
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Quick Generation of SSD Performance Models
Using Machine Learning

Mojtaba Tarihi, Soheil Azadvar, Arash Tavakkol, Hossein Asadi, Hamid Sarbazi-Azad

Abstract—Increasing usage of Solid-State Drives (SSDs) has greatly boosted the performance of storage backends. SSDs perform
many internal processes such as out-of-place writes, wear-leveling, and garbage collection. These operations are complex and not well
documented which make it difficult to create accurate SSD simulators. Our survey indicates that aside from complex configuration,
available SSD simulators do not support both sync and discard requests. Past performance models also ignore the long term effect of
I/O requests on SSD performance, which has been demonstrated to be significant.
In this paper, we utilize a methodology based on machine learning that extracts history-aware features at low cost to train SSD
performance models that predict request response times. A key goal of our work is to achieve real-time or near-real time feature
extraction and to achieve practical training times so our work can be considered as part of solutions that perform online or periodical
characterization such as adaptive storage algorithms. Thus, we extract features from individual read, write, sync, and discard I/O
requests and use structures such as exponentially decaying counters to track past activity using O(1) memory and processing cost. To
make our methodology accessible and usable in real-world online scenarios, we focus on machine learning models that can be trained
quickly on a single machine. To massively reduce processing and memory cost, we utilize feature selection to reduce feature count by
up to 63%, allowing a feature extraction rate of 313,000 requests per second using a single thread. Our dataset contains 580M
requests taken from 35 workloads. We experiment with three families of machine learning models, a) decision trees, b) ensemble
methods utilizing decision trees, and c) Feedforward Neural Networks (FNN). Based on these experiments, FNN achieves an average
R2 score of 0.72 compared to 0.61 and 0.45 for the Random Forest and Bagging, respectively, where R2 ∈ (− inf, 1) of 1 indicates a
perfect fit. However, while the random forest model has lower accuracy, it uses general processing hardware and can be trained much
faster, making it viable for use in online scenarios.

Index Terms—Performance Prediction, Solid State Drives, Machine Learning, Neural Networks

F

1 INTRODUCTION

CURRENT computer workloads require fast and respon-
sive storage backends, which often rely on Solid-State

Drives (SSDs) with superior performance to mechanical Hard
Disk Drives (HDDs). Due to the ever-increasing storage re-
quirements of computing workloads, it is essential to design
fast and efficient hardware backends. This is especially
important as storage is the bottleneck in many applications.
Prediction of device latency and throughput can aid in
offline and online configuration and re-configuration of
backends [1], [2], [3] and implementation of performance-
aware algorithms [4], [5].

Accurate prediction of SSD performance is, however,
very challenging. SSDs are composed of many pages and
must perform complex operations such as out-of-place
writes, wear-leveling, and garbage collection to perform
I/O requests. Fig. 1 demonstrates that long-running random
workloads (with 4K requests and 8K requests respectively)
greatly increase SSD response time as the free SSD capacity

• Mojtaba Tarihi, Soheil Azadvar, Hossein Asadi, and Hamid Sarbazi-Azad
are associated with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran.

• Hamid Sarbazi-Azad is also associated with the School of Computer
Science, Institute for Research in Fundamental Sciences (IPM), Tehran,
Iran

• Arash Tavakkol is associated with the Department of Computer Science,
ETH Zurich, Switzerland.
E-mails: tarihi@ce.sharif.edu, azadvar@ce.sharif.edu, arash@tavakkol.ch,
asadi@sharif.edu, azad@ipm.ir

 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 1x107 2x107 3x107 4x107 5x107 6x107 7x107

32M Writes

L
a
te

n
c
y
 (
µ

s
)

Total Requests

4K - 100% Writes

 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300

 0 1x107 2x107 3x107 4x107 5x107 6x107 7x107

16M Writes

L
a
te

n
c
y
 (
µ

s
)

Total Requests

8K - 70% Reads/30% Writes

Fig. 1: SSD response time greatly increases as it is saturated
by two highly random workloads.

is consumed1. The only way to recover SSD performance
in such scenarios is to invalidate SSD data using discard
commands [6].

Three main tools exist to quickly predict workload per-
formance, a) real hardware experiments on representative

1. The points where the total volume of writes reaches the advertised
SSD capacity (128GB) are shown on both charts. It must be noted that
the device under test, a 128GB Samsung 850 Pro has 192GB raw flash
capacity (a.k.a. overprovisioned capacity).

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

workloads [7], [8], b) hardware simulators [9], [10], [11], [12],
and c) performance prediction models [13], [14], [15]. As
past workload activity affects future SSD performance [6],
[16], [17], [18], approaches such as sampling and replaying
of short intervals [7], [8] cannot be used. Furthermore,
real and simulated experiments must perform precondi-
tioning [12], [19], [20] and any model must consider past
request history when predicting response time. Due to these
limitations, we believe it is very challenging to quickly
perform small and representative hardware experiments.

Simulators are a widely-used alternative to real experi-
ments in many fields. However, implementation of accurate
SSD simulators is challenging due to poor availability of
hardware details and the high complexity of SSD devices.
Detailed simulators such as MQSim [12] and SSDSim [11]
require more than sixty parameters, which include hard-
ware structure, timing, and firmware behavior while almost
none of these parameters are published by manufacturers.
Furthermore, the sheer complexity of SSDs means that even
well-developed simulators have very severe limitations. For
example, out of four well-known simulators [10], [11], [12],
[21], a) none of them support all the four main command
types of read, write, sync, and discard, and b) none of them
support asymmetric flash topologies such as our device
under test, a 128GB Samsung 850 Pro, which uses two pairs
of distinct flash chips with a raw capacity of 192GB.

Modeling can forgo many implementation details while
offering sufficient accuracy. However, an SSD performance
model must a) consider I/O workload characteristics such
as spatial and temporal locality, which can affect SSD per-
formance by an order of magnitude2, b) track past I/O
activity due to its impact on performance [4], [5], [14], [15],
[18], and c) analyze sync and discard commands, which
can greatly affect SSD performance. To our knowledge, no
previous SSD response time models have fulfilled any of
these requirements.

In this paper, we present a methodology using machine
learning models to generate response time prediction mod-
els for a target SSD device based solely on recorded traces.
Our methodology, a) does not require the user to know
device-specific parameters, relying on I/O traces instead,
b) utilizes space-efficient data structures such as decaying
counters and simulated queue to extract request history
so that spatial and temporal locality can be estimated, c)
analyzes sync and discard, which have key impact on SSD
performance, d) uses neural networks and ensemble models
for the first time to predict storage hardware response time,
and e) performs feature scoring to compare feature im-
portance and to remove under-performing and redundant
features.

In the proposed methodology, as shown in Fig. 2, traces
are analyzed in Feature Extraction to generate per-request
feature vectors describing request type, past activity, spatial,
and temporal locality. We utilize the space-efficient and high
performance exponentially decaying counters in place of
tracking methods based on sliding windows which require
a potentially unbounded amount of space.

We split the output of feature extraction into three
subsets: training, validation, and testing. The training and

2. This will be discussed in Sec. 2.

validation sets are used in the next stage called Model and
Feature Selection. This process selects model and their pa-
rameters so practical training time and acceptable accuracy
can be achieved. Also, feature selection eliminates features
with limited effect on accuracy to drastically reduce feature
extraction and model training costs.

The process of feature selection is repeated multiple
times to eliminate unnecessary features. These models are
then used in the final evaluation to predict trace response
times. Three main types of machine learning models are
used: a) decision trees, b) Feedforward Neural Networks
(FNNs), and c) ensemble models based on decision trees.
The three ensemble models tested are: Adaboost, Bagging3,
and Random Forest. Out of these models, only decision
trees have previously been used to predict HDD [13] or
SSD [14], [15] response times. Alternatives such as Support
Vector Regression (SVR) models and Recurrent Neural Network
(RNN) were also considered but were not included due to
their low learning rate even with hardware acceleration.

Compared to past performance modeling methods rely-
ing on synthetic traces [14], [15] or HDD trace replay [15],
we utilize a comprehensive set of traces recorded from a real
SSD running various workloads. These traces include 580M
requests and originate from workloads such as workstation,
server, database, and synthetic benchmarks. All four main
request types of read, write, sync, and discard are captured in
these traces.

We calculate prediction accuracy by two metrics, a) R2

score or the Coefficient of determination (R2 ∈ (− inf, 1)), and
b) Mean Absolute Error (MAE). An R2 score of 1.0 refers
to a perfect fit and a score of 0.0 is achieved when every
prediction is equal to the average trace response time. Our
experiments demonstrate that while feature selection has
negligible effect on model accuracy, it can boost learning
rate on models utilizing decision trees by over six times
while greatly reducing their memory requirements, allow-
ing ensemble methods to run their predictors concurrently.
Finally, our FNN model achieves an averageR2 score of 0.72
against 0.61 and 0.45 for random forest and bagging models,
respectively. Overall, we can highlight the following major
contributions in this work:

• We introduce a comprehensive set of features that
can be calculated with constant memory and O(1)
per-request cost using space-efficient data structures.
Through feature selection, we eliminate over 60% of
features to reach the throughput of 313,000 feature
vectors per second.

• For the first time, we use FNNs and ensemble meth-
ods to predict SSD response time. Compared to de-
cision trees, which have been previously used for
this purpose [14], [15] and achieve an extremely poor
R2 score, FNN, random forest, and bagging models
achieve an average R2 score of 0.72, 0.61, and 0.45,
respectively.

• The final random forest model can be trained at a rate
of ≈11000 requests per second by using 10 threads,
meaning that as much as ten seconds can be used
to train a model over a hundred thousand requests.
This, coupled with the high feature extraction rate

3. Bootstrap Aggregating

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

Feature

Extraction

Model and Feature SelectionInitial Model and Feature Parameters

Training Scoring

Final Features

Final ModelsFinal ModelsInput Traces
Final ModelsFinal ModelsFinal Models

Fig. 2: The overall process for generating prediction models. I/O traces are used to generate feature vectors which are split
into the training, validation, and testing sets. The training and validation process are used to select the final model and
feature set.

allows periodic re-training of performance prediction
models on live systems for use in performance-aware
models.

• Our work predicts SSD performance utilizing all four
main request types of read, write, sync, and discard.
No past works on modeling [14], [15], [18] or simu-
lation [10], [11], [12], [21] of SSDs considers all four
request types.

• Unlike past studies that rely either on synthetic
workloads [14], [22] or replays of real workloads
originally from HDDs [15], [18], [23] for training
and evaluation, we utilize 35 traces containing 580M
requests recorded from a real SSD running database,
server, workstation, and benchmark applications 4

In the remainder of this paper, we describe our feature
extraction methodology in Sec. 2. Sec. 3 describes the selec-
tion process for machine learning models and feature types
and parameters. Sec. 4 compares the accuracy of the selected
four models at predicting response time. A survey of past
related research is done in Sec. 5. Finally, we conclude the
paper in Sec. 6 and discuss the future directions of our work.

2 EXTRACTION OF FEATURES

Modern flash-based SSDs are constructed out of NAND
flash memory, which is read and written in page granularity
but must be erased in larger, multi-page erase blocks before
being written to. SSD firmware performs many internal
operations in order to maximize device performance and en-
durance while presenting SSDs as standard storage devices
to the host computer. These operations include mapping
logical to physical addresses, invalidation of pages holding
old values, garbage collection of partial or fully invalidated
erase blocks, and wear leveling. Due to these internal opera-
tions, past workload behavior has long-lasting performance
effects [6], [16], [17], [18] and any SSD performance models
must account for past activity.

While flash-based SSDs store data as electrical charges
and do not suffer from the slow, mechanical seek oper-
ations of HDDs, inter-request distance can greatly affect
SSD performance. Table 1 compares the bandwidth of a
number of HDD and SSD devices under three synthetic
benchmarks. In this table, a) 2MB Sequential is composed
of 2MB blocks that exactly follow each other and have
maximum spatial locality, b) 2MB Random is also entirely
made of 2MB blocks but with random starting addresses,
and c) 4K Random is created by sending 4KB requests to

4. This work is essential as available SSD traces lack response
time [24] or are recorded from Embedded Multi-Media-Card (eMMC)
devices [25]

TABLE 1: Comparison of random and sequential perfor-
mance for a number of storage devices. All data are taken
from StorageReview [26].

Device Capacity

Bandwidth Under Test (MB/s)
2MB 2MB 4K

Sequential Random Random
Read Write Read Write Read Write

Samsung 850 PRO SSD 2TB 496 472 486 473 40 116
Corsair Neutron XT 960MB 514 471 403 467 36 74
WD Black HDD 6TB 215 215 78 107 0.3 0.8
WD Blue Hybrid HDD 4TB 143 143 54 66 0.2 0.5

random addresses, resulting in very poor spatial locality.
The results demonstrate clearly that it is important to have
features that consider request type and measure workload
spatial locality.

A workload with high spatial locality makes accesses to
pages that have close addresses, meaning they are placed
in the same erase blocks and are invalidated together. This
results in more efficient garbage collection operations and
lower erase rate. High temporal locality can also be ex-
ploited by SSD write buffering and Flash Translation Layer
(FTL) policies [18]. In other words, both spatial and tempo-
ral locality must be taken into account when generating SSD
performance models.

While for qualitative description, a workload may be
described as being Random, Sequential, or Bursty, binary or
numerical features must be generated for use in machine
learning. Due to the highly bursty nature of I/O workloads,
placing I/O requests in time-based intervals may result in
extremely dense or sparse intervals. Such request grouping
strategies discard valuable per-request information and lead
to varying request density across intervals, which will likely
require weighting for intervals [8], [27]. To avoid all these
issues, we choose to perform per-request feature extraction
and response time prediction.

To make this methodology practical, features must be
extracted in a way that minimizes computation and memory
costs. After evaluating many previously introduced quanti-
tative measures [8], [28], [29], [30], we come up with a set
of features which can be calculated with O(1) per-request
processing time with constant memory utilization. Such
requirements reject many algorithms as Stack Distance [28]
or the Hurst Exponent [31] (used in [32]) due to the non-
constant memory/processing costs. Similarly, unless Shan-
non Entropy (used in [8], [29]) is always used with a constant
number of elements, computationally expensive logarithmic
operations are needed.

For the rest of this section, we begin by describing the
three main feature extraction methods used in this study.
We then describe all the features used in this study and their

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

initial parameters. Finally, we describe our implementation
of feature extraction.

2.1 Feature Extraction Methods

We use three main methods to generate features for de-
vice performance models: a) Queue-Based Spatial Dis-
tance, which uses a simulated queue to measure the per-
request minimum spatial distance and classify each request,
b) Decaying Counters that measure key properties of past
requests with a configurable decay rate so recent requests
are assigned more importance, and c) Locality Score, which
uses an array of decaying counters to measure temporal
locality.

2.1.1 Queue-Based Spatial Distance

To analyze spatial locality, it is necessary to compare re-
quest address and length against preceding requests. In this
method, shown in Fig. 3 and first introduced by Ahmad et
al. [33], the address of each incoming request (RN) is com-
pared against a fixed number (Q) of preceding requests. We
refer to the minimum address difference as Spatial Distance.
The spatial distance is a representative of workload spatial
locality and is resistant to disruptions caused by multiple
concurrent I/O streams.

... RN-Q

Q Recent Requests

Δ

Minimum
(Spatial Distance)

Queue

Insert

Queue

Discard

RN

Delta

RN-1

Δ

RN-2

Δ

RN-3

Δ

Fig. 3: Calculation of minimum Spatial Distance, Ri is the ith
request and Ai is its address.

To classify requests based on their spatial distance, Tarihi
et al. [30] compare the spatial distance against request length
and a parameter called the randomness threshold to classify
requests into four categories: Sequential, Random, Overlapped,
and Strided. Overlapped requests intersect one of the pre-
ceding requests whereas Sequential requests immediately
follow one. Strided requests have a spatial distance less
than the randomness threshold, and the remaining requests
are classified as Random. A more formalized definition of
these request types as calculated in this paper can be seen in
Equation 1 to Equation 4. In these equations, i is the current
request, Ai is the request address, Li is request length,
md(i, k) is the truncated spatial distance, kmin is k where
md(i, k) is minimum, RT is the randomness threshold, SDi

is the spatial distance, and each request is compared against
Q previous requests. The reason for using a minimum dis-
tance of 2×RT for random requests is to clearly differentiate
the spatial distance of random requests while avoiding the
huge numbers resulted by subtracting very large address
differences.

∆i,k = Ai − (Ak + Lk) (1)

md(i, k) =


2×RT if RT < ∆i,k

2×RT if ∆i,k < 0 and Ai < Ak
0 if ∆i,k < 0 and Ak ≤ Ai
∆i,k if 0 ≤ ∆i,k ≤ RT

(2)

SDi(Q) = mini−1
k=i−Qmd(i, k) (3)


Overlapped if SDi(Q) = 0 and ∆i,kmin < 0

Sequential if SDi(Q) = 0 and ∆i,kmin = 0

Strided if 0 < SDi(Q) < RT

Random Otherwise

(4)

2.1.2 Decaying Counters
Not only SSD state space is significantly larger than that
of HDDs, it is also affected by workload history [6], [16],
[17], [18]. Furthermore, as user request and processing re-
quirements vary over time [34], so does the spatial and
temporal locality of the I/O workload [35] which requires
feature measurements to be constantly updated. To track
past workload activity in a simple manner, we rely on
exponentially decaying counters.

Exponentially decaying counters require a single counter
to aggregate past workload activity while assigning higher
importance to more recent requests. The rate of forgetting
about past requests can be controlled by the decay rate. This
method has a very small cost of keeping a single value and
its latest update time and can be iteratively updated with
a single multiplication and accumulation operation. In con-
trast, sliding windows require the storage of an unbounded
number of requests for tracking the requests falling within
the window. This greatly reduces the methodology cost.

Equation 5 calculates the value of an exponentially de-
caying counter. In this equation, i events have arrived before
t, tk (1 ≤ k ≤ i and tk ≤ t) is the arrival time of the event k,
and b denotes the exponential decay rate. As time passes by,
a) more events arrive (i increases), and b) current counter
value decays exponentially. The decaying counter x(t) does
not make use of a scaling factor (such as a in a × e−b∆t) as
the output of decaying counters are stored in independent
feature vector dimensions and thus, are unaffected by linear
scaling and offsets.

x(t) =
i∑

k=1

e−b(t−tk) (5)

The benefit of using Equation 5 is the simplicity of
iterative updates especially in our case where counter values
are updated and read upon the arrival of I/O requests. As
seen in Equation 6, counter value at ti+1 = ti + ∆t can
be calculated based on the previous counter value. Thus,
on arrival of each I/O request, new values of decaying
counters can simply be calculated based on ∆t and the
existing counter value.

x(ti+1) = x(ti+∆t) = e−b∆tx(ti)+e
−b(ti+1−ti+1) = e−b∆tx(ti)+1

(6)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

 1

 10

 100

 1000

 10000

 100000

w
ri

te
_
s
c
o

re
b=0.01 b=0.1 b=1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600

R
e
q

u
e

s
ts

/s

Time (s)

Fig. 4: Calculation of write_score using different decay
rates (b) (top) and write request arrival rate (per seconds)
over time (bottom), y scale for both is logarithmic.

Further expanding on this concept, weighted exponen-
tial score is defined in Equation 7 where the score of request
k is scaled by its length, Lk. In our work, Lk is the request
size, used to calculate request length-dependent features
such as the weighted write score (write_score_w).

x(t) =
i∑

k=1

Lke
−b(t−tk) (7)

We utilize order-based decaying counters to study tem-
poral locality. These counters decay based on request order
k instead of arrival time tk. The decaying counter can be
calculated and updated with the α decay rate with no
regard to time. Thus iterative updates can be simplified to
x′(i+ 1) = αx′(i) + 1. We use this form of decaying counter
in Sec. 2.1.3 to estimate temporal locality.

The behavior of decaying counters is demonstrated in
Fig. 4 by plotting write_score with multiple values of b
over the first 30 minutes of an I/O workload. write_score
is one of features used in our study5 to characterize past I/O
write activity and is incremented by one on arrival of each
write request while decaying by time. The bottom part of
Fig. 4 shows the arrival rate of write requests (per second)
during these 30 minutes. It can be seen that a high decay rate
causes write_score to quickly fall down and resemble the
bottom histogram whereas low decay rates follow a much
smoother pattern.

2.1.3 Locality Score
Temporal locality is the probability of re-access to recently
accessed data. Many storage workloads are well-known for
having a highly active or hot subset of data [30], [35], [36]
and presence of hot data allows for specific performance
optimizations [18].

While individual decaying counters are sufficient for
tracking request count and length, it is essential to use mul-
tiple counters to estimate temporal locality. To accomplish
this, we use an array of decaying counters in an arrange-
ment similar to Bloom Filters. On each request, a counter is
selected using its hashed request address and is incremented
(Fig. 5). We use the Murmur3 hashing algorithm due to
its popularity and speed. The selected decaying counter is
updated using Equation 6 and its value becomes the request
locality_score.

As requests with the same offset are routed to the
same bins by the hash function, hot data continuously

5. The full list of features will be described in detail in Sec. 2.2

Select

b[k]

+Wi

eΔt

C
o

u
n

te
r

C
o

u
n

te
r

C
o

u
n

te
r

Address

...

Locality
Score

Locality Var
Score Update

Locality
Score CV

C
o

u
n

te
r

S
e

le
ct

C
o

u
n

te
r

C
o

u
n

te
r

Fig. 5: Calculation of locality_score and
locality_score_cv using request offset.

update a certain subset of the decaying counters. This
results in a skewed distribution of bin values and higher
locality_score for the popular offsets. While we directly
use locality_score as a feature, we also generate a
feature based on the variance of all the decaying counters.
Such a feature is very useful for estimating temporal locality
in the workloads as random workloads tend to distribute
accesses across all bins, resulting in nearly equal counter
values and low variance. The decaying counters used for
locality_score are order-based with a per-request decay
rate of α.

To calculate variance online, we simplify the online
calculation of variance to yield Equation 86. In this formula,
i is the request number, σ2

i is the variance of decaying
counters after request i, N is the number of decaying bins,
α is the linear decay, hi is the bin selected for request i
using the hash function, µi is the mean of all N counters
after request i, and Bhi,i is the value of bin hi after i where
Bhi,i = αBhi,i−1 + 1 and Bj,i = αBj,i−1 for j 6= hi. It
must be noted that µi itself can be iteratively updated using
Equation 9.

σ2
i = α2σ2

i−1 +
2α(Bhi,i−1 − µi−1)

N
+
N − 1

N2
(8)

µi = αµi−1 +
1

N
(9)

As can be seen, Equation 8 only relies on bin value
Bhi,i−1 alongside variables that can be calculated without
knowing bin values. To avoid updating every bin on arrival
of each request, we use a deferred update method. In this
scheme, Bhi,i−1 is calculated based on its most recent up-
date (the largest value of j < iwhere hj = hi or j = 0 where
Bhj ,0 = 0 if i is the first reference to Bhi) using Equation 10,
meaning that processing cost of Equation 8 is not affected
by N and is O(1). Thus, only a single exponentiation with
a base of α is required to calculate locality_score vari-
ance. Since variance is based on squares and can generate
large numerical values, we calculate coefficient of variation
(CV) as CV = σ

µ .

Bhi,i−1 = Bhi,jα
j−i+1 (10)

Algorithm 1 describes the implementation used to calcu-
late locality_score. After request index is incremented
(Line 2), its hash selects the target bin h (L.3). The distance
(d) between the last updated to bin h using the lu array is
measured (L.4) and lu is updated (L.5). Line 6 calculates the
deferred decay based on d and it is applied in the next line.

6. Please refer to the appendix for detailed equations.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

Online variance and online mean are updated in L.8 and L.9,
respectively. locality_score and locality_score_cv
are calculated in the last two lines. Our experiments show
negligible difference between our iterative and non-iterative
implementations.

Algorithm 1 Calculating locality_score and
locality_score_cv

global variables
N , Number of decaying counters
σ, Online counter variance
µ, Online counter mean
α, Decay rate (constant)
b[h], Bin values 1 ≤ h ≤ N
lu[h], last update to bin h, 1 ≤ h ≤ N
c, Request counter
LS, Per request locality_score
LSCV , Per request locality_score_cv

end global variables
1: function GETLOCALITYSCOREANDCV(offset)
2: i← i+ 1
3: h← hash(offseti) mod N
4: d← i− lu[h]
5: lu[h]← i
6: b′ ← b[h] ∗ αd−1

7: b[h]← αb′ + 1

8: σ2 ← α2σ2 +
2α(b′−µ)

N + N−1

N2

9: µ← µα+ 1
N

10: LS[i]← b[h]

11: LSCV [i]←
√
σ2

µ

12: end function

Here, we perform numerical analysis on the two mea-
sures introduced in this section. Although temporal locality
and presence of hot data are not necessarily the same [35], a
simplified form of analysis for temporal locality is working
with address access frequency [18]. Here, we calculate ex-
pected value of bins based on this form of analysis. It must
be noted that both these locality scores do record long- and
short-term temporal locality and their relative effect on the
score varies by the decay rate.

In any workload where hot data exist, data access fre-
quency will be uneven. Equation 11 shows the expected
value of bin bk after i accesses based on its access fre-
quency wk

7. In other words, assuming a large enough
value of i, relative ratio of bins x and y is equal to wx

wy
.

In workloads with hot data, accesses to hot data will
have a greater locality_score. Furthermore, the un-
even wk weights directly increase bin value variance and
locality_score_cv. A more generalized case of this
equation is also covered in the appendix.

E(Bk,i) = wk
1− αi

1− α
(11)

To provide a more intuitive example on the output
of locality_score_cv, we create a synthetic dataset
with the zipf distribution. To this end, nine batches con-
taining 100,000 addresses each are generated with differ-
ent zipf parameters and are concatenated. We calculate
locality_score_cv with four different decay rates and
graph the results in Figure 6. For each of the nine batches,
the zipf parameter a and the resulting distribution are de-
scribed. Uniq.% denotes the number of unique addresses in
the batch and a lower percentage of unique values translates

7. This equation is obtained through induction and can be seen in the
appendix.

into higher temporal locality which is correlated with the
rise of the locality_score_cv.

2.2 Overview of Features
Table 2 shows a list of the features used in this study. As
many of the features used in this work are parameterizable,
we refer to each unique combination of feature parameters
as a feature instance. A list of these parameter values is shown
under the third column. The constant memory needed by
each feature instance and the cost for processing a single
I/O request are shown in the fourth and fifth columns,
respectively.

Basic features are directly extracted from request traces,
with very little cost. disk_usage is based on file-system re-
ported disk utilization, which can be taken as the percentage
of logical disk address space in use8. disk_usage_rate is
the rate of change for disk_usage. Decaying and Weighted
Decaying features use decaying counters to track the number
of requests and the traffic involving read, write, sync, and
discard commands. For example, write_score counts the
number of write requests using an exponentially decay-
ing counter with a decay rate of b. In the weighted ver-
sion write_score_w, a weighted exponentially decaying
counter is used and request length is used as a weight.

The features in the Spatial category rely on the
queue-based methodology described in Sec. 2.1.1, which
yields minimum spatial distance and request classification.
seq_d_score is a decaying counter that is incremented
whenever a sequential request is encountered, serving as
an indicator of long term sequentiality. seq_d_wscore
performs the same but is weighted by request length.

The Temporal features estimate temporal locality
and are calculated using an array of decaying coun-
ters (Fig. 5). locality_score estimates the recency
of past accesses to the target of the current re-
quest while locality_score_cv measures lack of uni-
formity in address accesses. mlocality_score and
mlocality_score_cv are similar but operate on the
larger granularity of 4MB blocks.

Both the basic and spatial features were widely used as
I/O workload features [8], [14], [15], [30], [37]. Furthermore,
empirical observations (see Table 1) reveal the effect of
request type and spatial locality on SSD performance. In ad-
dition, SSD controllers can benefit from temporal locality for
optimizing performance [18]. Therefore, we believe that the
presented features can be used to model SSD performance.
In Section 3.4, the effect of features on SSD performance
models utilizing permutation importance is analyzed.

To arrive at the final set of feature parameters, we begin
with a large array of feature instances that are created
by a combination of the parameters shown in Table 2.
The spatial feature instances have multiple parameter
variables and all possible combinations are instantiated. For
example, seq_d_score is instantiated with (RT,Q, b) ∈
{(512, 2, 0.9), (512, 2, 0.99), ..., (128KB, 32, 0.9999)}. The
starting feature instances are then scored and potentially
eliminated in a process that will be described in the next
section.

8. Modern filesystems declare unused space via discard commands.
This means that unused file-system capacity is available to SSDs as free
blocks.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 7

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1000 2000 3000 4000 5000

zipf.α=1.01
(Uniq.%= 81%)

zipf.α=1.04
(Uniq.%= 68%)

zipf.α=1.07
(Uniq.%= 55%)

zipf.α=1.1
(Uniq.%= 43%)

zipf.α=1.13
(Uniq.%= 34%)

zipf.α=1.16
(Uniq.%= 26%)

zipf.α=1.19
(Uniq.%= 21%)

zipf.α=1.22
(Uniq.%= 17%)

zipf.α=1.25
(Uniq.%= 14%)

L
o

c
a

li
ty

 S
c

o
re

 C
V

Time

LSCV(b=0.5) LSCV(b=0.75) LSCV(b=0.99) LSCV(b=0.9999)

Fig. 6: locality_score_cv for a synthetic dataset. The dataset has nine phases with different percentages of address
uniqueness (denoted by U. pct).

TABLE 2: Overview of Features Declared in This Work

Category Feature Feature Parameters Memory1 Cost2
Params. Values

Basic

lengths

N/A N/A N/A 1

is_read3

is_write
is_sync
is_trim
disk_usage
disk_usage_rate

Decaying
sync_score

b

0.0001, 0.001,

1 Counter 1

read_score 0.01, 0.1, 1
write_score

Weighted
Decaying

trim_score_w 0.0001, 0.001
read_score_w 0.001, 0.01,
write_score_w 0.1, 1, 10

Spatial

min_distance

RT,Q, b

RT Q b

Q requests Q

is_sequential

512 2, 8, N/A
is_overlapped

4KB 32
is_random

128KBis_strided
seq_d_score 0.9, 0.99 1 Counter 4 14
seq_d_wscore 0.999, 0.9999

Temporal

locality_score

N , α

N α

N Counters 1mlocality_score 0.5, 0.7, 0.9, 0.99,
locality_var_score 512 0.999, 0.9999
mlocality_var_score

1 The constant memory required for each feature instance.
2 The processing cost for a single I/O request as a function of the supplied parameters.
3 The boolean is_* features are stored as either 1 or 0.
4 The seq_d_ are essentially decaying counters for requests classified as sequential (is_sequential) and

only require an extra decaying counter.

2.3 Implementation of Feature Extraction

As our input workloads contain varying numbers of re-
quests9, we process the workload traces in batches to avoid
running out of memory. We implement a flexible framework
illustrated in Fig. 7 to process requests in batches for feature
extraction and evaluation of accuracy. Care is taken to
preserve state across batches so values are generated as if
the workload is generated using a single pass.

Our feature extraction stage uses request address, type,
and length, as well as free disk space and its rate of change
to calculate features. As our traces periodically record avail-
able free space, linear interpolation is used to yield the
approximate available free space and its rate of change
during each request. The per-request information is then

9. Eleven workloads contain over 10M requests including
mysql-tpch-run with 189M requests.

Trace

Periodic

Filesystem

Information

Linear

Estimation

Feature Extraction

Feature

Parameters

User

Callback

Callback

State

Feature

Extractor

State

Arrival Times

Request Parameters

disk_usage

Fig. 7: Feature extraction process, the user supplies the
feature extraction parameters as well as a callback routine
to run on each batch of generated feature vectors.

processed in batches by feature extractors. We use a batch
size of 100K requests for all experiments.

Most of the feature extraction is implemented in Python
using Numpy, Scipy, and pybind11. Cython and C++ are
also used for performance critical code. After the feature
vector for each batch of requests is generated, the frame-
work runs the user supplied callback (shown in Fig. 7)
with the feature vector, request response times, and a dict

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 8

holding the callback state, which is updated by callbacks
and is preserved across calls. We use a single callback to save
the training, validation, and testing sets which are used to
train, optimize, and evaluate the machine learning models.

3 MODEL AND FEATURE SELECTION

Choice of model and features used to train can result in
vastly different degrees of accuracy and efficiency. For our
particular problem, each workload may contain millions of
requests where each request has a rather large number of
requests. Although we utilize sampling to reduce the size of
training and testing data, to create a practical methodology,
it is essential to make use of machine learning models that
have low memory and processing requirements. To this end,
we evaluate three main categories of models: a) decision
trees, which have served as the basis for all past works
predicting hardware response time, b) ensemble models of
random forest, bagging, and Adaboost based on decision
trees, and c) Feedforward Neural Networks (FNNs).

In this section, we begin by describing the methodology
used to prepare the input data for generation, optimization,
and the final evaluation of the model. After that, we evaluate
and choose the machine learning models for the evaluation
section, and finally, we perform feature selection to reduce
memory requirements, increase feature extraction rate, and
drastically improve the learning rate of ensemble and deci-
sion tree methods.

3.1 Preparation of Input Data

Our work utilizes SSD traces for model training, feature
selection, and evaluation. Very few SSD-based traces are
publically available but none of them are suitable for our
work. Yadgar et al. [24] recorded two billion requests, but
their traces lack response time, which is essential for training
and evaluating performance prediction models. Zhou et
al. [25] recorded traces from eMMC devices, which have a
much lower performance than standard SSD devices. These
traces also lack sync and discard commands. As an input to
the feature extraction process, we implement a custom and
cross-platform low-level I/O tracing tool called AccuTrace.
AccuTrace captures all I/O requests sent to hardware as
SCSI 10 commands and records them alongside periodic
SMART 11 statistics and high-level system information.
AccuTrace utilizes drivers in both Linux and Windows to
achieve this purpose. It has been validated to have less than
1% performance variation between Windows and Linux on
similar synthetic workloads and has been used to record I/O
traces. The benefit of using this tool is the fact that a similar
cross-platform representation is being used which is very
close to hardware and has fairly accurate measurements.

We use 35 recorded workloads containing 580M read,
write, sync, and discard requests. To our knowledge, this is
the most extensive set of SSD workloads in the literature. To
be comparable, all traces are recorded on a single Samsung
850 Pro SSD with 128GB of usable capacity12. These traces

10. Small Computer System Interface
11. Self-Monitoring, Analysis and Reporting Technology
12. The raw capacity of flash chips used in this device is equal to

192GB.

are recorded from a variety of applications including OLTP,
benchmark, productivity, and scientific applications. The
applications are as follows:

• ATTO and pts-disk13: Disk benchmark applications.
QD refers to the configurable queue depth in ATTO.

• auctionmark, epinions, tatp, twitter, and wikipedia:
Various server workloads simulated using OLTP-
Bench [39].

• TPC-C, TPC-E, and TPC-H: Well-known OLTP
benchmarks. Trace names include the applications
used to run the benchmark. For example, psql,
mysql, and mssql refer to the database backend used
in the benchmark.

• Jetstress [40]: Benchmarking tool running various
mail-server workloads.

• pgbench: Built-in Postgresql benchmarking tool
based on TPC-B.

• SpecWPC and pts-workstation: Benchmark tools
simulating workloads of a workstation computer.

While a wider variety of hardware (such as NVMe
hardware) can also be used to generate more data, we are
required to maintain the high variety of workloads for all
experiments, which multiplies by the number of hardware.
This is challenging as longer experiments are required for
larger devices and each experiment may require extra tun-
ing. However, as Samsung 850 Pro belongs to a fairly mature
generation of SSD devices and we believe that the findings
from these experiments give valuable insights nevertheless.

An important challenge in training machine learning
models is the uneven rate and volume of I/O requests,
which can cause machine learning bias. Our 35 workloads
range from a few hundred thousand to over 180M I/O
requests. Uniform random sampling from these workloads
to select the training and validation sets will result in a case
of imbalanced data where the training process will focus on
minimizing error on larger traces while giving much less
importance to the rest.

To avoid this issue, we perform undersampling to pick
the training and validation data. In the process shown in
Fig. 8, 100,000 requests are sampled from each workload
and these requests are in turn, split into the training and
validation sets. From each trace, the remainder of requests
are available for use as the testing set in the final evaluation.
Should the number of these requests exceed a million,
uniform random sampling is used to pick the testing set
representing that particular trace.

Furthermore, up to a million requests are sampled from
the requests not selected by undersampling to generate the
testing set. It must be noted that as our feature extrac-
tion process stores past activity inside decaying counters,
sampling I/O requests before feature extraction generates
incorrect data. Thus, sampling is performed on the fly in the
callbacks described in Sec. 2.3 with a ratio based on trace
request count. These three sets are used as follows:

• Training set: Used to train machine learning models.
This dataset contains ≈2.3M feature vectors.

13. PTS stands for the Phoronix Test Suite [38].

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 9

• Validation set: Used in model selection as well as
feature scoring and elimination. This dataset contains
≈1.1M feature vectors.

• Testing set: This dataset is utilized to compare the
accuracy of the final models and feature sets. Each
trace has its own training set containing up to a mil-
lion feature vectors. These 35 sets of feature vectors
contain a total of ≈30M rows.

I/O Trace

Feature
Parameters

Feature

Extraction

Testing Set
≤1M

Feature Vectors

Validation Set
≈33K

Feature Vectors

Model
& Feature
Selection

Training Set
≈66K

Feature Vectors

Final
Evaluation

Undersampling
100K

Feature Vectors

Fig. 8: I/O traces are used to generate feature vectors which
are split into the training, validation, and testing sets. The
training and validation process are used to select the final
model and feature set.

3.2 Choice of machine learning models
As the goal of this research is to provide practical al-
ternatives to real hardware experiments, it is essential to
maintain low memory and processing requirements. After
a thorough survey of various machine learning models, we
arrive at three main categories of machine learning models:
a) decision trees, which have been used in previous SSD
and HDD performance prediction models [13], [14], [15], b)
Feedforward Neural Networks (FNNs): Also known as Multi-
Layer Perceptrons (MLPs), and c) ensemble methods, which
use multiple predictors to reduce bias and variance, and
thus increase accuracy. Alternatives such as Support Vector
Regression (SVR) and Recurrent Neural Networks (RNNs) have
been ruled out due to their extremely high computational
requirements.

Adaboost, bagging, and random forest are the three en-
semble methods being evaluated in this research. Adaboost
proceeds in multiple steps where at each successive step,
the poorly estimated data is weighted higher in order to
reduce error. Bagging and random forest train a number
of parallel predictors which recieve a subset of the whole
data, making them much faster to train than Adaboost. All
the ensemble methods in this study utilize decision trees as
the base predictor. A comparison is performed between the
following models to choose the exact ensemble models:

• A single decision tree, with a maximum depth of
32. The tree is allowed to have a maximum number
of 10000 leaf nodes where each leaf must contain
a minimum of five samples. These parameters are
selected using many exploratory experiments. The
rest of parameters are scikit-learn [41] defaults.

• An FNN with a configuration of 256-512-256 nodes
with sigmoid activation for internals nodes and a
single linear node to generate the response time. To
have better generalization and avoid over-fitting, a)
we use 20% dropout for the internal layers, b) use
Adam optimizer with L1 error (Mean Absolute Error

or MAE) which is resistant to outliers compared to
L2, and c) use early stopping with a patience param-
eter of 10. We implement FNN using PyTorch [42]
which utilizes Graphical Processing Unit (GPU).

• Ensemble learning utilizing multiple instances of the
single decision tree described above with default set-
tings for everything except the number of estimators.
Experiments are performed with Adaboost, bagging,
and random forest using two, three, five, and ten
estimators14. We try to use parallel jobs (specified by
n_jobs in scikit-learn) to make maximum utilization
of available computational resources. However, due
to the nature of Adaboost, the base estimators cannot
be trained in parallel and bagging requires more than
32GB of RAM for any value n_jobs that exceeds 2.
All three models are implemented using scikit-learn.

The results, comparing the accuracy and training time
of each model can be seen in Fig. 9. In this figure, the
computational resources used to calculate each model have
been specified. The machine used for the purpose of train-
ing has 16 cores, 32GB of RAM, and an Nvidia 970 GTX
graphics processor. The training time excludes the feature
extraction time, which is equal for all models at this stage.
Adaboost and the single decision tree model cannot utilize
multiple concurrent threads, whereas bagging and random
forest utilize the maximum number of available compute
resources. However, due to the high memory requirements
of bagging, only two threads can be used. Random forest
splits the data between estimators and has much lower
memory requirements which allows use of parallel job for
each estimator. FNN utilizes the GPU through the PyTorch
library.

Based on our experiments, FNN model training time
and accuracy is greatly affected by the randomly initialized
starting state. To represent the FNN model, we train nine
independent FNNs, differing only in the starting state.
These models have training times ranging from 708s to
1366s with 15% variation in the Mean Absolute Error (MAE).
We decide to choose the model with median training time
and its associated error to represent FNN at each stage of
training and feature selection process. As can be seen in
Fig. 9, comparison and selection of models is performed
using MAE. The reason for use of an L1 error instead of
an L2 measure of error such as sum of squared error is the
fact that I/O request latency is highly variable and greatly
susceptible to outliers. In fact, in our dataset containing
580M I/O requests, response time ranges from 12µs up to
5.6s, varying by five orders of magnitude. L2 measures of
error will endanger magnifying the effect of outliers and
sacrifice model accuracy in general case to optimize outliers.

We pick random forest with ten estimators and bagging
with five estimators alongside the single decision tree and
FNN models for the remaining experiments. This selection
is made with respect to having a comparable training time
across the different models. This also has been the reason
for elimination of Adaboost as it is fundamentally unable
to train its estimators concurrently using multiple parallel
threads. Thus, the range of training time ranges from 601s

14. Our experiments demonstrate diminishing returns from increas-
ing the number of predictors and we do not exceed the number ten.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 10

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

R
F(2)

R
F(3)

R
F(5)

R
F(10)

B
G
(2)

B
G
(3)

B
G
(5)

B
G
(10)

A
B
(2)

A
B
(3)

A
B
(5)

A
B
(10)

DT N
N

Random Forest
(CPU, T ≤ 10)

Bagging
(CPU, T ≤ 2)

Adaboost
(CPU, T = 1)

Decision
Tree

(CPU, T = 1)

FNN
(GPU)

M
o

d
e
l
T
ra

in
in

g
 T

im
e
 (

s
)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

R
F(2)

R
F(3)

R
F(5)

R
F(10)

B
G
(2)

B
G
(3)

B
G
(5)

B
G
(10)

A
B
(2)

A
B
(3)

A
B
(5)

A
B
(10)

DT N
N

Random Forest
(CPU, T ≤ 10)

Bagging
(CPU, T ≤ 2)

Adaboost
(CPU, T = 1)

Decision
Tree

(CPU, T = 1)

FNN
(GPU)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(m
s
)

Fig. 9: Initial comparison of the various machine learning models for selection. The top model displays the training time,
the bottom figure shows the Mean Absolute Error for the validation set. T for CPU refers to the number of threads.

(decision tree) to 1315s (bagging). As can be seen in the fol-
lowing sections (Figure 10), feature selection greatly speeds
up bagging since the reduction of memory requirements
allows the number of threads to be increased from two to
five while staying within the 32GB limit. Eventually, and at
the end of feature selection, FNN remains the model with
the lowest training rate.

3.3 Feature Selection

As many of the features described in the earlier sections
are parameterized, we calculate each feature with multiple
distinct parameter values (as shown in Table 2) and perform
feature selection to choose parameter values and eliminate
features of negligible utility. In this section, we begin with
174 features used in the previous section and utilize feature
selection to optimize key feature values and to eliminate
features with little or no positive effect on model accuracy.

Although a wide variety of feature selection methodolo-
gies exist, many require O(N2) memory and are impractical
for datasets which have many data points15. After imple-
menting and experimenting with many feature selection
solutions, we finally arrived at Permutation Importance, a
wrapper method that uses a trained regression or classi-
fication model to evaluate the impact of each individual
feature on model accuracy. The benefit of using permutation
importance is its ability to work with all kinds of machine
learning models.

Permutation importance measures the impact of each
individual feature on model accuracy by performing many
independent experiments. In each of these experiments,
one or more features are selected and their value vector
is shuffled. Shuffling completely maintains feature distribu-
tion but disrupts its relationship with response time. Thus,
if shuffling of a feature reduces model accuracy, it hints at
feature importance. After conducting the experiments, each
feature is assigned a score which can be used in the selection
process.

We use permutation importance in multiple steps using
negative MAE as the accuracy metric. At each stage, we
perform two actions a) if a specific feature type perform

15. Such algorithms are suitable for experimental datasets where the
number of data point is small but many features are present for each
point, e.g. patient data in a clinical trial.

poorly with all the different parameters, it is eliminated, b)
two major parameters Q and RT from Table 2 are succes-
sively optimized by choosing the parameter value yielding
the highest average score for all features calculated by its
particular value. The elimination threshold for a feature type
is to have score lower than 0.01 in all instances. The reason
for limiting parameter optimization to these Q and RT is
the sheer number of features (117 out of the original 174)
which rely on these two parameters.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 20 40 60 80 100 120

L
e

a
rn

in
g

 R
a
te

 (
R

e
q

u
e

s
t/

s
)

Features Eliminated

RF(10) BG(5) DT FNN

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 20 40 60 80 100 120
M

e
a

n
 A

b
s

o
lu

te
 E

rr
o

r
(m

s
)

Features Eliminated

RF(10) BG(5) DT FNN

Fig. 10: Comparison of learning rate (left) and Mean Abso-
lute Error (right) against the number of features eliminated
by feature selection.

As permutation importance is a wrapper method, its
scores are only valid for that particular model and must
be performed on each of the four models. Fig. 10 plots
learning rate and MAE against the number features that
have been eliminated at each stage. Table 3 shows the
specific features removed for each model through the stages
of feature selection. Table 3 also shows the feature extraction
rate with each set of features. The great leap in learning rate
for the bagging model is caused by the large reduction of
features which in turn, allows us to run five parallel jobs
without filling the main memory. Overall, it can be seen that
for the ensemble and decision tree models, while feature
selection can come with a modest performance decrease, it
can greatly boost learning rate, making the methodology
more accessible and practical.

It can be seen from Fig. 10 that FNN accuracy and
learning rate fluctuates through the feature selection pro-
cess. This is due to the fact that the initial random weights
of the neural network model cause variation in accuracy

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 11

TABLE 3: Extraction rate, feature count, and the eliminate
features for each successive stage of feature selection. NF =
no selection, F1 and F2 = first and second filtering stages.

StageModelFeatures Eliminated Parameters Extr. Rate
Features Eliminated (Request/s)

NF All 174 - - 242K

F1

RF(10) 85 is_overlapped, is_strided, Q=2,8 285K
trim_score_w, is_random

BG(5) 96 is_strided, trim_score_w, RT=4KB,128KB 292K
is_overlapped

DT 84 is_sync, is_overlapped, Q=2,8 284K
is_strided, is_random

trim_score_w
FNN 96 - Q=2,8 282K

F2

RF(10) 65 - RT=512,4KB 312K
BG(5) 65 is_random Q=2, 8 313K

DT 64 - RT=512,4KB 312K
FNN 70 - RT=512,4KB 311K

and training time. Thus, at each stage of feature selection,
the FNN is trained nine times and the model with median
training time is selected as the representative.

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1000 1500 2000 2500 3000 3500 4000 4500

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(m
s

)

Learning Rate (Request/s)

NF Median
NF

F1 Median

F1
F2 Median

F2

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2000 2500 3000 3500 4000 4500 5000

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(m
s

)

Learning Rate (Request/s)

256-512-256
128-256-128

64-128-64
32-64-32

Fig. 11: MAE against learning rate in various feature se-
lection stages (left) and with various node configurations
(right) for the FNN model.

Fig. 11 shows the effect of feature selection (left) and
scale-down (right) on FNN learning rate and accuracy. As
feature selection reduces features from 174 (NF) down to
96 (F1) and finally, 70 (F2), feature extraction rate is greatly
boosted (by up to 29% as shown in Table 3) but the learning
rate or accuracy is not affected. Thus, significant speed-ups
can be gained with feature selection at no cost. As FNN has
the slowest learning rate (Figure 10), we do not experiment
with wider neural networks which, further reduce learning
rates and here attempt to reduce the network size to boost
learning rate. As can be seen, while scaling down the model
may increase learning rate by over 100%, it does so with a
significant increase of error (MAE). Thus we believe that it is
better to avoid model scale-downs for the sake of accuracy.

3.4 Inspection of Feature Scores
As stated in the previous section, we perform Permutation
Importance to measure feature accuracy. In this section, we
look at the final scores yielded by permutation importance
for the machine learning models. Table 4 shows a compari-
son of feature ranks as yielded by permutation importance.
All results belong to the last stage of filtering (F2). Features
that have been filtered from a specific model are ranked as
N+1 where N is the last rank for that particular model, e.g.
as filtering for decision tree model has removed five of the
main feature types and all these features are assigned the
last rank in this table (rank 19).

Looking at feature scores, the highest ranked fea-
tures is lengths, which is the current request size.
write_score_w is concerned with the total amount of
recently written data. sync_score measures the amount of
recent sync requests. Mlocality_var_score is concerned
with the access randomness at coarse grained address gran-
ularity. seq_d_wscore and seq_d_score measure the re-
cent sequentiality and disk_usages measures the current
disk utilization. Overall, it can be seen that the top ranked
features measure a mixture of recent request types, current
request length, recent sequentiality, randomness, and disk
space utilization. Looking at the bottom half of the table
reveals that properties that only measure the current request
behavior (such as the properties prepended with is_) have
a much lower importance compared to features that track
long or short term workload behavior. An important note
must be made with respect to trim_score_w: while this
feature ranks poorly for all models, it must be noted that
this feature is in some ways analogous with disk_usages,
as the modern file systems discard unused data that is no
longer part of the free disk space.

TABLE 4: Comparison of feature ranks based on scores
yielded by permutation importance.

Feature RF10BG5DTNNMean Rank
lengths 1 1 1 2 1.25
write_score_w 2 3 6 1 3
sync_score 3 4 4 7 4.5
Mlocality_var_score 5 5 9 5 6
seq_d_wscore 7 7 7 4 6.25
seq_d_score 6 2 5 15 7
disk_usages 10 8 8 3 7.25
read_score_w 8 11 2 9 7.5
disk_usage_rates 4 9 10 11 8.5
write_score 9 10 11 13 10.75
min_distance 14 6 3 22 11.25
locality_var_score 13 13 13 8 11.75
is_sync 11 12 19 6 12
Mlocality_score 15 15 14 10 13.5
read_score 12 14 12 16 13.5
is_sequential 17 16 17 14 16
locality_score 16 17 15 17 16.25
is_read 19 19 16 12 16.5
is_write 18 18 18 18 18
trim_score_w 20 20 19 19 19.5
is_strided 20 20 19 20 19.75
is_overlapped 20 20 19 21 20
is_random 20 20 19 23 20.5

3.5 Summary

In this section, we first elaborated the methodology for gen-
eration of training, validation, and testing data. Due to the
large size of the feature vector, we focused on models that
can be trained with an acceptable processing and memory
costs and started our experiments with five model types: a)
basic decision tree, b) Feedforward Neural Networks (FNN),
and c) three ensemble methods of Adaboost, bagging, and
random forest using the basic decision tree as the predictor.
We refined the hyper-parameters of these methods to arrive
at four final machine learning models.

After model selection, we performed feature selection
using permutation importance to reduce the initial feature
size from 174 to equal or less than 70 features on all four

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 12

methods which speed up training of ensemble models by
over six times and increase feature extraction rate by up
to 29%. Finally, by performing an inspection of the feature
scores yielded by the four models, we conclude that fea-
tures measuring recent workload behavior through decay-
ing counters have a much larger impact on model accuracy
compared to per-request features. In the next section, we
perform the final evaluation of the four models which have
been refined and trained in this section.

4 EVALUATION OF PREDICTION MODELS

As discussed in the previous section, feature selection elim-
inates low score feature instances, and in cases, complete
feature types. In our methodology described in Sec. 3.1,
undersampling is performed to choose the training and
validation sets and up to one million of the remaining
feature vectors are selected as the testing set. In this section,
the training set data for 35 traces is used to evaluate the
accuracy of the four machine learning methods utilizing
two accuracy measures: R2 score and Mean Absolute Error
(MAE).

Fig. 12 shows the mean absolute average (top) and R2

(bottom) score for each individual trace. As stated earlier,
R2 ∈ (−∞, 1] where 1 indicates a perfect fit. As can be
seen, while most traces indicate a good quality of fit, a num-
ber of outliers exist. For example, pts-workstation and
pgbench-init have high MAE while psql-tpcc-run,
mssql-tpcc-run, and psql-tpch-run have a poor R2

score for one or more of the four models. These examples
will be examined with more details in the remainder of this
section.

Fig. 13 shows R2 and MAE percentiles for the four
models. For R2 score, while random forest, bagging, and
decision tree models score below zero in eight instances four
of which belong to the single decision tree model (DT), FNN
exceeds their accuracy at lower percentiles and achieves a
higher average R2 score. This means that while decision
trees are much faster and do not require GPUs, they may
have poor accuracy in specific instances. For the MAE error,
FNN has the worst behavior over the rest, but as can be seen
in Fig. 12 and Fig. 13 this is due to the outlier poor MAE of
pts-workstation. In fact, if this workload is excluded,
FNN would have the lowest average MAE.

A key challenge in response time prediction is
its extremely high variability. Request response time
in pts-workstation varies from 18µs up to 553ms
with an average response time of 77ms whereas in
psql-tpch-run, it varies from 18µs to 222ms with an
average response time of 502µs. With respect to the high
response time variation, we analyze R2 score and MAE by
binning the requests into response time bins and calculating
the contribution of each bin to the final error. We examine
the accumulative squared error and accumulative absolute
error for this purpose. These measures are central to cal-
culation of R2 and MAE, respectively and are depicted by
boxes in Equation 12 and Equation 13. With respect to the
analysis of workloads based on their response time bins, we
group the six workloads identified in the previous section
into three groups:

• pts-workstation and pgbench-init: These
workloads experience the two highest MAE, but
have some of the highest (≈0.9) R2 scores across
all four models. As can be seen from comparison of
Equation 12 and Equation 13, MAE is greatly affected
by magnitude. For example, multiplication of latency
by ten increases MAE by ten while not affecting
R2 score at all. These two workloads have the two
highest average response times of 77ms and 20ms out
of the 35 workloads, which increase MAE. We plot
pts-workstation in Fig. 14a as a representative of
this class.

• psql-tpcc-run, psql-tpch-run, and
mssql-tpcc-run: These workloads are OLTP
benchmarks which are predicted very poorly by
the three decision tree-based models. The FNN
performs much better by achieving an R2 score of
0.66, 0.43, and 0.31, respectively. In contrast, the
other three achieve negative R2 scores except for a
single experiment achieving an R2 score of 0.02. In
all these workloads, most requests are located in
the 0.1s to 1s and as shown in the representative
Fig. 14b, the accumulative absolute error and the
accumulative squared errors is high even in the 0.1s
to 1s range. The accumulative errors for FNN rise
after the 10s response time bins and are extremely
lower in all three workloads.

• mysql-tpch-run: This is the single workload
where all models have a poor R2 score. However,
as can be seen in Fig. 12, the MAE for this workload
among the smallest of all traces. This is due to the
fact that this workload is simultaneously the largest
(189M+ requests) and has the second lowest average
response time (≈180µs). The error chart also indi-
cates that while almost all the requests fall within the
0.1s-1s range, the bulk of error occurs with a small
fraction of requests falling in the higher response
time bins. The error caused by these high response
times, coupled with the low average response time
for these traces, results in low R2 scores for all four
models.

R2 = 1−

n∑
i=1

(yreali − ypredi)
2

∑n
i=1 (yreali − ȳreal)2

(12)

MAE =

n∑
i=1

|yreali − ypredi |

n
(13)

Overall, it can be seen that among the four models,
FNN achieves the most stable results with a worst-case
R2 score that is far better than the other three models.
The two instances where the FNN R2 score is lower than
0.4 are the outlier workloads of mssql-tpcc-run and
mysql-tpch-run with the respective R2 scores of 0.31
and 0.01 and simultaneously the lowest and second lowest
average response time of 80µs and 181µs. This low average
response time causes the effect of outlier requests to be
greatly magnified, reducing the R2 score considerably. The

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 13

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

atto-qd-2

atto-qd-4

atto-qd-8

auctionm
ark-init

auctionm
ark-run

bfactory-tpce-init

epinions-init

epinions-run

m
ssql-tpcc-init

m
ssql-tpcc-run

m
ssql-tpch-init

m
ssql-tpch-run

m
ysql-tpcc-init

m
ysql-tpcc-run

m
ysql-tpch-init

m
ysql-tpch-run

jetstress-db-backup

jetstress-perform
ance

jetstress-softrecov

pgbench-init

pgbench-run

psql-tpcc-init

psql-tpcc-run

psql-tpch-init

psql-tpch-run

pts-disk

pts-w
orkstation

specview
perf

specw
pc

r un

tatp-init

tatp-run

tw
itter-init

tw
itter-run

w
ikipedia-init

w
ikipedia-run

Average

M
edian

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(m
s
)

RF10 BG5 DT FNN

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

atto-qd-2

atto-qd-4

atto-qd-8

auctionm
ark-init

auctionm
ark-run

bfactory-tpce-init

epinions-init

epinions-run

m
ssql-tpcc-init

m
ssql-tpcc-run

m
ssql-tpch-init

m
ssql-tpch-run

m
ysql-tpcc-init

m
ysql-tpcc-run

m
ysql-tpch-init

m
ysql-tpch-run

jetstress-db-backup

jetstress-perform
ance

jetstress-softrecov

pgbench-init

pgbench-run

psql-tpcc-init

psql-tpcc-run

psql-tpch-init

psql-tpch-run

pts-disk

pts-w
orkstation

specview
perf

specw
pc

r un

tatp-init

tatp-run

tw
itter-init

tw
itter-run

w
ikipedia-init

w
ikipedia-run

Average

M
edian

R
2
 S

c
o

re

RF10 BG5 DT FNN

Fig. 12: R2 Score (top) and Mean Absolute Error (bottom) for the four main models.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(m
s

)

Percentile

RF10
BG5

DT
FNN

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

R
2
 S

c
o

re

Percentile

RF10
BG5

DT
FNN

Fig. 13: Mean Absolute Error (left) and R2 Score (right)
percentiles of all evaluated workloads.

two worst-case MAE for this model is also caused by out-
liers which are pts-workstation and pgbench-init.
These workloads have the highest average response times
of 77ms and 20ms.

Although FNN almost requires four times the training
time (884 seconds compared to 212 seconds) of random
forest, this difference of less than 12 minutes is a negligible
cost for having more dependable results. However, random
forest has the benefit of not requiring graphical processors,
supporting multi-core acceleration, and having much faster
training time. This makes random forest a viable choice
for scenarios where training is to be performed on a real
machine, providing the ability to train specialized models
with high accuracy and very low prediction time.

5 RELATED WORK

As this work performs workload characterization and ma-
chine learning for prediction of hardware response time,
we review related work under two subjects, a) workload
characterization and extraction of features, and b) storage
performance models.

5.1 Workload Characterization and Feature Extraction
Workload characterization is concerned with analysis and
study of I/O activities in a workload. To compare and

contrast different workloads and to better interpret their
behavior, workload properties such as temporal and spatial
locality must be quantitatively represented. Riska et al. [32]
record various storage workloads using specialized hard-
ware and examine properties such as read/write ratio, inter-
face idle time, and self-similarity. Seo et al. [37] characterized
storage workloads based on a variety of features such as
total and non-random request count, request size, sequential
run length, address variance, and inter-arrival time. Feature
selection was performed to yield a final feature set, which
was used to create a decision tree for I/O workload classifi-
cation.

Anderson et al. [1] presented Hippodrome, a backend
design and management tool, which automatically charac-
terizes workloads to extract properties such as read/write
request rate, mean size, arrival rate and size, sequential run
length, device queue depth, and burstiness. DiskAccel [8]
suggested to use spatial and temporal locality, read/write
ratio, I/O bandwidth, throughput, and other properties to
cluster workload intervals and to select per-cluster represen-
tative intervals for replay on real HDDs. Tarasov et al. [7]
created a solution based on running benchmark utilities
for simulation of real workloads. This solution extracts
read/write ratio, inter-arrival time, bandwidth, throughput,
and address distribution from the original workload, gen-
erating benchmark parameters to replicate workload behav-
ior. Tremblay et al. [43] used workload properties such as
throughput, average request size, and working set to select
an optimal software-defined cloud storage backend. Bi et
al. [3] offer a solution to predict CPU and memory loads
based on past workload behavior. Their solution relies on
use of Long Short-Term Memory (LSTM) networks to perform
predictions. We avoid using LSTM as the huge number of
I/O requests make such models very expensive.

5.2 Performance Models for Storage Hardware

There have been multiple past efforts on modeling HDD
and SSD performance. Although both devices often have a

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 14

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 1.8x106

 2x106

 0.1 1 10 100A
c

c
u

m
u

la
ti

v
e

 A
b

s
o

lu
te

 E
rr

o
r

(m
s

)

Response Time Percentile

RF(10) BG(5) DT FNN

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.1 1 10A
c

c
u

m
u

la
ti

v
e

 A
b

s
o

lu
te

 E
rr

o
r

(m
s

)

Response Time Percentile

RF(10) BG(5) DT FNN

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0.1 1 10 100A
c

c
u

m
u

la
ti

v
e

 A
b

s
o

lu
te

 E
rr

o
r

(m
s

)

Response Time Percentile

RF(10) BG(5) DT FNN

 0

 2x107

 4x107

 6x107

 8x107

 1x108

 1.2x108

 1.4x108

 1.6x108

 1.8x108

 0.1 1 10 100A
c

c
u

m
u

la
ti

v
e

 S
q

u
a

re
d

 E
rr

o
r

(m
s

2
)

Response Time Percentile

RF(10) BG(5) DT FNN

(a) pts-workstation

 0

 5x106

 1x107

 1.5x107

 2x107

 0.1 1 10A
c

c
u

m
u

la
ti

v
e

 S
q

u
a

re
d

 E
rr

o
r

(m
s

2
)

Response Time Percentile

RF(10) BG(5) DT FNN

(b) psql-tpcc-run

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 0.1 1 10 100A
c

c
u

m
u

la
ti

v
e

 S
q

u
a

re
d

 E
rr

o
r

(m
s

2
)

Response Time Percentile

RF(10) BG(5) DT FNN

(c) mysql-tpch-run

Fig. 14: Accumulative absolute error (top row) and accumulative squared error (bottom row) against response time bins
for pts-workstation, psql-hammerdb-tpcc-run, and mysql-tpch-run .

fairly similar host interface16, their internal construction and
operation is vastly different. Here, we will cover works that
have offered performance models for HDDs or SSDs.

Li et al. [14] created a performance model that predicts
response time, bandwidth, and throughput for one-minute
request intervals using decision trees based on eight basic
workload properties such as device queue depth, read-
/write ratio, and per-read and -write inter-request stride,
randomness, and request size. This work was extended by
Huang et al. [15] to include a few non-synthetic workloads
obtained by replaying widely-used HDD workloads on
SSDs. Both these works analyze I/O workloads as inde-
pendent one-minute internals. These two works are the
closest to our work in terms of comparing SSD performance,
however, they predict SSD latency over intervals. Compared
to our work, these two works use a vastly simpler feature
set with no long term memory. Kim et al. [4], [5] presented
a simplified performance model for SSDs to predict slow-
downs caused by internal SSD activities such as garbage
collection and write buffer flush events. This model is
used to implement adaptive scheduling [4] and adaptive
volume management [5] solutions. In all of these three
works, the important effect of past I/O activity on future
performance [6], [16], [17], [18] is not taken into account.
Dartois et al. [2] present a methodology that utilizes multiple
different machine learning methodologies such as decision
trees and ensemble methods to predict whole workload
average throughput when running storage workloads on
SSDs in cloud infrastructure.

For HDDs, Wang et al. [13] utilize decision trees to
predict the performance of individual requests or workload
time intervals. Per-interval features include average request
arrival rate, read/write ratio, average request size, sequen-
tiality, spatio-temporal burstiness, and attribute correlation
over each minute whereas per-request features include spa-
tial and temporal distance with respect to previous requests,
sequentiality, size, and type (being read or write). Three of
our final machine learning models are based on decision

16. The main difference is the lack of discard commands on normal
HDDs, however, SMR HDDs do support discard commands.

trees which predict per-request response time, however,
unlike this work, we predict performance for SSDs, which
are much different from HDDs.

Work Drive Predicted GranularityAggregate Method WorkloadQuantity Features
Li et al. [14] SSD Response Time & Interval Yes DT1 Synth.
Huang et al. [15]SSD Bandwidth Interval Yes DT Synth.+ Replay

Wang et al. [13]2 HDD Response Time Request No DT HDD TraceInterval Yes
Kim et al. [4] SSD Slowdown Request Yes Routine SSD Trace
Kim et al. [5] SSD Slowdown Request Yes Routine Replay
Dartois et al. [2] SSD Throughput Workload Yes Multiple SSD Trace
This Work SSD Response Time Request Yes FNN3+ DT SSD Trace

[1] Decision Tree [2] This work presents two models.
[3] Feedforward Neural Networks

TABLE 5: Comparison of related works with the current
work.

5.3 Summary
Table 5 shows an overall comparison of this work and
previous performance modeling research. Predicted Quan-
tity is the target quantity being predicted by the model,
Granularity explains whether the model predictions are
per-request, per-time interval, or are calculated over the
whole workload, Aggregate shows whether the model is
utilizing features based on multiple past requests, Method
is the construct making the prediction, and Workload is
the type of workloads used in each model. SSD Trace and
Replays differentiate workloads that are recorded from real
SSDs or are generated by replaying HDD workloads on
SSDs. The latter method requires detailed trace information
to infer inter-request dependencies [8], [44], [45] and the
HDD traces used by [15] lacks this dependency information.
Synth. refers to macrobenchmarks that are run on SSDs. In
Table 5 while a number of previous methods use aggregate
features or interval-based granularity to track past requests
in the short term, none of them consider the long term
effect of previous activity on future performance. The only
exception is Dartois et al. [2] which analyzes the workload as
a whole. Prediction of request response time while consid-
ering long term history is difficult due to the fact that large

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 15

and complex SSD state space must be modeled efficiently.
Furthermore, we present the only SSD response time model
supporting discard and sync requests.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced a methodology which extracts a
variety of I/O workload properties and uses them to create
SSD performance models which can be quickly trained. Our
features cover a variety of properties such as request type,
spatial and temporal locality, and past workload behavior
while giving higher importance to recent activity. Through
use of efficient data structures such as exponentially de-
caying counters, these features can be extracted with O(1)
memory and processing requirements.

After feature selection, we were able to reduce the fea-
ture set by up to 63% and achieve a rate of 313,000 requests
per second for feature extraction. Experiments were per-
formed using Feedforward Neural Networks (FNNs), basic
decision tree, and two ensemble methods based on decision
trees. While a single decision tree performs very poorly,
FNN achieves a superior average R2 score of 0.72, although
requiring four times the training time compared to random
forest and bagging, which achieve R2 scores of 0.61 and
0.45, respectively. The high rate of over 1000 requests per
second per thread, allows the random forest to be used in an
online scenarios where the model is periodically re-trained
via sampled feature vectors and then used in performance-
aware algorithms in storage servers or backends.

For future works, further tuning and implementation of
lightweight feature extraction and machine learning meth-
ods can make the methodology easier to deploy in online
scenarios. Experiments using a wider variety of devices such
as higher-density or higher-bandwidth NVMe devices can
further help generalizing our methodology. Furthermore,
synthesis of I/O workloads based on workload features
is another possible future direction for this research. Upon
publication of this work, we release the code and data used
in this study for the benefit of the research community.

REFERENCES

[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and
A. Veitch, “Hippodrome: Running circles around storage admin-
istration,” in Proceedings of the 1st USENIX Conference on File and
Storage Technologies, ser. FAST’02. Berkeley, CA, USA: USENIX
Association, 2002, pp. 13–13.

[2] J.-E. Dartois, J. Boukhobza, M.-A. Knefati, and O. Barais, “In-
vestigating machine learning algorithms for modeling ssd i/o
performance for container-based virtualization,” IEEE Transactions
on Cloud Computing, vol. PP, pp. 1–1, 02 2019.

[3] J. Bi, S. Li, H. Yuan, and M. Zhou, “Integrated deep
learning method for workload and resource prediction in
cloud systems,” Neurocomputing, vol. 424, pp. 35–48, 2021.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0925231220317884

[4] J. Kim, J. Kim, P. Park, J. Kim, and J. Kim, “SSD Performance
Modeling Using Bottleneck Analysis,” IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 80–83, Jan 2018.

[5] J. Kim, P. Park, J. Ahn, J. Kim, J. Kim, and J. Kim, “Ssdcheck:
Timely and accurate prediction of irregular behaviors in black-box
ssds,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018, pp. 455–468.

[6] M. Jung and M. Kandemir, “Revisiting widely held ssd expecta-
tions and rethinking system-level implications,” in Proceedings of
the ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’13, 2013, pp. 203–
216.

[7] V. Tarasov, S. Kumar, J. Ma, D. Hildebrand, A. Povzner, G. Kuen-
ning, and E. Zadok, “Extracting flexible, replayable models from
large block traces,” in Proc. FAST’12, 2012, pp. 22–22.

[8] M. Tarihi, H. Asadi, and H. Sarbazi-Azad, “Diskaccel: Accelerating
disk-based experiments by representative sampling,” in Proceed-
ings of the 2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’15, 2015, pp. 297–308.

[9] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The
disksim simulation environment version 4.0 reference manual
(cmu-pdl-08-101),” Parallel Data Laboratory, p. 26, 2008.

[10] N. Dayan, M. K. Svendsen, M. Bjørling, P. Bonnet, and
L. Bouganim, “EagleTree: exploring the design space of SSD-based
algorithms,” Proceedings of the VLDB Endowment, vol. 6, no. 12, pp.
1290–1293, 2013.

[11] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Perfor-
mance impact and interplay of SSD parallelism through advanced
commands, allocation strategy and data granularity,” Proceedings
of the international conference on Supercomputing, pp. 96–107, 2011.

[12] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and
O. Mutlu, “MQSim: A Framework for Enabling Realistic Studies
of Modern Multi-Queue SSD Devices,” in 16th USENIX Conference
on File and Storage Technologies (FAST 18), Oakland, CA, 2018, pp.
49–66.

[13] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and
G. Ganger, “Storage device performance prediction with cart
models,” in Proc. MASCOTS’04, Oct 2004, pp. 588–595.

[14] S. Li and H. H. Huang, “Black-box performance modeling for
solid-state drives,” in 2010 IEEE International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunication
Systems, Aug 2010, pp. 391–393.

[15] H. H. Huang, S. Li, A. Szalay, and A. Terzis, “Performance mod-
eling and analysis of flash-based storage devices,” Mass Storage
Systems and Technologies (MSST), 2011 IEEE 27th Symposium on, pp.
1–11, 2011.

[16] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives,” in Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’09. New York, NY, USA: ACM, 2009, pp. 181–192.

[17] N. Jeremic, G. Mühl, A. Busse, and J. Richling, “The pitfalls of
deploying solid-state drive raids,” in Proceedings of the 4th Annual
International Conference on Systems and Storage, ser. SYSTOR ’11,
2011, pp. 14:1–14:13.

[18] P. Desnoyers, “Analytic Models of SSD Write Performance,” Trans-
actions on Storage, vol. 10, no. 2, pp. 8:1–8:25, Mar. 2014.

[19] E. Ho, E. Kim, C. Paridon, D. Rollins, and T. West, “Understanding
ssd performance using the snia sss performance test specification,”
Storage Networking Industry Association (SNIA), Tech. Rep.,
2012.

[20] K. Smith, “Benchmarking ssds: The devil is in the preconditioning
details,” Benchmarking SSDs: The Devil Is in the Preconditioning
Details, vol. 17, 2009.

[21] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-
stron, “Migrating server storage to ssds: Analysis of tradeoffs,”
in Proceedings of the 4th ACM European Conference on Computer
Systems, ser. EuroSys ’09, 2009, pp. 145–158.

[22] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in Proceed-
ings of SYSTOR 2009, ser. SYSTOR ’09, 2009, pp. 10:1–10:9.

[23] S. Boboila and P. Desnoyers, “Performance models of flash-based
solid-state drives for real workloads,” in 2011 IEEE 27th Symposium
on Mass Storage Systems and Technologies (MSST), May 2011, pp. 1–
6.

[24] G. Yadgar, M. Gabel, S. Jaffer, and B. Schroeder, “Ssd-based
workload characteristics and their performance implications,”
ACM Trans. Storage, vol. 17, no. 1, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3423137

[25] D. Zhou, W. Pan, W. Wang, and T. Xie, “I / o characteristics of
smartphone applications and their implications for emmc design,”
in 2015 IEEE International Symposium on Workload Characterization,
2015, pp. 12 – 21.

[26] “StorageReview,” http://www.storagereview.com, [Online; ac-
cessed 28-February-2021].

[27] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0:
Faster and more flexible program phase analysis,” JILP, vol. 7,
no. 4, pp. 1–28, 2005.

https://www.sciencedirect.com/science/article/pii/S0925231220317884
https://www.sciencedirect.com/science/article/pii/S0925231220317884
https://doi.org/10.1145/3423137
http://www.storagereview.com

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 16

[28] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp.
78–117, Jun. 1970.

[29] B. Hong and T. M. Madhyastha, “The relevance of long-range
dependence in disk traffic and implications for trace synthesis,”
in Proc. MSST’05, pp. 316–326.

[30] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-
Azad, “A Hybrid Non-Volatile Cache Design for Solid-State Drives
Using Comprehensive I/O Characterization,” IEEE Transactions on
Computers, vol. 65, no. 6, pp. 1678–1691, June 2016.

[31] H. Hurst, “Long-term storage capacity of reservoirs,” Transactions
of the American Society of Civil Engineers, vol. 116, pp. 770–799, 1951.

[32] A. Riska and E. Riedel, “Disk drive level workload characteriza-
tion,” in Proceedings of the Annual Conference on USENIX ’06 Annual
Technical Conference, ser. ATEC ’06, 2006, pp. 9–9.

[33] I. Ahmad, “Easy and Efficient Disk I/O Workload Characteri-
zation in VMware ESX Server,” in 2007 IEEE 10th International
Symposium on Workload Characterization, Sept 2007, pp. 149–158.

[34] N. Singh and S. Rao, “Ensemble learning for large-scale workload
prediction,” IEEE Transactions on Emerging Topics in Computing
(TETC), vol. 2, no. 2, pp. 149–165, 2014.

[35] A. Mahanti, D. Eager, and C. Williamson, “Temporal locality
and its impact on web proxy cache performance,” Performance
Evaluation, vol. 42, no. 2, pp. 187 – 203, 2000.

[36] L. Cherkasova and M. Gupta, “Characterizing locality, evolution,
and life span of accesses in enterprise media server workloads,”
in Proceedings of the 12th International Workshop on Network and Op-
erating Systems Support for Digital Audio and Video, ser. NOSSDAV
02. New York, NY, USA: Association for Computing Machinery,
2002, p. 3342.

[37] B. Seo, S. Kang, J. Choi, J. Cha, Y. Won, and S. Yoon, “IO Work-
load Characterization Revisited: A Data-Mining Approach,” IEEE
Transactions on Computers, vol. 63, no. 12, pp. 3026–3038, Dec 2014.

[38] M. Larabel and M. Tippett, “Phoronix test suite,” 2011, [Online;
accessed 1-November-2020].

[39] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux,
“Oltp-bench: An extensible testbed for benchmarking relational
databases,” vol. 7, no. 4, 2013.

[40] N. Johnson, “Jetstress field guide,” Microsoft Services, 2013.
[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds.
Curran Associates, Inc., 2019, pp. 8024–8035.

[43] B. Tremblay, K. Kozubal, W. Li, and C. Padala, “A workload
aware storage platform for large scale computing environments:
Challenges and proposed directions,” in Proceedings of the ACM
7th Workshop on Scientific Cloud Computing, ser. ScienceCloud ’16.
New York, NY, USA: ACM, 2016, pp. 27–33.

[44] Z. Weiss, T. Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “ROOT: replaying multithreaded traces with resource-
oriented ordering,” in ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, 2013, pp. 373–387.

[45] T. E. Pereira, F. Brasileiro, and L. Sampaio, “File system trace
replay methods through the lens of metrology,” in 2016 32nd
Symposium on Mass Storage Systems and Technologies (MSST), May
2016, pp. 1–15.

Mojtaba Tarihi received his BSc and MSc de-
grees from the Sharif University of Technology
(SUT), Tehran, Iran, in 2011 and 2013, respec-
tively, in computer engineering. He has been a
PhD student since 2013 and a PhD candidate
since 2015 at SUT. His current research inter-
ests include storage workload characterization
and device performance modeling.

Soheil Azadvar recieved his BSc in electrical
engineering and his MSc degree in computer en-
gineering, from Sharif University of Technology
(SUT) in 2014 and 2017, respectively. He was
member of Data Storage, Networks, and Pro-
cessing (DSN) Laboratory from September 2017
to August 2020. His research interests include
storage systems and applications of machine
learning to storage systems design.

Arash Tavakkol graduated with a Ph.D. from
Sharif University of Technology, Tehran, Iran in
2015 and spent two years (2016-2018) as a
Postdoc at Systems Group, ETH Zurich. Arash
also has more than ten years of experience in
high-performance computing and design issues
of scale-out data centers. He was one of the
founding members and the technical manager of
the High-Performance Computing Laboratory at
Institute for Research in Fundamental Sciences
(IPM), Tehran, Iran, where the most powerful

Iranian supercomputer was built on 2008 using modern heterogeneous
multicore processors.

Hossein Asadi (M’08, SM’14) received the BSc
and MSc degrees in computer engineering from
the SUT, Tehran, Iran, in 2000 and 2002, re-
spectively, and the PhD degree in computer en-
gineering from Northeastern University, Boston,
MA, USA, in 2007. He is currently a full profes-
sor in Department of Computer engineering at
SUT. He is the founder and director of the Data
Storage, Networks, and Processing (DSN) Labo-
ratory and the director of Sharif HPC Center. His
research interests include data storage systems,

SSDs, operating systems, and high-performance computing. Dr. Asadi
was a recipient of the Distinguished Lecturer Award from SUT in 2010,
the Distinguished Researcher Award and the Distinguished Research
Institute Award from SUT in 2016, the Distinguished Technology Award
from SUT in 2017, and the Distinguished Research Lab Award from SUT
in 2019. He also received the Best Paper Award at IEEE/ACM Design,
Automation, and Test in Europe (DATE) in 2019.

Hamid Sarbazi-Azad is currently professor of
computer science and engineering at Sharif
University of Technology, Tehran, Iran. His re-
search interests include high-performance com-
puter/memory architectures, NoCs and SoCs,
parallel and distributed systems, social net-
works, and storage systems, on which he has
published over 400 refereed papers. He received
Khwarizmi International Award in 2006, TWAS
Young Scientist Award in engineering sciences
in 2007, and Sharif University Distinguished Re-

searcher awards in years 2004, 2007, 2008, 2010 and 2013. He is now
an associate editor of ACM Computing Surveys, IEEE Computer Archi-
tecture Letters, and Elseviers Computers and Electrical Engineering.

	Introduction
	Extraction of Features
	Feature Extraction Methods
	Queue-Based Spatial Distance
	Decaying Counters
	Locality Score

	Overview of Features
	Implementation of Feature Extraction

	Model and Feature Selection
	Preparation of Input Data
	Choice of machine learning models
	Feature Selection
	Inspection of Feature Scores
	Summary

	Evaluation of Prediction Models
	Related Work
	Workload Characterization and Feature Extraction
	Performance Models for Storage Hardware
	Summary

	Conclusion and Future Work
	References
	Biographies
	Mojtaba Tarihi
	Soheil Azadvar
	Arash Tavakkol
	Hossein Asadi
	Hamid Sarbazi-Azad

