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Abstract—In recent years, data-intensive applications have become
dominant in data centers, demanding large-scale storage systems with
hundreds of fast SSDs in multiple disk array enclosures. Although
commercial products with large SSD arrays are available in the market,
no performance analysis has been ever published on how the architectural
choices affect the scalability of petascale storage systems. In this paper,
we first analyze a real storage system consisting of 72 SSDs utilizing either
Hardware RAID (HW-RAID) or Software RAID (SW-RAID), and show
that SW-RAID is up to 7x faster. We then reveal that with increasing
number of SSDs, the limited I/O parallelism in SAS controllers and multi-
enclosure handshaking overheads cause significant performance drop,
minimizing the total I/0 Per Second (I0PS) of a 144-SSD system to less
than a single SSD. Second, we disclose the most important architectural
parameters that affect a large-scale storage system. Third, we propose a
framework that models a large-scale storage system and estimates the
system IOPS and system resource usage for various architectures. We
verify our framework against a real system and show its high accuracy.
Lastly, we analyze a use case of a 240-SSD system and reveal how our
framework guides architects in storage system scaling.

Index Terms—Solid-State Drives, RAID, Data Storage, Performance

I. INTRODUCTION

N the current era of machine learning and the popularity of data-

centric applications, data storage systems have become increas-
ingly under pressure to provide very high capacity and performance.
These systems, usually in the form of Storage Area Network (SAN)
storage, consist of multi-hundred Solid-State Drives (SSDs), which
normally do not fit in a single chassis, thus are placed in multiple or
many inter-connected Disk Array Enclosures (DAEs). Examples of
recent commercial products include Fujitsu Eternus AF250 S3 (with
264 SSDs) [1] and DELL Unity XT-380F (with 500 SSDs) [2].

The most common way to connect DAEs to increase the number
of usable SSDs is to use daisy-chain topology (i.e., serializing
DAE:s) [3]. This topology provides the lowest design complexity and
ease of adding DAEs with more emphasis on capacity expansion.
Balancing the number of DAEs per expansion port on the main
chassis (whenever enough ports exist) is also recommended by a
few commercial products [4]. Unfortunately, the performance of these
topologies has never been quantitatively studied before. Furthermore,
the mutual impact of each topology with system configurations and
resources (e.g., CPU utilization, RAID performance profile, and
required number of PCle slots on motherboard) has been also a
mystery for system architects.

In this paper, we offer four major contributions. First, we analyze
a real enterprise-grade storage system with 72 SSDs and provide
two major insights: (a) hardware RAID (HW-RAID) causes a major
bottleneck on the RAID chip and limits IOPS even in a single chassis,
but software RAID (SW-RAID) provides up to 7x higher IOPS due
to much higher scalability of CPU cores. (b) By increasing the
number of SSDs and using daisy-chain DAE connectivity, storage
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Fig. 1. Typical SAN storage system with a large number of SSDs

system IOPS significantly drops due to limited I/O parallelism in SAS
controller chips and multi-enclosure communication overheads. The
expected performance drop in a 144-SSD system makes the overall
system IOPS to be lower than that of a single SSD.

A naive approach to address the above limitation is hardware
chip modification, e.g., redesigning SAS controller chips and DAE
handshaking methods. However, redesigning such critical hardware
components is not practical in the industry due to requiring a few
years of time to mature before being comparable to current hardware
in commercial environments. This adds to the excessive time and
effort for general chip prototyping. Thus, an architect has to take
another approach: increasing the number of existing SAS controller
chips and providing more parallel accesses to DAEs. Nevertheless,
to make this approach cost-effective, an architect needs to consider
various real system limitations.

As our second contribution, we explore and reveal the most
important architectural parameters for large-scale SSD-based storage
systems. For example, we observe that DRAM capacity is not a
key factor due to little DRAM usage for SSD array management;
however, a) the number of available PCle slots on the motherboard,
b) the required Quality of service (QoS) for specific applications (on
a specific set of SSD RAID arrays), and c¢) performance and CPU
utilization of the SW-RAID implementation for a single RAID array
highly affect the scalability of a large-scale-storage system.

As our third contribution, we propose a framework that models
a large-scale SSD-based storage system and accurately estimates
the system read/write IOPS and system resource usage for various
possible architectures and DAE connectivity topologies. We verify
our framework against a real enterprise-grade storage system with
multiple configurations and up to 72 SSDs and show its high accuracy
with an average error of 13% for our framework predictions.

As our fourth contribution, we analyze a use case with a 240-SSD
system and reveal that our framework provides optimal architectures
that boost 10PS by an order of magnitude over the daisy-chain
topology of DAEs while also meeting user requirements.

II. BASICS OF SAN STORAGE AND DAE CONNECTIVITY

When an enterprise application in SAN sends an I/O request, the
request passes through the network and then traverses a number
of steps in the storage stack of the SAN storage (Fig. 1). First,
the request reaches a logical block device managed by a Logical
Volume Management (LVM). Second, an LVM sends the request
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Fig. 2. Performance scalability limitation of large-scale all-flash storage
systems (a) HW-RAID vs. SW-RAID, (b) SW-RAID scalability limitation
to the underlying RAID block device. The RAID block device
consists of a number of SSDs grouped and exposed as a single
block device. Distribution of data blocks among SSDs (i.e., RAID
management) can be done completely by either HW-RAID or SW-
RAID. Communicating with many SATA/SAS disks even with SW-
RAID requires a SAS controller card. Therefore, SW-RAID uses a
device driver and sends the I/O request to the SAS controller card
through the motherboard and PCle slot to which the SAS controller
card is attached. Third, the SAS controller chip (on the card) prepares
the SAS packets and sends them (on a bus or cables) to reach the
main chassis backplane, on which the backplane controller chip routes
them to the proper disk.

When a DAE is present, it is attached to the expansion ports on the
main chassis backplane usually in the daisy-chain topology [3]. For
more DAE:s in this topology, the backplane of each DAE is serially
connected to the previous one ( Fig. 1). If an I/O request belongs
to a disk on a DAE, the main chassis backplane (chip) re-routes the
request to the first DAE, and the first DAE re-routes it to the next
DAE, and it continues till the specific DAE and the disk is reached.

III. OUR INSIGHTS TOWARD PERFORMANCE SCALABILITY

Here, we characterize a real enterprise-grade storage system with
72 SSDs and provide two novel insights and also the challenge
to design a scalable storage system. First, we analyze the RAID
implementation (HW-RAID vs. SW-RAID) and quantify the potential
of SW-RAID over HW-RAID in large storage systems. Second, we
reveal that even SW-RAID is not completely software-managed and
the required SAS controller chip in data path limits the system
performance to that of a few tens of SSDs. Next, for increasing
number of SSDs and the need for more DAEs, we show that
serialized DAEs and main chassis in the typical daisy-chain topology
significantly degrade the performance, and quantify how this kills the
scalability. Finally, we show the challenge of improving parallelism
for SAS controllers and DAEs and motivate a practical solution.

A. RAID Implementation Problem

Observation 1. HW-RAID has matured over many years in the
storage industry. However, with SSD-based storage systems, the
typical HW-RAID becomes the bottleneck with even a few number
of SATA SSDs while it gets even 30X slower than expected when it
is configured with 72 SSDs (Fig. 2a).

We run a workload with uniform 8KB random writes on a real
system with an industry-standard Broadcom 9361-8i HW-RAID and
observe that on a RAID-5 array with three SSDs, the IOPS is around
25K. As the number of RAID-5 arrays increases (till 24 three-SSD
arrays), the total system IOPS stays limited to around 25K due
to limited on-chip resources (e.g., computational power and data
distribution parallelism). Redesigning RAID-on-Chip with higher
computational power and faster data distribution is excessively diffi-
cult. Adding multiple RAID chips on a single board, while slightly
improves the performance, cannot resolve the huge performance
gap either. Therefore, with many (and constantly increasing number
of CPU cores), SW-RAID with minimal hardware support is the
dominant industry trend for large SSD arrays. The key question here
is that whether SW-RAID (with many CPU cores and independent
CPU threads per RAID array) provides linear scalability with the
number of SSDs or not?

B. SAS Controller and DAE Connectivity Problems

Observation 2: We observe that SW-RAID is not completely soft-
ware managed, despite being 7x faster than HW-RAID, it saturates
1OPS with 24 SSDs, and significantly degrades with more SSDs due
to other hardware components in data path (Fig. 2).

First (observation 2.a), the SAS controller chip in the data path,
which is required to aggregate and expose many SAS/SATA disks
to the system, has limited number of I/O paths, thus saturates the
performance before a single chassis is filled with SSDs. In our
experimental setup with Broadcom 93 series-8i model, 8 internal
ports, and thus 8 internal I/O queues are expected to exist, which
is the maximum possible parallelism. Our tests show that with less
than 8 arrays, IOPS gets saturated. Using the most expensive model
with 24 internal ports increases the saturation threshold to at most
24 arrays (72 SSDs assuming 3-disk per array).

The second scalability problem (observation 2.b) arises due to high
communication overheads between controller chips of each backplane
in the main chassis and DAEs. As the number of DAEs in daisy-chain
topology increases, we observe 10-20% IOPS degradation per added
DAE, which is expected to bring down the total system IOPS below
that of a single SSD, when the number of SSDs reaches 144 (with
five DAEs). Such scalability limitations require increasing parallelism
at both the SAS controller and DAE connectivity.

C. Practical Challenges

A straightforward approach to increase parallelism in SAS con-
troller chips and reduce overheads in DAE communications is chip
redesigning; however, this approach is impractical for the industry.
Critical hardware components such as SAS controller chips and DAE
controller chips have matured over a couple of years; and are globally
designed by two or three major companies. Therefore, redesigning
such chips would not only incur typical difficulties of hardware chip
designs but also require a few years of maturity before becoming
comparable to current hardware for the industry.

The second approach is reusing current matured hardware chips but
increasing the instances of SAS controller cards and also providing
more parallel connectivity to DAEs (instead of the default daisy-
chain serialization topology). This approach is challenging because
finding an optimal architecture requires considerations of various
system limitations (e.g., the number of available PCle slots on the
motherboard for the SAS controller cards, the available CPU cores, a
SAS controller performance profile) (Table I). In real multi-hundred
all-flash storage systems, such considerations can easily lead to over
fifty different architectures, which is hard to analyze by hand. Unfor-
tunately, existing frameworks or simulators for storage systems focus
on either modeling a single SSD (internal architecture) performance
(e.g., [5], [6]), or reliability modeling (not performance modeling) of
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Fig. 3. Proposed framework: Overall flow

large storage systems (e.g., [7]). None of the existing studies have
shown the scalability problems arising from SAS controller chips
and DAE controller communications, thus no performance modeling
for these problems has been done either. Such limitations point to
the need for a framework to model a large-scale SSD-based system
and automate the design-space exploration. Note that multiple main
chassis (i.e., scale-out) may increase performance, but has different
software stack overheads and challenges, thus our focus in this paper
is single main chassis with many DAEs (scale-up approach).
IV. OUR PROPOSED FRAMEWORK

We offer three key ideas. First, we define critical parameters
affecting performance scalability of large SSD-based systems and
then propose special considerations for the SAS controller and DAE
serialization overheads to enable our framework to provide highly
accurate IOPS and system resource utilization predictions. Second,
we propose small-scale profiling then large-scale predictions to easily
update our HW/SW models for any new SW-RAID implementation or
major hardware component changes. Such small-scale and one-time
profiling usually requires a small number of SSDs and components
of the target storage system; yet enables accurate, easy component
model update. Third, we use simplified IOPS and CPU utilization
modeling by considering fixed IOPS degradation rates depending on
DAE location (for IOPS modeling) and linear regression (for CPU
utilization). This approach, instead of complex models, enables easy
implementation and fast predictions.

A. Simplified Operational Flow of Proposed Framework

Our framework consists of six major steps to disclose the optimal
architecture for a large-scale storage system with a desired number
of SSDs (Fig. 3). First, the framework receives the desired number of
SSDs as the input. Second, it calculates all possible topologies that
SAS controller cards, the main chassis, and DAEs can be connected
together with the specified number of SSDs. Third, it applies our
IOPS and resource utilization model to calculate the IOPS and
resource utilization. Fourth, it receives additional user (or real system)

requirements that the final architecture should meet. A storage system
commonly runs various services and thus has (a) limited available
CPU cores, (b) limited available PCle slots on the motherboard,
and (c) QoS requirements for some or all RAID arrays. We include
these three as user requirements. Next, the framework outputs the
summarized prediction results for each architecture and marks the
architectures that have met the user requirements. Finally, a simple
parser outputs the optimal or near-optimal architectures.

B. One-Time, Small-Scale Profiling

IOPS and CPU utilization prediction of a large-scale SSD-based
system depend on the micro-architecture of a few major HW/SW
components; thus a one-time, limited profiling of such components
is required for accurate predictions (Table I). We propose to run a
sample of experiments on a small-scale storage system with the de-
sired components and workloads of interest to measure the IOPS and
CPU utilization. The samples have two goals: (1) demonstrating the
performance trend of components in the main chassis (mainly SAS
controller card, SSDs, SW-RAID implementation), (2) disclosing the
main chassis and DAE communication overhead for a specific chassis
type. To achieve the first goal, a single chassis (full of SSDs) is
usually enough. For example, with a popular card such as Broadcom
9400-8i, up to eight arrays (i.e., around 24 SSDs) would saturate
the card. To achieve the second goal, sample tests on the system (a
chassis + a DAE) must be conducted to generate the IOPS and CPU
utilization model.

C. Details of System Modeling and Implementation

IOPS. We propose a simple yet effective chassis-wise IOPS
modeling. In this approach, we consider an average fixed IOPS value
for each chassis or DAE regardless of the number of arrays, and only
the chassis or DAE location in the topology is considered. This is
a suitable approach because the IOPS usually saturates with a few
arrays and fluctuations after that are mainly due to DAE location.

Following one-time profiling results, to ensure high accuracy of
the framework, the framework sets the IOPS of the main chassis as
the average of maximum IOPS and IOPS at maximum number of
arrays. This approach is necessary to soften IOPS fluctuations that
happen across different number of arrays. For example, with a 24-
bay chassis and a 9400-8i card, a single array write IOPS is 45K and
the maximum write IOPS achieved with six arrays is 193 KIOPS
while the IOPS shrinks to 155 KIOPS with eight arrays. Thus, the
framework reports the average of 193K and 155K (i.e., 174K) as the
IOPS of the chassis.

To include the impact of DAEs and SAS card saturation on IOPS,
the framework reduces the IOPS by a specified percentage for each
DAE in the chain. Our profiling shows an average of 10% degradation
till 1°* DAE and 20% from 1°* DAE to 25 DAE. We conservatively
assume a 20% value for farther DAEs, but real IOPS with many
serialized DAEs may be even lower. Although the backplane chip and
SAS card models are very limited, if they are significantly different
from our tested hardware, one-time profiling with up to two DAEs
is required to fine-tune these numbers.

CPU Utilization. SW-RAID handles each array on separate CPU
processes (or threads), thus ideally the number of arrays (and IOPS)
is proportional to CPU utilization. In a real system, the same IOPS
does not result in the same CPU utilization because more arrays cause
more CPU contention, thus additional CPU utilization. As our first
choice for framework simplicity, we first define CPU Factor as the
output of a linear regression model of CPU util. over IOPS with the
dependent variable number of SSD arrays (N) (Eq. 1). We generate
this regression model with four samples from the one-time profiling.
Second, the framework multiplies the IOPS with the CPU Factor to
calculate the CPU utilization for N arrays (Eq. 2).
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Fig. 4. Verification of our framework against a real system
CPUFactory =a.N+b (1)
CPUUtily = IOPSN * CPUFactorn 2)

Unimportant Parameters. We excluded two parameters from our
model: (a) DRAM capacity due to little DRAM usage (i.e., MBs to
few GBs) for fundamental array management of hundreds of SSDs.
Additional storage services (e.g., caching) are not included in this
analysis. (b) per-CPU PCle bandwidth, because modern CPUs have
a high number of PCle lanes to provide enough (up to 10M) IOPS
for high-end all-flash SATA/SAS storage systems.

Implementation. We implemented the core part of our framework
in Python with 570 lines of code.

V. OUR FRAMEWORK VERIFICATION

We validate our framework against a real system at different
configurations. We use two types of SAS controller cards (i.e.,
Broadcom 9361-8i with HW-RAID feature disabled as Card A and
Broadcom 9400-8i as Card B), different number of SSDs (from 12
SSDs up to 72 SSDs), Linux mdadm (for SW-RAID module) and run
two major I/O request patterns (i.e., random 8KB reads and random
8KB writes), and a real trace (i.e., Microsoft Exchange mail trace [8]).
The constant hardware components in all our tests are one X10DRL-i
SuperMicro motherboard, dual-socket Intel E52620v4 CPUs, 128 GB
of DDR4 DRAM, four Supermicro 24-bay chassis, and 72 Samsung
SM863a 1.9TB SATA SSDs.

Our framework predictions show an average error of 10.9%-13.2%
for IOPS and 11.1%-13.5% for CPU utilization compared to the
real enterprise-grade storage system (Fig. 4). Our results reveal that
chassis-wise IOPS modeling and linear modeling of CPU utilization
are simple but highly effective in storage system scaling.

VI. USE CASE FOR A 240-SSD STORAGE SYSTEM

We apply our framework to a use case of a 240-SSD system and
show how our framework guides architects in scaling real storage
systems. We assume the user requirements of (a) up to 55 CPU
cores for write-intensive workloads and up to 25 CPU cores for read-
intensive workloads, (b) up to three PCle slots. We show two types
of optimal architectures depending on QoS definition of user: (cl)
maximizing total IOPS while providing similar IOPS for each RAID
array regardless of its position in DAEs (QoS-Uniformity), (c2) higher
IOPS priority for a small number of RAID arrays (QoS-Priority),
which is similar to some real environments.

Our framework explores all 54 possible architectures for a 240-
SSD system and reveals two optimal architectures with /3x-15x
speedup for both reads and writes compared to the baseline daisy-
chain topology (Fig. 5). Our results show the quantitative impact
of SAS card/DAE parallelism through PCle slots, SAS card model
impact, and the QoS output of each topology. The framework predicts
the baseline to provide only 27 KIOPS for writes and 86 KIOPS for
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Fig. 5. Architectural analysis using our framework on a 240-SSD system

reads; however, by adding two SAS cards and distributing DAEs
across all SAS controllers almost equally, IOPS reaches over 350
KIOPS for writes and one MIOPS for reads while QoS-uniformity
is also achieved (Optimal Arch-1). By attaching eight DAEs to one
SAS controller and one DAE per each of the two SAS controllers,
higher total IOPS is achieved, and IOPS priority is given to 48 SSDs

placed on two separate DAEs (Optimal Arch-2).
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