amplifier [27]–[30],
and manipulating physical dimensions of cells are the main
approaches for enhancing the STT-MRAM reliability. Some
of these approaches impose a high overhead on cache memory
[19], [23], [24], [31]–[33], while others show an adverse
impact on the other failure types [21], [22], [31].

In addition to reliability challenges, STT-MRAM caches
suffer from high write energy and long latency, which are
caused by asymmetric bit switching and the stochastic nature
of write operation in STT-MRAM cells. To address these
challenges, many previous studies conducted before are mainly
categorized into reducing the thermal stability factor, using
ECCs [34], [35], adaptive write pulses and write current
[36]–[38], and different cache structures [39]–[41] such

as multi-retention STT-MRAM caches [42]. Some of these
approaches can negatively affect reliability challenges such as
retention failure; however, adapting the approach presented in
this paper could minimize their effects.

The probability of write failure decreases in the lower tech-
nology nodes (Fig. 1) while the rate of the other two failures
increases. Under a technology node of 15nm, the contribution
of write failure to the total failure rate is negligible. Therefore,
an effective method to decrease the retention failure and read
disturbance without imposing overheads or negative effects
on the write failure is missing in the previous work. Given
the gap in the previous work, we investigate the effective

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 2

1.0E-4

1.0E-2

1.0E+0

8 11 15 22

C
hi

p
Fa

ilu
re

Pr

ob
ab

ili
ty

 [
32

M
B]

Technology Node [nm]

Total Failure
Read Disturbance
Write failure
Retention Failure

Fig. 1. Trend of failure rates for different technology nodes [19].

parameters on retention failure and read disturbance. Based on
this study, mitigating the retention failure and read disturbance
rates of a memory cell is based on the following major
sources/parameters, which should be carefully monitored and
addressed: a) cell idle time, b) number of read accesses, and
c) thermal stability factor. As our focus is on architectural
parameters, we focus on only the two former parameters in
our proposed method, since altering the thermal stability factor
requires physical changes in the manufacturing.

In this paper, we first investigate a detailed study, which
divides the idle intervals of cache blocks into two categories
and refers to them as live intervals and dead dirty intervals.
Live intervals indicate the time between two consecutive
accesses to a certain block if the current access to this block
is a read access. Additionally, dead dirty intervals indicate
the time between the last access and the eviction time of
dirty blocks. We evaluate the impact of idle intervals on the
probability of retention failure. Our experimental results show
that the length of the dead dirty intervals is significantly longer
than the length of live intervals. Hence, the probability of
retention failure in dead dirty intervals is more significant than
in live intervals. These observations indicate that decreasing
dead dirty idle intervals would have a large impact on reducing
retention failure rate.

To reduce read disturbance rate, we examine the number of
read accesses to the cache blocks. To do so, we define risky
and safe read accesses. Risky read access is one in which
data would be corrupted if a read disturbance occurs during a
read operation. However, the occurrence of a read disturbance
during a read operation that does not lead to data loss is called
safe read access. According to our observation, the number of
risky read accesses in dirty blocks is much greater than in
clean blocks. Thus, dirty blocks have a significant impact on
the probability of read disturbance. Hence, by reducing the
duration of dirty intervals (the time between a block being
dirty and its eviction), the number of risky reads from dirty
blocks and the probability of read disturbance will be reduced.

Based on these observations, we propose a simple yet
effective cache replacement policy called Retention Failure
and read Disturbance reduction (Reference). The proposed
cache policy reduces the idle time between the last access and
the eviction time of the dirty block. The Reference policy early
evicts error-prone dead dirty blocks by detecting these blocks.
We add a bit to each cache block, which allows us to evict dead
dirty blocks at certain times. Hence, Reference reduces the
length of dead dirty intervals by evicting dirty blocks that are
not as old as the Least Recently Used (LRU) evicted blocks.

As a result, Reference cuts down the probability of retention
failure and read disturbance rate in STT-MRAM LLCs.

Our evaluation based on workloads from the SPEC
CPU2006 [43] benchmark suite running on the gem5 full-
system simulator [44], [45] shows that the Reference policy
reduces the probability of retention failure of STT-MRAM
caches by 56% and 69% and decreases the number of risky
reads per dirty block by 61% and 66% compared to LRU and
RRIP [46] (the widely-used methods for re-referenced block
prediction in SRAM caches). This scheme imposes only 0.2%
area overhead and no increase in energy consumption.

Briefly, we offer the following original contributions:
• We propose a novel classification for cache blocks of

an STT-MRAM LLC based on their access patterns and
show that dead dirty blocks are the main contributor
to retention failure and read disturbance for the cache
vulnerability.

• We investigate the read access patterns to the cache
blocks and reveal that dirty blocks have a large contribu-
tion to the read disturbance rate in STT-MRAM LLCs.

• Based on our observations, we propose a novel replace-
ment policy, which needs only a minor modification on
cache management to prioritize more vulnerable blocks
for eviction in the cache replacement policy. The pro-
posed policy significantly enhances cache reliability with
negligible performance and area overheads.

The organization of the paper is as follows. A review
of STT-MRAM memory is provided in Section II. Previous
works are investigated in Section III. Section IV introduces
the motivation for this work, while the proposed schemes
are introduced in Section V. Results and simulation setup are
presented in Section VI. Finally, Section VII concludes the
paper.

II. STT-MRAM BACKGROUND

A. STT-MRAM Basic Concepts

A cell in STT-MRAM for storing data and accessing the
data uses Magnetic Tunnel Junction (MTJ) and an NMOS
transistor. An MTJ (Fig. 2) consists of three layers; a ref-
erence layer and a free layer are made up of ferromagnetic
material, with fixed and changeable magnetization directions,
respectively, and a layer placed between these ferromagnetic
layers called the oxide barrier layer [47].

STT-MRAM uses magnetic property instead of electric
charging to store data; hence, the stored data is represented
by its resistance. An MTJ has two resistance states: high,
indicating logic ‘1’, and low, representing ‘0’ [48], [49]. When
the magnetization of the two layers is parallel (P), MTJ has
low resistance (Fig. 2.a). In contrast, the anti-parallel (AP)
magnetization leads to the high resistance of MTJ (Fig. 2.b),
which represents logic ‘1’ for the stored bit [50].

To write ‘1’ to a cell of the STT-MRAM cache, a write
current flows from the free layer to the reference layer. In
this case, the electrons with different magnetic orientations
are unable to pass through the reference layer due to its strong
magnetic field. Instead, they are pushed back to the free layer,
which leads to a change in the magnetic orientation of the free

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 3

Q1

Q1

Bit Line Bit Line

Free Layer
Oxide Layer

Reference Layer

Word line

Source LineSource Line
(a) (b)

Fig. 2. STT-MRAM cell representing the value a) ”1” and b) ”0”.

layer to the anti-parallel with the reference layer. In contrast,
a write current is applied from the reference layer to the free
layer to write the value ’0’ into a cell. To read a cell, a small
current is applied and the amount of the current is sensed to
distinguish the stored value [7], [12], [13].

B. Retention Failure in STT-MRAM

Retention failure is a major reliability issue in a STT-
MRAM cell, as reported in Fig. 1 [19], [20]. This type of
failure is occurred by unintentional change of the cell state
when it is idle. Equation (1) [48] is used to calculate the
retention failure probability for a cell, where t and ∆ are the
cell idle interval and the thermal stability factor, respectively
[17], [51]. The thermal stability factor of a cell is calculated
according to Equation (2) [48], where Eb, KB , and T are the
barrier energy, the Boltzmann constant, and the temperature
in Kelvin [52].

Pretention−failure = 1− exp (−t× exp (−∆)) (1)

∆ = Eb/(KB × T) (2)

Based on (1), we extract two parameters that affect the
retention failure, which are the cell idle time and its thermal
stability factor. As mentioned, increasing ∆ for probability re-
duction of retention failure exacerbates the write failure rate. In
addition, ∆ adjustment needs to manipulate the manufacturing
process, which is beyond the scope of this work.

C. Write Failure in STT-MRAM

The probability of write failure is calculated based on Equa-
tion (3) [50]. In this equation, Iwrite, c, e, m, p, µβ , and twrite

are write current, Euler constant, electron charge, magnetic
momentum of the free layer, tunneling spin polarization, Bohr
magneton, and write pulse duration, respectively [7]. The
energy barrier (Eb) scales down linearly when scaling STT-
MRAM cells, which causes a reduction in the thermal stability
factor (∆). As shown in Equation (3), a decrease in the thermal
stability factor exponentially affects the probability of write
failure.

Pwrite−failure =

exp(−twrite ×
2× µβ × p× (Iwrite − IC0)

c+ loge(π
2 × ∆

4
)× (e×m× (1 + p2))

)
(3)

D. Read Disturbance in STT-MRAM
To write ”0” or ”1” in a cell of STT-MRAM cache, two opposite

directions are used for current flowing. As the read and write
operations share the same path in the STT-MRAM cell, applying
a read current to a cell may cause flipping the cell value [52], [53].
The read disturbance probability is calculated based on Equation (4),
in which τ is attempt period, tread is equal to the reading interval,
Iread and IC0 are read current and critical current (write current in
0oK), respectively [48], [50].

Pread−disturbance = 1− exp (
−tread

τ
× exp (

∆(IC0 − Iread)

IC0

))

(4)
In addition to the physical parameters in (4), the frequency

of read operations considerably affects the read disturbance
rate. Equation (5) shows how the read requests contribute in
the read disturbance rate. According to (5), the number of read
accesses has a decisive role in the read disturbance occurrence.

P = 1− (1− Pread−disturbance)
number of read accesses (5)

In summary, the idle time of a cache block is the main player
in the retention failure rate. In addition, the read disturbance
rate increases with a higher number of read accesses. Thus,
we focus on these parameters to enhance the reliability of
STT-MRAM LLCs.

III. RELATED WORK

As our proposed policy increases the reliability of STT-
MRAM caches by predicting the dead dirty blocks, we study
the related work from two aspects. We first explore the meth-
ods that addressed the retention failure and read disturbance
in STT-MRAM caches and then discuss the methods that tried
to predict the dead blocks in the SRAM/STT-MRAM caches.

A. Fault-tolerant STT-MRAM Cache Schemes

In [21], retention failure rate is reduced by increasing ∆,
without taking the negative impact of their method on the other
types of failures into account. Although retention failure rate
is reduced, the higher value of ∆ increases the write failure
rate. In [19], Error-Correction Codes (ECCs) are proposed to
tolerate retention failure, while using these codes imposes area
and performance overhead due to encoding and decoding.

Some studies proposed DRAM-style refreshing to reduce
the probability of retention failure. However, DRAM-style
refreshing refers to reading blocks and writing them back [19],
[20], which imposes more cost in terms of energy consumption
and performance. On the other hand, scrubbing schemes
have been proposed to address the DRAM-style refreshing
limitation [20]. To reduce the rate of data loss due to retention
failure, a refresh method over periodic intervals is proposed
in [31].

In [54], the memory is classified into four sections, each
with a dedicated retention time.

The sections are determined based on prediction and history
tables while imposing area and performance overhead for
each access. In [55] and [31], cell dimensions are reduced to
improve write latency and reduce write energy. This leads to

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 4

retention time reduction and an increase in the occurrence rate
of retention failure. In [22], to mitigate read disturbance, criti-
cal current and the ∆ are increased. However, by increasing the
thermal stability factor, the write failure rate increases. Using
accurate sense amplifiers is another way to reduce the read
disturbance rate, which causes high energy and area overhead
[27]–[29], [56]. To mitigate errors caused by read disturbance,
previous studies have employed ECCs [9], [23]. [23] uses
ECCs to correct data and write it back to the cache. In [49] and
[57], different transitions (1→0, 0→1) in STT-MRAM cells
were examined, and two replacement policies were proposed
to overcome the high error rate. However, these approaches
impose a high overhead.

Some studies investigate the effect of temperature on the
STT-MRAM memories failure rate. In [58], the effect of
temperature on the switching of STT-MRAM cells was ex-
amined, and they showed that fixed voltage pulses at high
temperatures are more error-prone. In [24], the change in
the read disturbance rate with temperature was examined.
This work shows that by increasing the temperature, the read
disturbance probability is increased as well. To reduce the
read disturbance rate, they use strong ECCs for the high-
temperature blocks. In [14], the authors examined the effect
of write operations on temperature and proposed a policy to
mitigate the high error rate caused by temperature in STT-
MRAM caches. Their policy distributed the heat by managing
consecutive write operations in distant cache blocks. Reducing
read access rate by compression was proposed in [32], [33],
[59]. These approaches, however, impose a significant com-
pression cost overhead. In conclusion, some of the previous
approaches impose a high overhead on cache memory, while
others show an adverse impact on the other types of failures.
The method presented in [50] proposes an approach to reduce
the read disturbance rate in the cache tag array.

B. Dead Block Prediction in SRAM Caches

There are some previous work on dead block prediction,
which are based on SRAM technology. To identify dead
blocks, The Sampling Dead Block Prediction (SBDP) [60]
policy uses locality property of cache. The SBDP utilizes
program counter (PC) in a way that if an instruction triggers a
dead block, other blocks linked to that instruction will also be
identified as dead blocks. SBDP uses three prediction tables,
which uses a group of sets of cache for training.

The Re-Reference Interval Prediction (RRIP) [46] replace-
ment policy utilizes a 2-bit re-reference prediction value
(RRPV) for each cache block. The RRPV represents the
distance of a block to Most Recently Used (MRU) position
in an LRU stack, allowing for multiple blocks to share the
same RRPV. Upon accessing a block, its RRPV is reset to
0. Blocks are classified into near-immediate, inter-immediate,
and distance re-reference interval based on the RRPV value in
this policy. The algorithm selects a victim block with a pre-
defined RRPV. If no victim block is present in the cache, all
cache block RRPVs are incremented until a suitable victim
block is identified.

The SHiP [61] policy predicts hit accesses by the signature
of blocks. The SHiP uses three types of signature, i.e., memory

region signature, program counter signature, and instruction
sequence signature, for hit prediction.

The Leeway [62] policy uses a live distance metric to
identify dead blocks. The live distance of a block refers to the
maximum stack distance observed during the block’s presence
in the cache. The Leeway also uses set sampling and data-
code correlation to predict block’s live distance based on the
program counter (PC) responsible for bringing the blocks into
the cache. Howkeye [63] policy utilizes future decisions by
learning the behavior of a block by applying Belady’s optimal
algorithm to previous accesses to the cache.

In summary, none of the previous policies aimed at im-
proving reliability. Employing some of these methods can even
worsen the STT-MRAM reliability. Additionally, our proposed
approaches can be integrated into many of the previous studies
as future work.

IV. MOTIVATION AND OBSERVATIONS

Here, we first examine the idle time of cache blocks and
determine which type of idle time affects the probability of
retention failure. We then identify the risky and safe reads
and compare them in dirty and clean blocks. Next, we discuss
the access pattern of evicted dirty blocks from an LRU-cache
and Re-Reference Interval Prediction (RRIP) policy [46] as
the widely-used and most efficient predictor for re-referenced
blocks in SRAM caches.

A. Reliability Optimization Model

The reliability definition and formulation of STT-MRAM
cache have been presented in [7] and the key parameters
and variables that contribute to the reliability have been
deeply investigated. Besides the physical- and device-level
parameters, it has been shown that the memory access pattern
and workload behavior including the number and order of read
and write operations as well as live/dead intervals considerably
affect the cache reliability.

By definition, the STT-MRAM cache is considered reliable
when no read disturbance, write failure, or retention failure
occurs in any of the cache blocks during workload execution.
According to the cache reliability formulations, decreasing the
frequency of read/write operations or shortening the duration
of idle intervals for both live and dead dirty blocks can
decrease the cache error rate and improve reliability. Since
the contribution of write failure in the total cache error rate
is downgrading compared to read disturbance and retention
failure, our proposal is to reduce the rate of the latter. In
summary, the proposed scheme aims to minimize the duration
and the number of dead dirty blocks with the constraint of
minimum performance degradation.

B. Retention Failure

Reducing the probability of retention failure by manipulat-
ing the ∆ has a negative impact on other types of failure.
Thus, we focus on the cell (or block) idle time as the key
parameter to reduce the retention failure rate. We investigate
the effect of idle time on the retention failure of cache blocks
and identify four types of idle intervals as follows (Fig. 3):

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 5

B’s dirty bit = 1

RH = Read Hit

WH = Write-back
 Dirty Hit

M = MissB’s cache
placement B’s eviction

WCH = Write-back
 Clean Hit

RH
M

RR = Risky Reads

SR = Safe Reads

RH

RRRR

WDH
RR
DI

DI = Dirty Interval

CI = Clean Interval

A’s last accessA’s cache
placement

A’s eviction

RH
M

RH WCH

RR

Fig. 3. Risky and safe read accesses.

• Live Interval (LI) is the idle time between two consec-
utive accesses to a block while the last access is a read
access. The occurrence of the retention failure in a live
interval can cause data loss, affecting the cache reliability.

• Ineffective Live Interval (ILI) is the idle time between
two consecutive accesses to a block while the second
access is a write access. In this case, the block content
is rewritten and the occurrence of the retention failure
in these idle intervals may not lead to data loss. These
intervals do not affect the cache reliability.

• Dead Dirty Interval (DDI) represents the idle time
between the last access to the dirty blocks and their
eviction time. On a dirty block eviction, the block content
is written back to the next memory level. The occurrence
of the retention failure in these intervals can corrupt the
data block. Hence, dead dirty intervals affect the cache
reliability.

• Dead Clean Interval (DCI) is the idle time between
the last access and the eviction time of the clean blocks.
The occurrence of the retention failure in DCIs does not
lead to data loss, since there is already a copy of the
cache block in the next memory level. Hence, dead clean
intervals do not affect the cache reliability.

Next, we compare the frequency and length of the error-
prone intervals, i.e., DDI and LI, as reported in Fig. 4.

The frequency of DDIs and LIs are equal to the number
of dirty blocks in the cache and the read-hit accesses to the
cache, respectively. Fig. 5 shows that the frequency of LIs is
1.87× greater than the number of DDIs. However, in terms
of duration, the DDIs length accumulation is 2.55× greater
than that of LIs, on average, as shown in Fig. 6. Therefore,
the average length of each DDI is 4.77× (i.e., 1.87×2.55) of
each live interval.

To compare the effect of frequency and length of intervals,
we calculate the probability of retention failure in DDIs and
LIs based on Eq. (6), where P(RFi) is the probability of the cell
retention failure in idle time with the length of i, blocksize
is the number of cells in a block, interv is the longest idle
time of the blocks, and freqi is the frequency of idle intervals
with the length of i.

P = 1 − (

interv∏
i=1

(1− PRFi
)
blocksize+freqi) (6)

LI ILI LI DDI

A’s cache
placement A’s last access A’s eviction

RH = Read Hit

WH = Write-back Hit
DDI = Dead Dirty

Interval

LI = Live Interval

RH WH RH
M

M = Miss

ILI = Ineffective Live
Interval

LI LI

B’s cache

 placement
B’s last access B’s eviction

LI

DCI = Dead Clean

Interval

M = Miss
DCI

M
RHRHRH LI = Live Interval

Fig. 4. Access patterns of Block A and Block B.

The average probability of retention failure in DDIs and LIs
is shown in Fig. 7. According to this figure, the probability
of retention failure in DDIs for LRU and RRIP policies is
4.8× and 2.8× greater than in LIs, respectively. Therefore,
the duration of intervals affects the probability of retention
failure more than their frequency.
C. Read Disturbance

The main parameter which affects the probability of read
disturbance is the number of read accesses to the blocks. On
a read request to the cache, all blocks within the target cache
set are read in parallel, which intensify the read disturbance
rate in the data blocks.

As shown in Fig. 3, the read disturbance can result in data
loss in case of risky read access while it may not result in
data loss in case of safe read access, according to the state of
the block.

Risky read access: It is a read access that can cause
reliability degradation because of read disturbance. A read
access to a set of cache blocks affects the probability of
read disturbance of a clean block if after this access, read-hit
access occurs to the same block. The occurrence of the read
disturbance on this block within this interval can cause data
loss, and hence reading this block affects the cache reliability.
In dirty blocks, which need to be sent to the next memory
level, all read accesses (miss or hit) to the set affect the
probability of data loss.

Safe read access: As shown in Fig. 3, the read accesses
to a set do not affect the cache reliability in two types of
intervals, called safe read accesses: a) the interval between
two consecutive accesses to a clean block if the last access is
a write access and b) the interval between the last access to
a clean block and the eviction of the block from the cache.
The occurrence of a read disturbance in these intervals has
no effect on the cache reliability because these blocks will be
rewritten or evicted from the cache without sending them to
the next level of memory hierarchy. Therefore, these blocks
do not have any effect on the probability of read disturbance
even if their data is corrupted since the content of these blocks
will not be reused.

D. Dirty Blocks
For further analysis, we explore the risky read accesses of

clean and dirty blocks and report the number of risky reads per

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 6

block (Fig. 8). On average, the number of risky read accesses
in the dirty block of LRU and RRIP is 7× and 7.6× higher
than that in clean blocks, respectively. With such motivational
results and the fact that dirty blocks are more vulnerable, we
further examine their access pattern. We calculate the number
of accesses to the blocks before and after becoming dirty. The
Number of Accesses to a block Before being Dirty (NABD)
indicates the number of accesses to the block in the interval
between the block placement in the cache and its first write
access. Also, the number of accesses to a block in the time
interval between its first write access and eviction is equal
to the Number of Accesses to the block After being Dirty
(NAAD). In the case of a write-back miss access, the number
of accesses before dirty is zero.

By investigating the evicted dirty blocks in LRU and RRIP
policies, we observe that a significant number of dirty blocks
is not accessed after and before being dirty. Fig. 9 reports the
number of evicted dirty blocks, the number of dirty blocks
with a NAAD equal to zero, and the number of dirty blocks
not accessed after and before being dirty. According to this
figure, in LRU (RRIP) policy 85.6% (87.5%) of dirty blocks
are not accessed after being dirty, and 99.4% (99.2%) of such
blocks have an NABD equal to zero.

To conclude, the length of dead dirty intervals and the
number of risky read accesses of dirty blocks are the main
contributors to the probability of retention failure and read
disturbance rate, respectively. Thus, dirty blocks have a signif-
icant impact on the STT-MRAM cache reliability. Therefore,
we propose a scheme to reduce the length of dead dirty
intervals and the read access rate to dirty blocks to overcome
reliability degradation.

V. PROPOSED SCHEME

The idle time of blocks, particularly error-prone dead dirty
blocks, is a crucial factor affecting the reliability of STT-
MRAM caches. Hence, any scenario that could potentially
prolong idle time needs to be carefully examined. For example,
in a set-associative cache, increasing the number of cache ways
can extend the idle time of blocks by retaining them in the
set for a longer duration. Consequently, this increase in idle
time also raises the probability of retention failure and read
disturbance occurrence because of the direct influence of idle
time on retention failure probability as well as the escalation
in the number of unnecessary reads.

In an 8-way set-associative cache with LRU replacement
policy, when a dirty block is accessed for the last time, it

goes into MRU position (age 0), and when its age increases
to 7, it is ready to be evicted and will wait for the occurrence
of a miss access. Therefore, the length of dead dirty intervals
depends on the time it takes the dirty block to traverse from
the MRU to the LRU position and the waiting time of the
miss occurrence. As a result, by cutting down this time
interval that it takes the dirty block to go from MRU to
LRU position, the duration of dead dirty intervals will be
reduced.

An ideal replacement policy to minimize the occurrence of
retention failure and read disturbance is a policy that prevents
unnecessary read accesses to the blocks and evicts the blocks
immediately when they become dead. Thus, by reducing the
interval in which the retention failure and read disturbance rate
are the most, we increase the cache reliability. To achieve this
goal, we propose distinctive approaches as the key piece of a
comprehensive scheme.

A. Proposed Reference Policy

The dirty interval length of a block depends on the number
of accesses to a set containing the block; hence, the higher the
number of accesses, the longer the duration. As an example,
consider a dirty block with an LRU position of 3; the more
accesses to the set blocks with an LRU position of less than
3, the more time it takes for the dirty block to go to the
LRU position of 7 and be ready for eviction. To reduce this
interval, we use a threshold (Thlow) for dirty blocks. When
the age of dirty blocks surpasses the threshold, the dirty block
is considered as dead; i.e., these blocks have higher priority
than the block in the LRU position of 7.

As mentioned earlier, 85.6% (87.5%) of evicted dirty blocks
from LRU (RRIP) replacement policies are not accessed after
being dirty, and 99.4% (99.2%) of these blocks are not
accessed in clean intervals (CI). To identify the blocks that
are not accessed in a clean interval, we add an Access Before
Dirty (ABD) bit to each block. The ABD bit is set to ’1’ if the
block is accessed in the clean interval (as specified in Fig. 3),
otherwise, it remains ’0’. Accordingly, the value of the ABD
bit of a block is determined in the write-back access to the
block.

In this approach, we use three scenarios to evict the dead
dirty blocks: a) in the case of access to a set, if the set includes
a dirty block with ABD bit equal to zero and if this block is
not the requested block, the dirty block will be evicted. As
the ABD bit of a block is specified in write-back access, the
block (if ABD = 0) is evicted at the first access (hit or miss)

 0

 5×106
 1×107

 1.5×107

 2×107
 2.5×107

 3×107
 3.5×107

 4×107

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

L
I

D
D

I

Fr
eq

ue
nc

y

Workload

under 8 clock
8-128 clock

128-1024 clock
1024-8192 clock

8192-131072 clock
131072-2097152 clock

avragexalanbcmksjengomentpplbmlibquantumhmmerh264refcalculixbzip2soplexperlbenchnamdmcfgccdealIIcactusadm

Fig. 5. Frequency of error-prone intervals (live and dead dirty intervals).

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 7

 0
 2×1012
 4×1012
 6×1012
 8×1012
 1×1013

 1.2×1013
 1.4×1013
 1.6×1013
 1.8×1013

 2×1013

cactusadm dealII sjeng namd perlbench soplex bzip2 calculix h264ref hmmer mcf libquantum lbm xalanbcmk gcc omentpp avrage ∑
Fr

eq
ue

nc
y

×
du

ra
tio

n

Workload

LRU-LI
LRU-DDI

Fig. 6. Accumulation of duration of live and dead dirty intervals in LRU policy

 0

 2×10-7

 4×10-7

 6×10-7

 8×10-7

 1×10-6

 1.2×10-6

 1.4×10-6

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

Pr
ob

ab
ili

ty
 o

f R
et

en
tio

n
 F

ai
lu

re

Workload

LRU-LI
RRIP-LI

LRU-DDI
RRIP-DDI

Fig. 7. Probability of retention failure in live and dead intervals.

 0

 2

 4

 6

 8

 10

 12

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

N
um

be
r o

f R
is

ky
 R

ea
ds

 p

er
 B

lo
ck

Workload

LRU-Clean Block
RRIP-Clean Block
LRU-Dirty Block

RRIP-Dirty Block

Fig. 8. Number of risky reads per dirty and clean blocks in the LRU and RRIP policies.

 4×107

 5×107

 6×107

 7×107

 8×107

 9×107

 1×108

Mix0 mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

N
um

be
r o

f B
lo

ck
s

Workload

LRU-Dirty Block
LRU-NAAD=0

LRU-NABD=NAAD=0
RRIP-Dirty Block

RRIP-NAAD=0
RRIP-NABD=NAAD=0

Fig. 9. Behavior of evicted dirty blocks.

after the write-back access to the set; b) in the case of a miss
access, the dead dirty blocks have priority for eviction. This
means if there is a dead dirty block in the set, this block will
be evicted, otherwise, this approach evicts the blocks based on
the LRU; and c) by predicting a miss access if a dead dirty
block exists in the set, the block will be evicted.

To reduce the probability of retention failure and read
disturbance, we have to reduce the duration (DDI) that error
prone blocks (i.e., dead dirty blocks) are exposed to idle time
and risky reads. Thus, in addition to the time we need to evict
a block (miss access), predicting miss accesses could help to
further reduce DDIs. If an access to a block is highly probable,

TABLE I
SET ACCESS PATTERN (Ak and bm are accessing blocks)

(a) [(a1, a2, ..., ak)(b1, b2, ..., bm)(ak, ..., a1)]
N

m < setsize

(b) [(a1, a2, ..., ak, ak, ..., a1)]N
k > setsize

its nearby blocks will be accessed in the near future (spatial
locality). Thus, when a block near LRU position is accessed, it
is probable that the accesses in the near future to the cache are
miss accesses. We classify the cache blocks into two groups

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 8

Next
ref.

Access
type

Reference
Age of blocks

LRU
Age of blocks

R

WB

R

R

R

WB

WB

R

R

R

R

R

R

a3

10 2 3 4 5 6 7 10 2 3 4 5 6 7

a1 a2 a3 a4 a5 a6 a7 a8 a1 a2 a3 a4 a5 a6 a7 a8

a9

a2

a10

a7

a2

a3

a4

a5

a6

a1

a11

a12

a4 a5 a6 a7 a8 a4 a5 a6 a7 a8a3 a3a1 a2 a1 a2

a4 a5 a6 a7a3 a1 a2a9 a4 a5 a6 a7a3 a1 a2a9

a2 a3 a1 a4 a5 a6 a7 a2 a3 a1a9 a4 a5 a6 a7

a10 a2 a3 a1 a4 a5 a6 a7 a10 a2 a3 a1a9 a4 a5 a6

a7 a10 a2 a3 a1 a4 a5 a6 a10 a2 a3 a1a9 a4 a5a7

a2

a3

a7 a10

a2 a7 a10

a3 a1 a4 a5 a6

a1 a4 a5 a6

a2 a10a7 a3 a1a9 a4 a5

a2 a10a7 a9 a1 a4 a5a3

a4

a5

a6

a1

a3 a2 a7 a10 a1 a5 a6

a4 a3 a2 a7 a10 a1 a6

a5 a4 a3 a2 a7 a10 a1

a6 a5 a4 a3 a7 a10

a11 a1 a6 a5 a4 a7 a10

a4

a5

a6

a1

a11

a2 a10a7 a9 a1a3 a5

a4 a2 a10a7 a9 a1a3

a5 a4 a2 a10a7 a9a3

a6 a5 a4 a2 a10a7a3

a1 a6 a5 a4 a2 a7a3

Clean block Dirty block Miss access Hit access
R: Read access WB: Write-back access

ABD bit = 0 ABD bit = 1

Fig. 10. Behavior of Reference and LRU replacement policy.

in terms of their access pattern: a) blocks re-referenced in
the near future and b) blocks re-referenced in the far future.
The blocks re-referenced in the near future are close to the
MRU position, while the blocks re-referenced in the far future
are near to the LRU position. When a far-future re-referenced
block is accessed, it is probable that the subsequent access
requests are for far-future re-referenced blocks. However, it is
probable that the absence of these blocks causes miss-access
in subsequent accesses, as shown in Table I.

To make it more clear, two examples of set access patterns
are demonstrated in Table I. In the first example, when bm is
accessed, ak, if not evicted from the set, is placed close to the
LRU position. Thus, we consider this block and subsequent
blocks (ak−1, ak−2, .., a1) as far-future re-referenced blocks.
The result of requesting these blocks will be miss accesses. In
the second example, the ak and ak−1 blocks are considered as
near-future re-referenced blocks and are mostly placed close
to the MRU position. On the other hand, the a1 and a2 blocks
are far-future re-referenced blocks, and if they are not evicted
from the set, they are placed close to the LRU position. Hence,
we set a second threshold (Thhigh), so that when a block
with an age more than this threshold is accessed, we predict
subsequent miss accesses and evict a dead dirty block, if it
exists.

With the given observations and definitions, we propose the
Reference replacement policy to decrease the duration of DDIs.
The Reference policy decreases the duration of DDIs by early
eviction of dead dirty blocks. In the LRU policy, when the
age of a dirty block reaches 7 and if a miss occurs, the block
will be evicted. However, in this policy, some of the dirty
blocks are evicted at age 0 and some of them are evicted at
age more than Thlow (in miss prediction or miss accesses).
Thus, this policy reduces the probability of retention failure
and read disturbance by reducing the duration of dirty blocks.

Fig. 10 demonstrates the behavior of the Reference policy
for multiple accesses to a set of an 8-way set associative
cache, containing indicated blocks. The colors blue, red, green,
yellow, pink, and black represent clean and dirty blocks,
hit and miss accesses, and ABD bit equal to zero and one,

respectively. The age of the blocks can also be seen in the
figure. As shown, when a9 is accessed, the value of the ABD
bit is set which is zero because a9 has not been accessed
before it gets dirty. Thus, in the next access which is a read
hit access to a2, a9 will be evicted from the cache.

When a4, a5, and a6 are accessed, subsequent miss accesses
are predicted (Thlow = Thhigh = 3), but there is no dead
dirty block to be evicted. However, when a1 is accessed,
subsequent miss accesses are predicted and the dead dirty
block a2 is evicted. Also, when miss access occurs for a11,
Reference evicts the dead dirty block a3 and replaces it with
a11. Therefore, by cutting down the time interval for dirty
blocks to go from MRU to LRU and predicting miss accesses,
Reference reduces the length of dead dirty intervals, resulting
in a reduced probability of retention failure.

The results of this approach in terms of retention failure,
read disturbance, and miss rate are calculated and presented
in Fig. 11, Fig. 12, and Fig. 13, respectively. Because of
two enhancements on the Reference approach in the next
subsections, we name the basic Reference as Approach1 or
Appr1 in the figures. According to Fig. 11, the probability
of retention failure in DDIs is reduced by 91.9% and 93.6%
compared to LRU and RRIP, respectively. This improvement is
because of the reduced DDI duration. As depicted in Fig. 12,
which shows the number of risky reads per clean and dirty
block, the number of risky reads per dirty block in LRU
and RRIP replacement policies is reduced by 5.8× and 6.6×
for our approach (Appr1), respectively. However, the number
of risky reads per clean block in the proposed approach
increases by 1.52× and 1.45× compared to the LRU and RRIP
replacement policies, respectively. As shown in Fig. 13, Appr1
increases the miss rate by 1.2% compared to the LRU policy.

Next, we investigate different scenarios for dead dirty block
prediction and eviction used in the Reference approach for its
performance enhancement. The details of these enhancements
are presented in the following sections.

B. Reference Policy Enhancement

To enhance the Reference basic idea, dead dirty
blocks are considered as those dirty blocks with an ABD bit
of zero. When a set including a dead dirty block is accessed, in
the enhanced Reference policy, Approach2 (Appr2), the dirty
block with an ABD bit equal to zero is evicted. As mentioned,
the ABD bit of a block is determined in write-back access.
Thus, the dead dirty block will be evicted at the first access to
the set (which includes the dead dirty block) after write-back
access. If the first access is a miss, the dead dirty block will
have an eviction priority; if the first access is a hit, the dead
dirty block will be evicted at this access. In case of a miss
access, if there is no dead dirty block in the set, this enhanced
version of the Reference policy evicts a block based on LRU
policy.

According to Fig. 14, Appr2 reduces the probability of
retention failure in DDIs by 79.4% and 83.7% compared to
the LRU and RRIP policies, respectively. Fig. 15 demonstrates
that the number of risky reads per dirty block is decreased by
3.3× and 3.7× using Appr2, in comparison with LRU and

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 9

 0

 2×10-7

 4×10-7

 6×10-7

 8×10-7

 1×10-6

 1.2×10-6

 1.4×10-6

 1.6×10-6

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

Pr
ob

ab
ili

ty
 o

f R
et

en
tio

n
 F

ai
lu

re

Workload

RRIP-DDI
LRU-DDI

 Appr1-DDI
RRIP-LI

LRU-LI
Appr1-LI

 RRIP-cache
LRU-cache

Appr1-cache

Fig. 11. Probability of retention failure in DDIs, LIs, and cache of LRU, RRIP, and Approach1 (first approach with Thlow = 3, Thhigh = 3).

 0

 2

 4

 6

 8

 10

 12

 14

 16

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

R
R

IP
L

R
U

A
pp

r1

N
um

be
r o

f R
is

ky
 R

ea
ds

 p
er

 B
lo

ck

Workload

Clean Block
Dirty Block

AvrageMix10Mix9Mix8Mix7Mix6Mix5Mix4Mix3Mix2Mix1Mix0

Fig. 12. Number of risky reads in LRU, Approach1, and RRIP.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

M
is

s
R

at
e

Workload

RRIP
LRU

Appr1

Fig. 13. Miss rate of LRU, Approach1, and RRIP.

RRIP, respectively. However, the number of risky reads per
clean block in Appr2 increases by 1.35× and 1.29× compared
to LRU and RRIP, respectively. Appr2 increases the miss rate
by 0.66% compared to LRU (Fig. 16).

In Appr1, we base our observations on what is shown in
Fig. 9. In this figure, we examine the number of evicted dirty
blocks and their properties such as the number of accesses
to dirty blocks before and after they became dirty. This
observation shows that under the LRU (RRIP) policy, 85.6%
(87.5%) of evicted dirty blocks have not been accessed after
becoming dirty. To consider all dirty blocks, a more precise
solution involves not only investigating the number of evicted
dirty blocks but also including an examination of the number
of accesses to dirty blocks (see Fig. 17). For example, when
85.6% of evicted dirty blocks under the LRU policy have not
been accessed after becoming dirty, it is probable that there

are dirty blocks that have been accessed after becoming dirty
but not accessed before becoming dirty. As shown in Fig. 17,
the occurrence of this situation is highly probable. This figure
(Fig. 17) reports the number of accesses to the dirty blocks,
the number of accesses to the evicted dirty blocks, the number
of dirty blocks with NABD equal to zero and an NAAD equal
to one (NAAD: number of accesses to a block after get dirty),
and the number of dirty blocks not accessed before getting
dirty and accessed for one time after getting dirty in the LRU
position less than 3. According to the results, 79.3% of the
dirty blocks not accessed before being dirty and get only one
access after being dirty (NABD = 0, NAAD = 1) are accessed
in the LRU position less than three after becoming dirty. This
value for the lbm workload is 99.99%.

To undertake the above investigation and present the ulti-
mate Reference policy that outperforms the second approach

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 10

 0

 2×10-7

 4×10-7

 6×10-7

 8×10-7

 1×10-6

 1.2×10-6

 1.4×10-6

 1.6×10-6

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

Pr
ob

ab
ili

ty
 o

f R
et

en
tio

n
 F

ai
lu

re

Workload

RRIP-DDI
LRU-DDI

Appr2-DDI
RRIP-LI
LRU-LI

Appr2-LI
 RRIP-cache

LRU-cache
Appr2-cache

Fig. 14. Probability of retention failure in DDIs, LIs, and cache of LRU, RRIP, and Approach2.

 0

 2

 4

 6

 8

 10

 12

 14

 16

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

R
R

IP
L

R
U

A
pp

r2

N
um

be
r o

f R
is

ky
 R

ea
ds

 p
er

 B
lo

ck

Workload

Clean Block
Dirty Block

AvrageMix10Mix9Mix8Mix7Mix6Mix5Mix4Mix3Mix2Mix1Mix0

Fig. 15. Number of risky reads in LRU and Approach2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

M
is

s
R

at
e

Workload

RRIP
LRU

Appr2

Fig. 16. Miss rate of LRU, Approach2, and RRIP.

(Appr2) in terms of reliability and performance, the final dead
dirty block prediction and eviction scenarios are specified in
the following section.

C. Further Enhancement on Reference Policy

To further reduce the miss rate, we use a threshold (Thlow2
)

for the dirty blocks with an ABD bit equal to zero in Ap-
proach3 (Appr3). When the age of a dirty block with an ABD
equal to zero exceeds the threshold, the block will be assumed
to be dead. To reduce the duration of DIs (dirty intervals),
another threshold (Thhigh2

) is used. When the age of a dirty
block exceeds the second threshold (Thhigh2

), the block will
be assumed to be dead. Typically, Thlow2

is smaller than
Thhigh2

, and Thhigh2
is used for dirty blocks with an ABD bit

equal to one. Thus, in Appr3, dead dirty blocks refer
to either the dirty blocks with an ABD bit equal to zero whose
age is more than Thlow2

, or the dirty blocks with an ABD bit
equal to one, whose age is more than Thhigh2

.

With the given definitions, this approach evicts the dead
dirty blocks under two circumstances: 1) if a set is accessed
and it includes a dead dirty block with an ABD bit equal to
zero (the block age is greater than Thlow2

); and 2) if a miss-
access occurs, the dead dirty blocks have eviction priority, so
that if there is a dead dirty block with an ABD bit equal to
zero in the set, this block will be evicted; otherwise, a dirty
block with an age higher than Thhigh2

will be evicted. If a
miss access occurs and there is no dead dirty block, Appr3
evicts a block based on the LRU policy.

VI. EXPERIMENTAL SETUP AND RESULTS

To evaluate the proposed replacement policy, we model an
ARM processor with four cores and two levels of on-chip
caches in the gem5 simulator [44], [45]. The details of cache
structures are given in Table II. We use the SPEC CPU2006
benchmark suite [43] as our workloads and extract the results
by executing two billion instructions. To compromise between

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 11

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

hmmer calculix gcc bzip2 dealII xalanbcmk soplex namd cactusadm sjeng h264ref omnetpp lbm libquantum mcf perlbench

N
um

be
r o

f A
cc

es
s

to
 D

irt
y

 B
lo

ck
s

Workload

Access to dirty blocks
Access to evicted dirty blocks

NABD = 0 and NAAD = 1
NABD = 0 and NAAD = 1 and LRUpos < 3

Fig. 17. Access pattern of dirty blocks in LRU policy.

 0

 2×10-7

 4×10-7

 6×10-7

 8×10-7

 1×10-6

 1.2×10-6

 1.4×10-6

 1.6×10-6

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

Pr
ob

ab
ili

ty
 o

f R
et

en
tio

n
 F

ai
lu

re

Workload

RRIP-DDI
LRU-DDI

 Appr3-DDI
RRIP-LI

LRU-LI
Appr3-LI

 RRIP-cache
LRU-cache

Appr3-cache

Fig. 18. Probability of retention failure in DDIs, LIs, and cache of LRU, RRIP, and Approach3 policies

 0

 2

 4

 6

 8

 10

 12

 14

 16

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

R
R

IP
L

R
U

A
pp

r3

N
um

be
r o

f R
is

ky
 R

ea
ds

 p
er

 B
lo

ck

Workload

Clean Block
Dirty Block

AvrageMix10Mix9Mix8Mix7Mix6Mix5Mix4Mix3Mix2Mix1Mix0

Fig. 19. Number of risky reads in LRU, Approach3, and RRIP

TABLE II
CONFIGURATION OF ON-CHIP CACHES

L1 I-cache 32KB, 4-way set associative, 64B block size
write-back, SRAM

L1 D-cache 64KB, 4-way set associative, 64B block size
write-back, SRAM

L2 cache 1MB, 8-way set associative, 64B block size
write-back, STT-MRAM

the performance overhead and the reliability improvement, for
Appr1, we set Thlow and Thhigh to 3, and for Appr3, we
set Thlow2

and Thhigh2
to 2 and 4, respectively.

The previous schemes for STT-MRAM reliability enhance-
ment are not comparable to our proposed policy because they
are either circuit-level schemes [19], which increase the STT-
MRAM cell robustness, or addressed read disturbance in the
tag array [50], which is not applicable to the data array. Among
the previous schemes, there are some replacement policies that

either focus on cache endurance [64] or write failure [14]. To
the best of our knowledge, there is no replacement policy that
specifically concentrates on cache reliability due to retention
failure and read disturbance. In addition to the conventional
LRU replacement policy, we have included the comparison
with the state-of-the-art re-reference interval prediction policy
(RRIP) [46], which outperforms other replacement policies in
dead-dirty block reduction.

A. Reliability
As explored, dead dirty intervals are the main challenge for

the cache reliability in facing retention failure. As shown in
Fig. 11, the proposed replacement policy reduces the retention
failure rate and improves the cache reliability by reducing
the idle time of dirty blocks. The first approach (Appr1) in
comparison to LRU (RRIP) policy reduces the probability
of the cache retention failure and DDIs by 57.6% (70.5%)
and 91.9% (93.6%), respectively. According to Fig. 14, Appr2
decreases the probability of the cache retention failure and

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

M
is

s
R

at
e

Workload

RRIP
LRU

Appr3

Fig. 20. Miss rate of LRU, Approach3, and RRIP.

 950000

 1×106

 1.05×106

 1.1×106

 1.15×106

 1.2×106

 1.25×106

 1.3×106

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

In
st

ru
ct

io
n

R
at

e

Workload

RRIP
LRU

Appr3
Appr2
Appr1

Fig. 21. Instruction Rate for the proposed approaches vs. LRU and RRIP.

 0

 5

 10

 15

 20

 25

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10 Avrage

R
is

ky
 In

st
ru

ct
io

n
R

at
e

Workload

RRIP
LRU

Appr3
Appr2
Appr1

Fig. 22. Risky Instruction Rate for the proposed approaches vs. LRU and RRIP.

DDIs by 44.9% (61.6%) and 79.4% (83.9%), respectively,
compared to the LRU (RRIP) policy. Fig. 18 shows the
probability of retention failure in Appr3, LRU, and RRIP
policies. Appr3 reduces the probability of the cache retention
failure and DDIs by 56.0% (69.3%) and 81.4% (85.5%),
respectively, compared to the LRU (RRIP) policy.

As discussed earlier, dirty blocks have a low access rate
(85.6% of dirty blocks are not accessed after being dirty).
Thus, the high read access rate per dirty block is because
of miss read accesses to the set, including this block or hit
read access to the other blocks of the set. To reduce the read
access rate of dirty blocks, the proposed policies decrease
the duration of DIs. The results in terms of the number of
risky reads per block are depicted in Fig. 12, Fig. 15, and
Fig. 19. As shown in these figures, the number of risky reads
per dirty block in LRU (RRIP) is 5.8× (6.6×), 3.3× (3.7×),
and 2.6× (2.9×) using Appr1, Appr2, and Appr3 policies,
respectively. The results show that our enhanced approach
(Appr3) leads to fewer reads and consequently, reduces the
number of read accesses per dirty block; hence, the probability
of read disturbance decreases as well. In the best case, the

Reference (Appr1) replacement policy reduces the probability
of retention failure in the cache and DDIs by 57.6% (70.5%)
and 91.9% (93.6%), respectively, compared to the LRU (RRIP)
replacement policy.

B. Performance
To investigate the performance of the proposed approach,

we calculate the miss rate of all workloads. As shown in
Fig. 13 and Fig. 16, Appr1 and Appr2 increase the miss rate
by 1.2% and 0.7% compared to LRU, respectively. According
to Fig. 20, Appr3 decreases the miss rate by 0.2% compared
to LRU. This can be explained by the observation reported
in Fig. 9, which shows an enormous number of dirty blocks
are not accessed, resulting in a considerable decrease in the
probability of retention failure and read disturbance, as well
as an improvement in the miss rate.

The instruction rate of the presented approaches and the
LRU and RRIP replacement policies are shown in Fig. 21.
As shown in this figure, the instruction rate in the third
approach increases by 4.7% and 1.3% compared to LRU and
RRIP, respectively. In the second approach, the instruction per

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 13

second increases (decreases) by 0.7% (2.6%) compared to the
LRU (RRIP) replacement policy. The performance overhead in
terms of instruction rate for the first approach compared to the
LRU and RRIP is 5.3% and 8.1%, respectively. Considering
the logic complexity of the proposed scheme, the cache
controlling logic checks ABD bit on a cache miss to prioritize
the dead blocks for eviction. Since the victim block selection
on a miss is not on the critical path and the modifications
required for controlling logic are minimal, no latency overhead
is imposed in this regard.

To address reliability challenges in STT-MRAM caches,
many studies have been conducted. However, to the best of
our knowledge, there is no presented replacement policy that
reduces the effect of read disturbance and retention failure
on the reliability of STT-MRAM. Therefore, to better under-
stand our contribution and ensure fairness to all replacement
policies, we use a new metric called Risky Instruction Rate.
The risky instruction rate indicates the number of instructions
within a cycle for which the occurrence of read disturbance
and retention failure is highly probable. This metric combines
the performance and reliability of STT-MRAM caches. Fig. 22
shows the risky instruction rate for RRIP, LRU, Appr3, Appr2,
and Appr1. According to this figure, the risky instruction rate
for the LRU (RRIP) replacement policy is 4 (7) times greater
than that of Appr3, on average.

C. Area and Energy Consumption

As explained earlier, our analysis showed that 85.6% of
evicted dirty blocks from the LRU policy are not accessed
after being dirty. Additionally, 99.4% of these blocks are
not accessed before being dirty. In the proposed policy, we
identified these blocks as dead blocks. To determine these
blocks, a bit (ABD bit) is added to each block. Based on our
analysis, the added bit in Reference policy imposes less than
0.2% overhead to the cache area, which is negligible. The
energy consumption overhead is related to the required energy
for writes and reads on the ABD bit. However, the proposed
replacement policy aims to evict error-prone dead dirty blocks
to prevent unnecessary reads and ideal time (Fig. 19). Thus,
by reducing the number of unnecessary reads, the proposed
policy decreases energy consumption in addition to avoiding
read disturbance.

VII. CONCLUSION

Retention failure and read disturbance are the main sources
of the failure rate in the last level of the STT-MRAM caches
due to long error-prone idle intervals and high risky reads
rate. This paper evaluated the idle time and read accesses
of low-accessed cache blocks and proposed the Reference
replacement policy to reduce the length of dead dirty intervals
and the number of risky reads. The Reference policy reduces
the probability of retention failure by 56.0% (69.3%) and
reduces the number of risky reads per dirty block by 61.2%
(65.9%) compared to the LRU (RRIP) policy. This reliability
improvement is achieved with a negligible area and no energy
consumption and performance overheads.

REFERENCES

[1] T. Na, S. H. Kang, and S.-O. Jung, “Stt-mram sensing: a review,” IEEE
Transactions on Circuits and Systems II: Express Briefs, 2020.

[2] H. Farbeh, A. M. H. Monazzah, E. Aliagha, and E. Cheshmikhani, “A-
cache: Alternating cache allocation to conduct higher endurance in nvm-
based caches,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 66, no. 7, pp. 1237–1241, 2018.

[3] T. Huynh-Bao, A. Veloso, S. Sakhare, P. Matagne, J. Ryckaert, M. Pe-
rumkunnil, D. Crotti, F. Yasin, A. Spessot, A. Furnemont et al.,
“Process, circuit and system co-optimization of wafer level co-integrated
finfet with vertical nanosheet selector for stt-mram applications,” in
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[4] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, M. H.
Cilasun, J. Wang, S. S. Sapatnekar, and U. R. Karpuzcu, “MOUSE:
inference in non-volatile memory for energy harvesting applications,”
in IEEE/ACM International Symposium on Microarchitecture, MICRO ,
Athens, Greece, October 17-21. IEEE, 2020, pp. 400–414.

[5] K. Korgaonkar, I. Bhati, H. Liu, J. Gaur, S. Manipatruni, S. Subramoney,
T. Karnik, S. Swanson, I. Young, and H. Wang, “Density tradeoffs
of non-volatile memory as a replacement for SRAM based last level
cache,” in ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA Los Angeles, CA, USA, M. Annavaram, T. M.
Pinkston, and B. Falsafi, Eds., 2018, pp. 315–327.

[6] H. Li, M. Bhargav, P. N. Whatmough, and H.-S. P. Wong, “On-chip
memory technology design space explorations for mobile deep neural
network accelerators,” in ACM/IEEE design automation conference
(DAC), 2019, pp. 1–6.

[7] E. Cheshmikhani, H. Farbeh, and H. Asadi, “A system-level framework
for analytical and empirical reliability exploration of stt-mram caches,”
IEEE Transactions on Reliability, vol. 69, no. 2, pp. 594–610, 2019.

[8] H. Asadi, E. Cheshmikhanikhanghah, and H. Farbeh, “Preventing read
disturbance accumulation in a cache memory,” Jun. 18 2022, uS Patent
App. 16/798,451.

[9] E. Cheshmikhani, H. Farbeh, and H. Asadi, “Enhancing reliability of
stt-mram caches by eliminating read disturbance accumulation,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2019, pp. 854–859.

[10] G. Hu, “Spin-transfer torque mram-status and outlook,” in IEEE Inter-
national Magnetic Conference-Short Papers (INTERMAG Short Papers),
2023, pp. 1–2.

[11] M. Hadizadeh, E. Cheshmikhani, M. Rahmanpour, O. Mutlu, and
H. Asadi, “Copa: Cold page awakening to overcome retention failures
in stt-mram based i/o buffers,” IEEE Transactions on Parallel and
Distributed Systems, 2021.

[12] N. Mahdavi, F. Razaghian, and H. Farbeh, “An architectural-level relia-
bility improvement scheme in stt-mram main memory,” Microprocessors
and Microsystems, vol. 90, p. 104462, 2022.

[13] H. Asadi and E. Cheshmikhanikhanghah, “Reducing read disturbance
error in tag array,” 30 2022, uS Patent 17,204,957.

[14] E. Cheshmikhani, H. Farbeh, S. G. Miremadi, and H. Asadi, “Ta-lrw: A
replacement policy for error rate reduction in stt-mram caches,” IEEE
Transactions on Computers, vol. 68, no. 3, pp. 455–470, 2018.

[15] S. Sethuraman, V. K. Tavva, and M. Srinivas, “Techniques to improve
write and retention reliability of stt-mram memory subsystem,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2021.

[16] E. Cheshmikhani, H. Farbeh, and H. Asadi, “Robin: Incremental oblique
interleaved ecc for reliability improvement in stt-mram caches,” in
Proceedings of the 24th Asia and South Pacific Design Automation
Conference, 2019, pp. 173–178.

[17] S. Han, J. Lee, K. Suh, K. Nam, D. Jeong, S. Oh, S. Hwang, Y. Ji,
K. Lee, Y. Song et al., “Reliability of stt-mram for various embedded
applications,” in IEEE International Reliability Physics Symposium
(IRPS), 2021, pp. 1–5.

[18] D. C. Worledge, “Write-error-rate of spin-transfer-torque mram,” in 2023
IEEE International Reliability Physics Symposium (IRPS). IEEE, 2023,
pp. 1–4.

[19] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz,
“Sttram scaling and retention failure.” Intel Technology Journal, vol. 17,
no. 1, 2013.

[20] N. Sayed, S. M. Nair, R. Bishnoi, and M. B. Tahoori, “Process variation
and temperature aware adaptive scrubbing for retention failures in stt-
mram,” in Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2018, pp. 203–208.

IEEE TRANSACTIONS ON RELIABILITY, VOL. X, NO. X, JULY 2024 14

[21] X. Bi, H. Li, and J.-J. Kim, “Analysis and optimization of thermal effect
on stt-ram based 3-d stacked cache design,” in IEEE Computer Society
Annual Symposium on VLSI, 2012, pp. 374–379.

[22] R. Bishnoi, M. Ebrahimi, F. Oboril, and M. B. Tahoori, “Read disturb
fault detection in stt-mram,” in International Test Conference, 2014, pp.
1–7.

[23] S. M. Seyedzadeh, R. Maddah, A. Jones, and R. Melhem, “Leveraging
ecc to mitigate read disturbance, false reads and write faults in stt-ram,”
in Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2016, pp. 215–226.

[24] B. Wu, B. Zhang, Y. Cheng, Y. Wang, D. Liu, and W. Zhao, “An
adaptive thermal-aware ecc scheme for reliable stt-mram llc design,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 8, pp. 1851–1860, 2019.

[25] X. Zhong, K. Cai, P. Kang, G. Song, and B. Dai, “Deep learning-based
adaptive error-correction decoding for spin-torque transfer magnetic
random access memory (stt-mram),” IEEE Transactions on Magnetics,
2023.

[26] M.-S. Wu, Y.-L. Chua, J.-F. Li, Y.-T. Chuan, and S.-H. Huang, “Fault-
aware ecc scheme for enhancing the read reliability of stt-mrams,” in
2023 IEEE International Test Conference in Asia (ITC-Asia). IEEE,
2023, pp. 1–6.

[27] T. Na, J. P. Kim, S. H. Kang, and S.-O. Jung, “Read disturbance reduc-
tion technique for offset-canceling dual-stage sensing circuits in deep
submicrometer stt-ram,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 63, no. 6, 2016.

[28] D. Zhang, L. Zeng, Y. Zhang, J. O. Klein, and W. Zhao, “Reliability-
enhanced hybrid cmos/mtj logic circuit architecture,” IEEE Transactions
on Magnetics, vol. 53, no. 11, pp. 1–5, 2017.

[29] J. W. Kwak, A. Marshall, and H. Stiegler, “28nm stt-mram array and
sense amplifier,” in International Conference on Modern Circuits and
Systems Technologies (MOCAST). IEEE, 2019, pp. 1–4.

[30] V. Tavva, M. Srinivas, and S. Sethuraman, “Techniques to improve write
and retention reliability of stt-mram memory subsystem,” 2022.

[31] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient stt-ram caches,”
in IEEE International Symposium on High Performance Computer
Architecture, 2011, pp. 50–61.

[32] S. Mittal, “Mitigating read disturbance errors in stt-ram caches by using
data compression,” in Nanoelectronics. Elsevier, 2019, pp. 133–152.

[33] I. Alam, S. Pal, and P. Gupta, “Compression with multi-ecc: Enhanced
error resiliency for magnetic memories,” in Proceedings of the Interna-
tional Symposium on Memory Systems, 2019, pp. 85–100.

[34] N. Sayed, M. Ebrahimi, R. Bishnoi, and M. B. Tahoori, “Opportunistic
write for fast and reliable stt-mram,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2017, pp. 554–559.

[35] N. Sayed, R. Bishnoi, and M. B. Tahoori, “Fast and reliable stt-mram
using nonuniform and adaptive error detecting and correcting scheme,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 6, pp. 1329–1342, 2019.

[36] N. Sayed, R. Bishnoi, F. Oboril, and M. B. Tahoori, “A cross-layer
adaptive approach for performance and power optimization in stt-mram,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 791–796.

[37] R. Bishnoi, M. Ebrahimi, F. Oboril, and M. B. Tahoori, “Improving write
performance for stt-mram,” IEEE Transactions on Magnetics, vol. 52,
no. 8, pp. 1–11, 2016.

[38] A. M. H. Monazzah, A. M. Rahmani, A. Miele, and N. Dutt, “Cast:
Content-aware stt-mram cache write management for different levels
of approximation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 12, pp. 4385–4398, 2020.

[39] Y. Gupta and L. Bhargava, “Write energy reduction of stt-mram based
multi-core cache hierarchies,” International Journal of Electronics Let-
ters, vol. 7, no. 3, pp. 249–261, 2019.

[40] O. Coi, G. Patrigeon, S. Senni, L. Torres, and P. Benoit, “A novel
sram—stt-mram hybrid cache implementation improving cache perfor-
mance,” in IEEE/ACM International Symposium on Nanoscale Architec-
tures (NANOARCH), 2017, pp. 39–44.

[41] K.-W. Kwon, S. H. Choday, Y. Kim, and K. Roy, “Aware (asymmetric
write architecture with redundant blocks): A high write speed stt-mram
cache architecture,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 4, pp. 712–720, 2013.

[42] N. Sayed, L. Mao, R. Bishnoi, and M. B. Tahoori, “Compiler-assisted
and profiling-based analysis for fast and efficient stt-mram on-chip cache
design,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 24, no. 4, pp. 1–25, 2019.

[43] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[44] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharad-
waj et al., “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[45] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
2011.

[46] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (rrip),”
ACM SIGARCH computer architecture news, vol. 38, no. 3, pp. 60–71,
2010.

[47] N. Sayed, L. Mao, and M. B. Tahoori, “Dynamic behavior predictions
for fast and efficient hybrid stt-mram caches,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 17, no. 1, pp. 1–21,
2021.

[48] M. Hadizadeh, E. Cheshmikhani, and H. Asadi, “Stair: High reliable
stt-mram aware multi-level i/o cache architecture by adaptive ecc alloca-
tion,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2020.

[49] M. Rahbari and H. Farbeh, “Crp: Conditional replacement policy for
reliability enhancement of stt-mram caches,” IEEE Transactions on
Magnetics, vol. 58, no. 7, pp. 1–13, 2022.

[50] E. Cheshmikhani, H. Farbeh, and H. Asadi, “3rset: Read disturbance
rate reduction in stt-mram caches by selective tag comparison,” IEEE
Transactions on Computers, 2021.

[51] T. Endoh, H. Honjo, K. Nishioka, and S. Ikeda, “Recent progresses in
stt-mram and sot-mram for next generation mram,” in IEEE Symposium
on VLSI Technology, 2020, pp. 1–2.

[52] M. Talebi, A. Salahvarzi, A. M. H. Monazzah, K. Skadron, and
M. Fazeli, “Rocky: A robust hybrid on-chip memory kit for the proces-
sors with stt-mram cache technology,” IEEE Transactions on Computers,
vol. 70, no. 12, pp. 2198–2210, 2020.

[53] X. Jiang, J. Bao, L. Zhang, and L. Bai, “A novel dual-reference sensing
scheme for computing in memory within stt-mram,” Microelectronics
Journal, vol. 121, p. 105355, 2022.

[54] K. Kuan and T. Adegbija, “Lars: Logically adaptable retention time stt-
ram cache for embedded systems,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2018, pp. 461–466.

[55] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das, “Cache revive: Architecting volatile stt-ram caches for enhanced
performance in cmps,” in DAC Design Automation Conference, 2012.

[56] J. Fu, L. Sun, X. Tong, B. Liu, and H. Cai, “High sensing margin
sensing amplifier with improved reliability for stt-mram,” in IEEE 23rd
International Conference on Nanotechnology (NANO). IEEE, 2023, pp.
550–555.

[57] A. M. H. Monazzah, H. Farbeh, and S. G. Miremadi, “Ler: Least-
error-rate replacement algorithm for emerging stt-ram caches,” IEEE
Transactions on Device and Materials Reliability, vol. 16, no. 2, pp.
220–226, 2016.

[58] T. Hadámek, S. Selberherr, W. Goes, and V. Sverdlov, “Modeling thermal
effects in stt-mram,” Solid-State Electronics, vol. 200, p. 108522, 2023.

[59] T. A. Nguyen and J. Lee, “Improving bit-error-rate performance using
modulation coding techniques for spin-torque transfer magnetic random
access memory,” IEEE Access, vol. 11, pp. 33 005–33 013, 2023.

[60] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in IEEE/ACM International Symposium
on Microarchitecture. IEEE, 2010, pp. 175–186.

[61] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in Annual IEEE/ACM International Symposium on Microar-
chitecture, 2011, pp. 430–441.

[62] P. Faldu and B. Grot, “Leeway: Addressing variability in dead-block
prediction for last-level caches,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2017, pp. 180–193.

[63] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” in ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2016, pp. 78–89.

[64] S. G. Ghaemi, I. Ahmadpour, M. Ardebili, and H. Farbeh, “Sleepy-lru:
Extending the lifetime of non-volatile caches by reducing activity of age
bits,” The Journal of Supercomputing, vol. 75, no. 7, pp. 3945–3974,
2019.

