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Abstract—Training Machine Learning (ML) models commonly rely
on High-Performance Computing (HPC) centers or cloud servers that
accommodate compute nodes with powerful resources. Users tend to
enhance the accuracy of ML applications by continuous training, after
model refinements, and dataset size increase. With such application
changes, and heterogeneity of HPC nodes, knowing each job execution
time in advance (i.e., prediction) is necessary for efficient job scheduling.
We observe that I/0 accesses highly influence the executing time of
modern ML applications. Unfortunately, existing studies on estimating
job execution time either (a) rely on overestimated user declared time, or
(b) predict execution time mainly based on compute resources (ignoring
1/0O or storage effects), and use complex deep learning models for this
purpose. In this paper, we propose a simple, yet effective method for
predicting the execution time of ML training. Our approach explicitly
accounts for I/O accesses as a critical factor. Our method combines
(a) partial application execution & monitoring, (b) analytical modeling
leveraging ML application characteristics, (c) dynamic re-estimation, and
(d) simplified history-based analysis. Our evaluation on a number of
Convolutional Neural Networks (CNNs) and Transformer models show
that our proposed method predicts the execution time accurately (i.e.,
with error less than 8% for most cases) compared to actual execution.

Index Terms—Machine Learning, Model Training, Execution Time
Prediction, High-Performance Computing, Job Scheduling.

I. INTRODUCTION

Raining Machine Learning (ML) models are known for be-
ing resource-hungry and time-consuming. With their growing
popularity, such workloads are becoming widely deployed on High
Performance Computing (HPC) centers or large cloud providers due
to availability of fast compute- and storage- resources at decent costs.
Accurate prediction of a job execution time, prior to complete
execution, is an important part of efficient scheduling on HPC nodes.
A recent study shows that 85% of execution time in modern ML
workloads are consumed by I/O accesses [1]. However, the execution
time estimation logic in existing HPC schedulers do not treat 1/0 as
a first-grade component; thus are inherently inaccurate.

We observe (a) that ML applications are evolving to become more
accurate through gradually (a) training with other, possibly larger
datasets, or (b) through adding additional layers or model refinements
(e.g., converting ResNet-18 to ResNet-152 by roughly adding 134
more layers). We reveal that changing the datasets in the past had
little impact on training time due to the compact dataset sizes. In
modern applications, however, a sample 3x larger datasets may lead
to linearly 3 x larger training time.

We also observe (b) that heterogeneity in storage resources of HPC
nodes, which is required for execution of different user applications
with different budgets, significantly change the training time for
modern ML applications on a specific HPC node compared to another
node. However, such heterogeneity had little effect in the past with
smaller datasets. For example, our sample experiment shows that
training BEity transformer on Imagenet dataset on a node with
available local-DRAM cache provides 4.8 shorter training time
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compared to typical compute nodes with no local cache accessing
data on network-attached Hard Disk Drives (HDDs).

On the contrary to our observations, traditional schedulers rely
on user-declared execution time, which are commonly overestimated.
Some researchers have introduced history-based predictors (relying on
neural networks), which completely ignore I/O-related information [2]],
or predict only I/O bursts (e.g., as in [3]) not the application execution
time. Some studies capture I/O hints from user script metadata (as
in Prionn [4]), and build a complex ML model to predict application
execution time. Such approaches are application-agnostic (no special
consideration for ML training applications), and do not deal with
I/0 or storage infrastructure explicitly. Other studies perform short
runs to infer full execution time of applications. Such approaches
focus on CPU-only operations [S]], or GPU compute operations [6],
[7], ignoring I/O overheads. In summary, existing studies (a) mostly
ignore I/O, (b) are typically complex without providing any simple
or quick relations of application execution time with its dataset, (c)
do not focus on important domain of improving ML applications
(e.g., model refinement and dataset changes) and also do not consider
storage heterogeneity in HPC nodes, which are the goals of this paper.

In this paper, we propose a simple, yet effective I/O-aware
Execution Time Estimator for ML jobs (I/O-ETEM) with four key
ideas. First, for the changes in ML application dataset size, I/O-
ETEM runs the application (or a representative part) only once to
build a reference I/O model. Then, by using our intuitive scaling
formula, I/O-ETEM estimates the training time for any new datasets
(of similar type). Second, for ML model refinements or storage
infrastructure changes, we propose Partial Run & 1/O Monitor,
which builds a reference I/O model based on a partial execution
and predicts total execution time by our proposed scaling formulas.
Third, we adopt an I/O contention modeling and dynamic phase
change detection for accurate predictions at any moment with multi-
tenant environments. Fourth, we use a database-matching (a simplistic
history-based analysis) to detect previously run ML applications on
exactly same environments and provide immediate predictions without
any partial runs.

We implemented and evaluated I/O-ETEM on a real system. Our
evaluation on a number of Convolutional Neural Networks (CNNs) and
Transformer applications shows that I/O-ETEM accurately predicts
the execution time under the following scenarios: a) less than 6.2%
error for model refinements from ResNet-18 to ResNet-152,
b) an average 14% error for dataset size change, c) 4-8% error for
storage infrastructure changes, and d) less than 2% error for 1/O
contention modeling. I/O-ETEM is accurate and its simplicity eases
the deployability, and also enables architects to quickly understand
the behavior of an ML training.

II. MOTIVATION ON EXECUTION TIME PREDICTION

We observe that heterogeneity of storage infrastructure in HPC
compute nodes and repeated execution of ML training with larger
datasets, changing application parameters (or ML model refinements)
exhibit up to an order of magnitude different training time compared
to previous run on another node, or with another dataset size; thus, a
necessity to predict its ML training time well in-advance to schedule
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on a proper node. First, different storage infrastructure for one HPC
compute node compared to the other node means different speed
of accessing the training dataset per node. Our sample experiment
shows that training BEity transformer on ImageNet dataset on a
node with available local-DRAM cache provides 4.8 x shorter training
time compared to typical nodes with no local cache (accessing data
on network-attached HDDs). Second, changing the training dataset in
the past had no major effect on training time. However, with emerging
large datasets and significant dataset loading overheads compared to
computation overheads, switching from ImageNet to a 3x larger
datasets almost triples the training time, making the dataset size an
important factor in job time prediction. Third, in a well-utilized HPC
center, most nodes are running some jobs while new jobs may arrive.
In this case, predicting when each currently running job finishes is
necessary for efficient node allocation for incoming jobs.

A. Limitation of Existing Work

Existing studies can be classified into two categories: (a) history
analysis and (b) runtime analysis. The former considers the jobs of
the past and typically applies a complex ML model to find similar
patterns. Some of these predictors rely on manually extracted features
from job attributes to predict execution time [8], or to predict I/O
bursts [3]. A few recent approaches try to identify complex patterns
directly from the raw data of user scripts by training a neural network
model, but these predictors either ignore I/O-related information [2]
or may have implicitly included minimal I/O information available in
HPC user submission scripts, ignoring storage infrastructure effects
(e.g., as in [4]). Furthermore, they have high complexity and require
additional resources for building and using the prediction model.
Note that some studies build data-hungry statistical models to predict
storage access performance [9], but are both complex and also focus
on filesystem benchmarks (not ML applications).

Some studies have proposed runtime analysis for predicting
execution time based on performance models focused on compute
resources (no I/O consideration) [6]. As an example, Habitat [7]
runs the application on a specific GPU model, then predicts its
execution time on a different GPU model. Some execute a portion
of an application, compare its performance model to previously run
benchmarks, then estimate its full execution time [5]. These methods
work well for applications similar to specific benchmarks (primarily
CPU-based), and partly rely on static code analysis. As such, they
may not be suitable for modern GPU-centric or rapidly evolving ML
applications. All these limitations demand designing a new approach
to be accurate and simple in predicting execution of ML applications
in common HPC use cases: (1) dataset size change, (2) storage
infrastructure change, (3) ML model refinements, and (4) executing
same ML application again.

III. PROPOSED METHOD

We propose an I/0O-aware Execution Time Estimator for ML jobs
(I/O-ETEM) with four key ideas: (a) an intuitive, linear scaling formula
that enables immediate prediction of an ML execution time by applying
simple arithmetic (for cases of changing the training dataset size),
(b) Partial Run & Estimate, which requires running a small portion
of ML application to predict its whole execution (for ML model
refinements, or storage infrastructure changes), (c) simple but effective
1/O contention modeling in HPC clusters and dynamic phase change
detection (for accurate predictions at any moment), (d) adopting a
much simpler history-tracking idea compared to state-of-the-art by
using a database-matching approach with (ML application, inputs,
infrastructure and conditions) as a key and (execution time) as value,
to immediately predict future execution time of any previously run
ML applications under same conditions.
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Fig. 1. I/O bandwidth stabilizes after 3 to 5 epochs of training

A. I/O-ETEM Basic: Dataset-Aware Execution Modeling

The first important component that we include in I[/O-ETEM,
which is usually absent in previous works is Dataset Size of an ML
application. I/O-ETEM introduces a dataset-aware execution model
that estimates ML training time based on two assumptions: (1) I/O-
time constituting most of the execution time (e.g., 85% as stated
in [1]) or all of the execution time (in pipelined, balanced compute-
and storage-resources), and (2) a known, stable storage bandwidth.
Under these conditions, execution time can be estimated as:

N x Dataset Si
Execution Time = x Dataset Size (1)

S°K | Storage Bandwidth,

Where N is the number of training epochs, and K is the number
of nodes involved in the training of a desired ML application. Our
intuitive model enables immediate estimation of job execution time
when only the dataset size changes, and it implicitly considers all
system-level effects such as file systems, CPU/GPU model, ML model,
and storage infrastructure as long as they do not change. Our analysis
of GPU clusters of a major HPC center (ThetaHPC [10]) reveals
that 92.9% of jobs executed in 2023 used up to three nodes (and
single-node runs as most prevalent). Thus, our goal in this paper
is these common small-scale training jobs, not heavily distributed
training (with significantly different behaviors).

Limitation. If major system components change (e.g., storage
infrastructure due to HPC node migration or ML model parameters
for tuning), I/O bandwidth usage may change (invalidating assumption
2). This demands additional key ideas or optimizations for I/O-ETEM.

B. Optimization 1: Adapting to Model and Infrastructure Changes

To handle model refinements (parameter tuning or ML layer
changing), change in storage infrastructure, or significant change
in dataset type (not size), we propose Partial Run and Estimate.
This key idea is based on two insights: (a) ML training has a
repetitive nature, for example, reading the training datasets multiple
times (i.e., multi-epoch training) to increase the model accuracy, (b)
after a small number of epochs (e.g., three epochs), the average
resource utilization (especially, storage bandwidth usage) stabilizes
and becomes almost constant (Fig. [I). In this regard, we propose
running the workload for predefined small threshold, till the storage
bandwidth usage has minimal variations. Then using Formula [I] and
the amount of remaining data for training (i.e., datasets), and average
storage bandwidth, the total execution time can be accurately estimated.
Algorithm [T] shows the pseudo-code for this operation. Note that the
simplicity, and intuitiveness of Formula[l] and Optimization 1 enables
system architects to understand an ML application behavior quickly
for applying some manual system tuning. This is a bonus benefit,
in addition to the main benefit of our approach, which is to enable
efficient HPC scheduling.

C. Optimization 2: Handling System and Workload Variability

We address dynamic changes in system or infrastructure behavior
(e.g., changes in available storage bandwidth over time), in addition
to application behavior changes (e.g., from data augmentation or
prefetching) by proposing two mechanisms. First, we apply an I/O
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Contention Modeling, inspired by a prior work [11] to model the
possible contention in the usage of shared resources (i.e., modeling
available shared storage bandwidth for a specific compute node at the
time of job execution). The shared resource has a fixed maximum
bandwidth capacity, named PeakBW. Before a job execution on
a specific node starts, I/O-ETEM subtracts the bandwidth already
allocated to earlier compute nodes (sharing same storage backend)
from PeakBW value to determine the RemainingBW available for
the current node(s). We then define an Interference Factor (IF) as
the ratio of RemainingBW to OptimalBW. OptimalBW is the storage
bandwidth observed during the application partial run measurement.
If IF = 1, no contention has occurred. If IF < 1, I/O contention has
occurred, and I/O-ETEM re-estimates job execution time based on
the new storage bandwidth (i.e., RemainingBW). If IF > 1 (i.e., the
available bandwidth is more than the application can use), [/O-ETEM
uses OptimalBW (that application would consume) for execution time
estimations and not the RemainingBW. Note that I/O-ETEM also
has dynamic phase change detection in applications by monitoring
bandwidth usage across epochs and triggering time re-estimation when
a significant deviation (e.g., £10%) is detected.

Algorithm 1 I/O-ETEM Partial Run and Estimate
Require: Dataset size D, Number of epochs /N, Threshold epoch T,
Job J, Storage type S, Number of nodes K
Ensure: Estimated execution time for N epochs: estimate
1: total_bandwidth < 0
1 10_bandwidth < 0
: for epoch < 1 to T do
Run J on K nodes with storage S for epoch
Measure bwepoch for each node in epoch
total_bandwidth + total_bandwidth + Efil bWepoch,i

: jo_bandwidth < total_bandwidth/T
. estimate < (D x N)/io_bandwidth
. return estimate

D. Overall Architecture and Implementation

Fig. 2] shows the high-level workflow of I/O-ETEM. The system
begins by receiving job execution information from user-provided
HPC scripts. If (a) the same workload with identical conditions has
been previously run, the execution time recorded in the database
would be used as estimate. (b) If the workload and dataset type match,
but the dataset size differs, /O-ETEM applies scaling formulas (e.g.,
based on I/O bandwidth) to estimate the new execution time. (c) If
the workload or hardware infrastructure is new, I/O-ETEM applies
Partial Run to estimate the total execution time. After estimating the
execution time, I/O-ETEM accounts for potential dynamic changes
and I/O contentions in infrastructure, re-estimates the execution time
if necessary, and updates the workload profile in the database.

We implemented I/O-ETEM in 330 lines of Python code. Our
implementation of I/O-ETEM clears the page cache upon each run,
and starts two monitoring tools to build performance model. I/O-
ETEM uses external tools of iostat (for disk-bandwidth usage)
and blktrace (for total I/O read/write operations), with negligible
resource usage (less than a CPU core and 1-2GB of DRAM). After
the completion of a partial run of an application, I/O-ETEM records
the execution time, applies the performance model, and our scaling
formulas to predict the total execution time of an application.

IV. EVALUATION METHODOLOGY AND EXPERIMENTAL RESULTS
We evaluate I/O-ETEM on a diverse set of ML workloads
ranging from CNN architectures (e.g., ResNet-18 to ResNet-152,

and Densenet-121) to transformers (e.g., EfficientFormer,
Vit-B/32). We use the ImageNet ILSVRC2012 dataset, which
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Fig. 3. Accurate prediction of ML training time by I/O-ETEM analytical
model for cases with 2.4 larger training dataset size vs. Unisched-Est which
requires partial runs every time

includes 1,000 diverse classes and is 146GB, for our experimental
analysis. To explore different dataset sizes, we employ data augmenta-
tion and modulo indexing, while stochastic downsampling is applied
to mitigate overfitting and maintain dataset diversity. Also, a reduced
number of classes is selected for training to reduce dataset size.

We conduct experiments on a server equipped with an Intel Xeon ES-
2696v4 CPU, 48GB RAM, dual GPUs (RTX 4090/2070 Super), and
separate storage types including Storage Area Network (SAN) using
HDDs and SSDs, and node-local 200GB DRAM cache setup using
OpenCAS. We validate I/O-ETEM on a single node (due to popularity
of jobs in major HPC centers [10]); our selected experiments on
two-node setup also show similar I/O-ETEM accuracy. We compare
I/O-ETEM predictions against actual training times, in addition to
a recent existing work (i.e., Unisched [6]]). Unisched monitors a 5-
minute run for every job, counts the number of training iterations,
and linearly scales to full iterations. We simulate Unisched Estimator
(Unisched-Est) and consider partial runs to be as long as an epoch (i.e.,
20-30 minutes in our experiments). Such choice may even increase
Unisched-Est accuracy.

A. Predicting Effect of Training Dataset Size Change

Unisched-Est provides less than 5% error when the dataset size
changes and achieves this at the cost of partial runs of the application
every time the dataset changes. However, I/O-ETEM does not require
any additional runs, and its analytical model provides immediate
prediction of ML training with different dataset sizes at only 14%
average error (Fig. 3). By partially running an ML application once
(shown as Base in the figure), I/O-ETEM records 1/0 bandwidth and
uses to calculate the execution for any future dataset size with the same
type and structure (in this case, 2.4x larger dataset). Such modeling
is simple and fast, and as expected, leads to suitable prediction (unlike
existing methods that completely ignore dataset size or require complex
model building).

B. Predicting Effect of Storage Infrastructure Change

I/0O-ETEM achieves high accuracy through partial runs and I/O
monitoring (first three epochs), with prediction errors of 4% for SAN
HDD and 8% for local-cache nodes; Unisched-Est has higher error
for SAN HDD, and suffers from up to 73% error for local-cache
nodes (Fig. [). Cached environments have dynamic cache hit-rate
changes, and the I/O-ETEM special I/O considerations capture such
behavior, but Unisched-Est short runs (suitable for compute-only or
static environments) cannot capture such changes at all.
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Fig. 6. I/O-ETEM re-estimates execution time under varying I/O contention

C. Predicting Effect of ML Model Refinement

I/O-ETEM'’s partial run & I/O monitor captures the behavior of
complete modification of ML model (or refinements), thus predicting
training time with little average error of 4.9% on five different
ResNet architectures (Fig. B). Unisched-Est has similar error of
7% if the storage environment is static. Converting ResNet—-18
to ResNet-152 (with almost 130 more layers) significantly changes
the application behavior (increasing Cuda memory and Cuda core
usage from almost 25% to 95%, and reducing storage 90% to below
80%). Note that unlike I/O-ETEM, it is almost impossible for most
existing history-based predictors to estimate execution time after ML
model refinement because the model is not similar to any previous run.
Unisched-Est may use partial runs to predict training time after model
refinement, but its accuracy heavily depends on storage infrastructure.

D. Prediction Under I/O Bandwidth Contention

I/O-ETEM accurately re-estimates application execution time with
negligible error when I/O contention happens (Fig. [6). We evalu-
ated three ML models (e.g., ResNet-50, Swin Transformer,
EfficientNet) across four scenarios: with no I/O contention, with
30%, 50%, and 70% 1/O contention levels. Upon I/O contention
detection, I/O-ETEM calculates and assigns proper available storage
bandwidth to the application and re-scales the execution time with
less than 2% error. Unisched does not consider I/O bandwidth, thus
has no analytical re-estimations if contentions happen.

E. Sensitivity Analysis on Number of Epochs

I/O-ETEM prediction in the worst case (i.e., on local cache with
Sfluctuating 1/0 bandwidth) has little error. As the number of epochs
increases, such error exponentially decreases; however, Unisched-Est
not only has higher error at first, increasing the number of epochs
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Fig. 7. I/O-ETEM enhancing prediction accuracy (lower error), and Unisched-
Est degrading accuracy after increasing epochs (training DenseNet121)

significantly increases its prediction error (Fig.[T). We run the training
on DenseNet—-121 model for 5 to 30 epochs. I/O-ETEM uses up
to 3 epochs (for partial execution) and has 12% prediction error for 5
epochs, because the cache behavior changes from one epoch to next
one till becoming stable. On the other hand, Unisched-Est one-epoch
partial run results in 37% error for 5 epochs. By increasing the number
of epochs (common in ML training), application behavior (i.e., cache
behavior) becomes more stable, leading to less than 0.2% error for
30 epochs, and expected less than 2% error for 100 epochs when
using [/O-ETEM. However, Unisched-Est shows a reverse behavior,

reaching prediction error of 45% with 100 epochs.
V. CONCLUSION AND DISCUSSION

I/O-ETEM is applicable to any single- or multi-node ML training
as long as storage accesses are dominant. [/O-ETEM analytical model,
especially the relation of training time with dataset size and I/O-
bandwidth is a new contribution over prior work. We expect its
analytical model to work for both short and long training jobs, and
also from small-scale to large-scale training. I/O-ETEM partial-run
accurately captures ML training behavior (unlike prior work such as
Unisched [6]), and has negligible overhead with long training jobs
(e.g., less than 5% of training time), and is best with small number of
nodes involved. However, for very short jobs (e.g., less than 3-epoch
training), or for heavily distributed training with many nodes, its
partial run overheads could be non-negligible.
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