
1

HybRAID: A High-Performance Hybrid RAID
Storage Architecture for Write-Intensive

Applications in All-Flash Storage Systems
Maryam Karimi, Reza Salkhordeh, André Brinkmann, and Hossein Asadi

Abstract—With the ever-increasing demand for higher I/O performance and reliability in data-intensive applications, solid-state drives
(SSDs) typically configured as redundant array of independent disks (RAID) are broadly used in enterprise all-flash storage systems.
While a mirrored RAID offers higher performance in random access workloads, parity-based RAIDs (e.g., RAID5) provide higher
performance in sequential accesses with less cost overhead. Previous studies try to address the poor performance of parity-based
RAIDs in small writes (i.e., writes into a single disk) by offering various schemes, including caching or logging small writes. However,
such techniques impose a significant performance and/or reliability overheads and are seldom used in the industry. In addition, our
empirical analysis shows that partial stripe writes, i.e., writing into a fraction of a full array in parity-based RAIDs, can significantly
degrade the I/O performance, which has not been addressed in the previous work. In this paper, we first offer an empirical study which
reveals partial stripe writes reduce the performance of parity-based RAIDs by up to 6.85× compared to full stripe writes (i.e., writes into
entire disks). Then, we propose a high-performance hybrid RAID storage architecture, called HybRAID, which is optimized for write-
intensive applications. HybRAID exploits the advantages of mirror- and parity-based RAIDs to improve the write performance. HybRAID
directs a) aligned full stripe writes to parity-based RAID tier and b) small/partial stripe writes to the RAID1 tier. We propose an online
migration scheme, which aims to move small/partial writes from parity-based RAID to RAID1, based on access frequency of updates.
As a complement, we further offer offline migration, whose aim is to make room in the fast tier for future references. Experimental
results over enterprise SSDs show that HybRAID improves the performance of write-intensive applications by 3.3× and 2.6×, as well
as enhancing performance per cost by 3.1× and 3.0× compared to parity-based RAID and RAID10, respectively, at equivalent costs.

Index Terms—Solid-State Drives, Performance, Redundant Array of Independent Disks, All-flash Storage Systems.

✦

1 INTRODUCTION

ALL-FLASH Storage Systems (AFS) using Solid State Drives
(SSD) have been widely employed for enterprise applica-

tions, which compared to traditionally used Hard Disk Drives
(HDD), offer higher read/write performance, particularly for ran-
dom access workloads [19], [24], [20]. In AFS, multiple SSDs are
configured in Redundant Array of Independent Disks (RAID) [6]
to meet the higher performance, reliability, and capacity require-
ments of emerging data-intensive applications. A RAID array
distributes I/O requests between multiple disks to achieve higher
performance and protects original data from disk failures by either
mirroring such as RAID1 or parity-based schemes such as RAID4,
5, or 6 [6], [24], [4], [5].

While parity-based RAID configurations are widely employed
because of their low cost and high sequential performance, RAID1
provides superior random write performance than parity-based
RAIDs. However, the high cost (2× disk overhead) of RAID1 (or
RAID101) prevents it from being used in AFS. For example, the
cost comparison between RAID5 and RAID10, assuming equal
usable capacities indicates that RAID10 is approximately 33.3% to
80% more expensive than RAID5 when the number of usable disks
ranges from two to nine. Additionally, RAID5 has a well-known
shortcoming called the “small write problem”, which hinders its
optimal usage in AFS. This shortcoming occurs due to write
requests (a.k.a, small writes) that are equal to or smaller than the
stripe unit size (data striping unit, a.k.a., chunk, shown in Fig. 1),

Maryam Karimi and Hossein Asadi are with the Department of Computer
Engineering, Sharif University of Technology, Emails: maryam.karimi@sharif.
edu, asadi@sharif.edu. Reza salkhordeh and André Brinkmann are with the
Department of Computer Science, Johannes Gutenberg University Mainz,
Emails: rsalkhor@uni-mainz.de, brinkman@uni-mainz.de. The corresponding
author: Hossein Asadi (Email:asadi@sharif.edu)

1. RAID10 performs data striping across multiple RAID1 arrays, providing
both data redundancy and improved performance.

SSD1

Stripe Unit Size (or Chunk)

SSD2 SSD3

(R1)

(R2)

SSD4 SSD5

(R4)

Stripe

Construct-Write
(CW)

Read-Modify-Write
(RMW)

(R3)

Parity Calcula�on Request Request Type

Par�al
Stripe Write

Aligned Full
Stripe Write

Not-Aligned Full
Stripe Write

Read-Construct-Write
(RCW)

Write Request
(No read overhead)

Read Overhead

Write Request
(+ Read overhead)

RAID5 (4+1)

Parity Update
(No read overhead)

Parity Update
(+ Read overhead)

(R5)

Small Write

Fig. 1: Read overheads for parity calculation in RAID5 for differ-
ent sizes of write requests with different parity update schemes.

which utilize the read-modify-write parity update scheme (e.g., R1
in Fig. 1) [7], [33], [37]. This parity update scheme necessitates
reading both old data and old parity before producing new parity
per stripe (i.e., one row of corresponding stripe units, shown in
Fig. 1), resulting in a significant performance degradation [8],
[33], [9]. In contrast, an aligned full stripe write only writes data
in the entire stripe (e.g., R5 in Fig. 1) and does not require any pre-
reads in RAID5. It only constructs parity and writes it, resulting
in higher performance.

To reduce the number of pre-reads in small writes generated
by the read-modify-write parity production scheme in RAID5,
studies in [29], [18] suggested using an HDD that sequentially
logs the parity between small writes and their old values. Other
approaches involve caching either data [21], [40], [16], [22], [36],
[30] or parities [11], [10] of small write requests on an SSD [16],
[11], [10], main memory [30], [22], or multiple HDDs [21], [40],
[36]. These approaches write to the main array after the cache is
filled; this way, if small write requests are temporally localized,
the number of reads before writes will be reduced. An alternate
solution is to shift parity updates to the idle time of the storage

maryam.karimi@sharif.edu
maryam.karimi@sharif.edu
asadi@sharif.edu
rsalkhor@uni-mainz.de
brinkman@uni-mainz.de

2

system, which aims to coalesce small write parity updates [17].
Although previous studies have improved parity-based RAID

performance by reducing the number of pre-reads required for
small writes, they either still require pre-reads or lengthen the
recovery process, which can negatively affect reliability. Fur-
thermore, these studies have only focused on the performance
overhead induced by small writes leveraging read-modify-write
parity update scheme, while neglecting the performance overhead
of partial stripe writes, i.e., writes into multiple disks, not the
entire stripe (e.g., R2, R3, R4 in Fig. 1). Alternatively, read-
construct-write parity update scheme is utilized for partial stripe
writes, which involves reading stripe units that have not been
written to while simultaneously writing updated data to regenerate
parity [28], [33], [7].

To the best of our knowledge, none of the previous studies
have targeted the performance overhead of read-construct-write
parity update schemes used in partial stripe writes. However,
our investigation shows that in SSD-based RAID5 arrays, the
performance of partial stripe writes is considerably lower than
that of full stripe writes (up to 6.85× slower), even for large-sized
requests. In addition, partial stripe writes constitute a significant
percentage of write-intensive workloads (on average 30% and up
to 50%). Moreover, previous studies have either failed to eliminate
pre-reads of small write requests (with a read-modify-write parity
update scheme), or suffer from high overheads.

This paper proposes a high-performance hybrid RAID archi-
tecture, called HybRAID, which optimizes I/O performance of
write-intensive applications in AFS. Our results show that RAID5
write performance is considerably low in partial stripe writes (just
as low as small writes). On the other hand, RAID1 has a lower
write performance than RAID5 in full stripe writes. Hence, neither
RAID5 nor RAID1 can singly provide optimal write performance
for various request sizes. Based on these observations, we propose
a hybrid RAID storage architecture that provides a tiered storage
array between RAID5 and RAID1. In our proposed architecture,
write requests for aligned full stripes (e.g., R5 in Fig. 1 which
starts at the beginning of the stripe and fills the whole stripe) are
sent to RAID5, while small writes (e.g., R1 in Fig. 1) and partial
stripe writes (e.g., R2, R3, R4 in Fig. 1) are sent to RAID1 based
on the access frequency of updates.

To mitigate the processing-induced performance overhead, we
further propose a novel multi-thread scheme to simultaneously
issue stripes of write requests to the underlying RAID levels.
HybRAID performs the allocation and migration process online
and requires migration only from the RAID5 tier to RAID1,
resulting in low overhead for online migrations. We further offer
an offline migration process, running in the background, which
is initiated to make a room when a tier is full. We implement
the mapping table for connecting logical addresses to physical
addresses using both SSD and main memory to create a persistent
and high-speed mapping structure. Write requests that modify the
mapping between physical and logical addresses are sent to both
SSD and main memory, while other requests are directed to main
memory only. Due to the small size of the table entries we utilize
a portion of the RAID1 tier to store the mapping table, which
provides higher performance for small write requests. Moreover,
the low migration overhead of HybRAID (≈6.3%) ensures that
the performance of the architecture remains largely unaffected.

We implement HybRAID at the user level on a Gen9 HP server
running Linux 5.15.0 kernel with Ubuntu Server 18.04.5 LTS
operating system. We test HybRAID on more than thirty work-
loads from SNIA MSR Cambridge Traces [25]. The experimental
results show that HybRAID increases the performance of write-
intensive applications by an average of 3.3× and 2.6× compared

to RAID5 and RAID10 with equal cost. Additionally, HybRAID
offers an average of 12.3% reduction in read overhead compared
to RAID5 while imposing 14.4% read overhead compared to
RAID10 with equal raw capacity (cost). We also propose using
heterogeneous SSDs per tier to provide the required endurance
at an efficient cost. Accordingly, the cost-overhead is at most
6.4% compared to RAID5, and the cost-benefit is at least 28.9%
compared to RAID10 with equal usable capacity. Also, by using
heterogeneous SSDs, HybRAID results in an average of 3.1×
and 3.0× performance per cost improvement over RAID5 and
RAID10, respectively.

To our knowledge, the main contributions of this work are as
follows:

• For the first time, we reveal that partial stripe writes
with read-construct-write parity update scheme also exist
in large requests and constitute considerable portion of
write-intensive real-world workloads that can significantly
degrade performance in parity-based RAIDs. We quantify
this overhead and compare mirrored- and parity-based
RAIDs in various types of write requests.

• To the best of our knowledge, this work is the first to
consider the alignment of large requests in parity-based
RAID systems, taking into account the significant per-
formance difference between aligned (e.g., R5 in Fig. 1)
full stripe writes and not-aligned full stripe writes (e.g.,
R4 in Fig. 1, which do not fill the entire stripe and are
considered as multiple partial stripe writes). We propose
HybRAID, which combines RAID1 and RAID5 to create
a high-performance RAID configuration suitable for all
types of write access patterns.

• We propose a low overhead migration policy to move
the data between two RAID tiers when the data stripes
are accessed with different patterns. Our migration policy
imposes only 6.3% performance overhead.

• We implement HybRAID on a real platform using en-
terprise SSDs and utilize Linux available RAID software
module (mdadm) to create RAID tiers. HybRAID is de-
signed in such a way that it can seamlessly integrate
into the mdadm kernel module. The results from testing
HybRAID with over thirty real workloads indicate an
average performance increase of 3.3× and 2.6×, as well as
an average performance per cost improvement of 3.1× and
3.0× compared to RAID5 and RAID10 with equal usable
capacity, respectively.

The rest of the paper is organized as follows: Section 2
illustrates the motivations behind HybRAID. Section 3 explains
the proposed architecture, including the hardware architecture and
algorithm. Section 4 demonstrates the experimental setup and
presents the experimental results. Section 5 discusses previous
studies. Finally, Section 6 concludes the paper.

2 MOTIVATION

Here we begin by comparing the write performance of RAID5 and
RAID1 in terms of write request size for aligned and non-aligned
addresses based on the stripe size. Then we provide real-world
workload characterization demonstrating the percentage of small,
partial, and full stripe writes in write-intensive workloads.

2.1 Performance characterization of RAID5 and RAID1
in write-only workloads: request size
Here, we demonstrate the challenges of using RAID5 in terms of
write performance, which have not been addressed in the previous

3

5.95X 6.85X

5.22X 5.87X

5.64X 5.24X

6.06X 5.31X

(a) With aligned addresses based on the stripe size

0 0
5 5

10 10
15 15
20 20
25 25

2.4 2.1 2.2 1.8 1.7 1.8

21.0
16.8

14.0 12.3 10.6 9.8

Queue Depth = 1 RAID5 RAID1

4KB

Small Write
8KB

Partial Stripe 12KB

Full stripe 16KB

Small Write
20KB

Partial Stripe 24KB

Full stripe

Block Request Size

0 0

15 15

30 30

45 45

P
e
rf

o
rm

a
n
ce

 (
IO

P
S
×

1
0

0
0

)

7.7 6.2 5.6 5.2 4.9 4.7

40.9

30.8
23.1

19.2
15.5 13.3

Queue Depth = 16

(b) With not-aligned addresses based on the stripe size

Fig. 2: Performance of RAID5 and RAID1 in IOPS (I/O per
Second) unit with random access write-only workload at QD=1,16
for small, partial and full stripe request sizes where addresses
are a) aligned, and b) not aligned based on the stripe size (test
configurations are in Table 1).

work. We then provide the main motivation of HybRAID by com-
paring the write performance between RAID1 and RAID5 with
different request sizes and address alignments. Table 1 reports the
experimental setup used in our motivational tests. The employed
workloads are synthetic random write, generated by fio module.
Fig. 2 depicts write performance results for different request sizes.
In Fig. 2a, the addresses are aligned based on the stripe size of the
RAID5 array (in this case, 12KB). Hence, 4KB, 8KB, and 12KB
request sizes are declared as small, partial stripe, and full stripe
writes, respectively. Also, a 16KB request is composed of one full
stripe write and one small write, a 20KB request comprises one
full stripe and one partial stripe write, and a 24KB request includes
two full stripe writes. Similar results are shown in Fig. 2b when

TABLE 1: RAID and workload specification for motivational tests.

RAID Specification

Stripe unit size 4KB
Type of RAID Software RAID

(mdadm module)
#data disks + #redundant disks in RAID5 3+1
#data disks + #redundant disks in RAID1 1+1

Scheduler noop

Workload Specification

Address access pattern Random write
Workload generator fio module (synthetic)

Queue depth (numjobs-iodepth) 1-1 , 16-16
workload size 10GB each job

Disks Specification

SSD model 256GB Samsung 860 PRO
Operating System Specification

OS Ubuntu Server 18.04.5 LTS
Kernel Version 5.15.0

addresses are not aligned based on the stripe size.
The performance results in Fig. 2a show that RAID5 acts

poorly in both small and partial stripe writes. Small write per-
formance is on average 5.7× lower than full stripe write perfor-
mance with various Queue Depths (QD)2 (QD=1, 16). In addition,
partial stripe write performance is on average 5.8× lower than
full stripe writes. This is because both small writes and partial
stripe writes require pre-reads (read-modify-write in small writes
and read-construct-write in partial stripe writes) to compute the
updated parity. Hence, RAID5 write performance not only drops
at small writes but also at partial stripe writes to an almost equal
extent, which previous studies fail to address or mitigate such
performance degradation.

Fig. 2a shows that when requests have no concurrency
(QD=1), RAID1 performance for small and partial stripe writes
is on average 7.7× higher than RAID5. This is due to that RAID1
does not require pre-reads and also needs fewer writes to disks. On
the contrary, in full stripe writes, RAID5 performance is slightly
(4%) higher than RAID1 for QD of 1. Similarly, the results for QD
of 16 demonstrate that small and partial stripe write performance
in RAID1 is on average 4.2× still higher than RAID5. Therefore,
more disks in RAID5 (compared to RAID1) and greater queue
depth (QD=16) cannot eliminate performance reduction caused
by small and partial stripe writes in RAID5. Also, in QD of
16, the ratio between full stripe write performance of RAID5
to RAID1 becomes more remarkable than that of QD of 1; in
particular, for 12KB and 24KB full stripe write requests, RAID5
to RAID1 performance ratio reaches 1.9× and 2.2×, respectively
(Compare it to the mere 4% increase observed at a QD of 1).
This is because full stripe writes do not require any read opera-
tions and increasing the queue depth leads to more simultaneous
disk accesses, resulting in greater performance improvement. The
characteristic of RAID10 compared to RAID5 is similar to that
of RAID1 compared to RAID5, in such a way that for small and
partial stripe writes, RAID10 outperforms RAID5, while for full
stripe writes, RAID5 outperforms RAID10. Overall, we conclude
that RAID5 performance is higher than RAID1/RAID10 at full
stripe writes, while RAID1/RAID10 performance for small and
partial stripe writes is greater than RAID5 even at high queue
depths or when using less disks in RAID1/RAID10 compared to
RAID5.

2. Queue depth is the number of I/O requests that can be issued in parallel
to the underlying storage subsystem, which can help increase the number of
I/O operations per second.

0 0
20 20
40 40
60 60
80 80

100 100

Pe
rc

en
ta

ge
 (%

)

Small-Write (#)
Partial-Stripe Write (#)
Full-Stripe Write (#)

Small-Write (Size)
Partial-Stripe Write (Size)
Full-Stripe Write (Size)

(a) Stripe unit size=4KB

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3 AV

G

Workloads

0 0
20 20
40 40
60 60
80 80

100 100

Pe
rc

en
ta

ge
 (%

)

(b) Stripe unit size=8KB

Fig. 3: Write-intensive SNIA [25] workload characterization based
on request size in RAID5 (3+1) with a) 4KB, b) 8KB stripe unit
size.

4

Our empirical study here also shows that address alignment
of write requests plays an important role in the performance
characteristics of RAID5. Fig. 2b depicts similar results with a
difference that the addresses are not aligned based on stripe size.
In this case, RAID5 performance only differs greatly in full stripe
writes compared to the results shown in Fig. 2a, where addresses
are aligned. As shown in Fig. 2b, the full stripe write performance
of RAID5 reaches the same low performance of small and partial
stripe writes in RAID5. This is because when addresses are not
aligned by the stripe size, full stripe write requests are likely
divided into few small and partial stripe writes and are not entirely
fitted in one (or multiple) stripes. Therefore, their performance
is as low as the small and partial stripe requests. As a result,
considering the address alignment of write requests based on stripe
size is vital in attaining the peak performance of RAID5.

2.2 Workload characterization: write request size and
number of write requests
In this section, we describe write-intensive workloads in terms
of write request size grouped into small, partial, and full stripe
writes. As illustrated in Fig. 1, the starting address of a request
and the request size will classify each request into either small,
partial, or full stripe. Additionally, each request can consist of
multiple stripes. For instance, in Fig. 1, R4 includes two partial
stripe writes. In our characterization study, we treat this request
type as two distinct partial stripe writes. Fig. 3 addresses the
SNIA [25] write-intensive workloads that have on average 79.5%
write requests. This figure shows that small writes are dominant
in number, while full and partial stripe requests are dominant in
size. Hence, to architect a high-performance storage array, one
should consider improving the performance for all types of the
requests including small, partial, and full stripe; however, no single
existing RAID configuration can provide high performance for
all types (this is shown in Fig. 2a). To our knowledge, previous
works only consider improving performance drop caused by small
writes (with read-modify-write parity production), but they have
not addressed the partial stripe writes (with read-construct-write
parity production). This is while our characterization shows that
the percentage of partial stripe writes in write-intensive workloads
is, on average 29% and 35% for stripe unit size of 4KB (Fig.
3a) and 8KB (Fig. 3b), respectively. In some workloads such as
web_0, web_1 and web_3, the percentage of partial stripe writes
is close to 50%. Such partial stripe write requests significantly
decrease the performance of parity-based RAID (such as RAID5),
as confirmed by the results shown in Fig. 2a.

3 PROPOSED ARCHITECTURE

The motivational results presented earlier indicate that small and
partial stripe writes constitute a significant proportion of write-
intensive real-world workloads. This can adversely affect the
performance of parity-based RAID storage systems, particularly
RAID5, which demonstrates sub-optimal performance when han-
dling small and partial stripe writes. Full stripe write requests are
found to be optimal in terms of performance in RAID5 when
the addresses are aligned relative to the stripe size. However,
small and partial stripe write requests show higher performance
in RAID1 than in RAID5. Our proposed architecture, called
HybRAID, uses a tiering method that includes two tiers of SSD-
based RAID1 and RAID5. In the following, we will cover: 1)
how to assign requests to different tiers in HybRAID, 2) the
types of data migrations required in HybRAID, 3) the proposed
HybRAID architecture and its implementation details, and finally
4) the proposed algorithm used in HybRAID.

Applica�on/Workload

SUS SUS SUS
SUSSUSSUS

SUS SUS
Full stripe

Par�al stripe

SUS
SUS

Small

HybRAID

Full stripe
SUS

The write request has 1 small write,
2 aligned full stripe writes,
1 partial stripe write

a)

Open, Lseek64, Read, Write System Calls

Opera�ng System

Request
Allocated

SSD1

SUS
Parity

SSD3

SUS
SUS

RAID5 (4+1) Tier
SSD4

SUS
SUS

SSD2

SUS
SUS

Request issued to
the storage layer

SUS: Stripe Unit Size

SUS
SUS SUS SUS

SUSSUSSUS
SUS SUS

RAID5 Tier
RAID5 Tier

RAID1 Tier

SUS
SUS

RAID1 Tier

Through Block I/O Layer

SSD4

Parity
SUS

H
yb

RA
ID

M

od
ul

es

RAID1 (1+1) Tier
SSD2

SUS SUS
SUS

SSD1

SUS SUS
SUS

I/O Write Request Submi�ed
(Size = 11 SUS)

Request
Dispatched

b1)

b2)

c)

Fig. 4: Example of data allocations in two tiers of HybRAID
(SUS: Stripe Unit Size)

3.1 Data Allocation

In the proposed architecture, we use two tiers: RAID1 and RAID5.
Requests are allocated to each tier based on their size. Fig. 4
illustrates the data allocation in each tier. In this figure, RAID5
has five disks, while RAID1 contains two disks. For example, one
issued write request includes 11 Stripe Unit Sizes (SUS), which
are arranged and issued from the application, as shown in Fig.
4a. Then, in Fig. 4b1, by HybRAID modules, the requests are
divided into two full stripes, one small stripe, and one partial
stripe size. Because RAID5 has higher performance for full stripe
requests, full stripe write requests should be placed in RAID5. On
the other hand, write requests that are less than full stripe sizes
(i.e., small and partial stripe writes) should be placed in RAID1
to achieve higher performance. When the allocations of all stripes
are completed, HybRAID dispatches all stripes simultaneously to
the underlying storage space (Fig. 4b2) by calling system call
functions such as open, lseek, and write to the corresponding
tiers. Afterwards, the block I/O layer in the operating system takes
control of dispatching requests to the storage layer (Fig. 4c). As
shown in Fig. 4c, two aligned full stripe writes are allocated in
the RAID5 tier of HybRAID, while small and partial stripe writes
are allocated in RAID1. Only aligned (based on stripe size) full
stripe size requests should be placed in RAID5 (according to the
results in Fig. 2). Hence, addressing, migration, and allocation unit
size in HybRAID are determined based on the array stripe size.
This approach helps to simplify data placement and reduce overall
overhead. Additionally, the allocation decision in HybRAID is not
solely dependent on the write request size but also on the update
frequency, which will be discussed in detail in Section 3.4.

There are two different scenarios that illustrate possible data
migrations. The first scenario involves the system response when
an access is granted to update a single stripe unit size that was
previously located in RAID5 (such as the red full stripe SUSes
shown in Fig. 4a). Given that the current write request is a small
write, it is optimal to write it in RAID1. However, since this
address is already assigned in RAID5, the question is whether it
is beneficial to migrate it to RAID1. The second scenario pertains
to situations where full stripe update access is requested for an
address that is already located in RAID1 (such as the blue partial
stripe SUSes shown in Fig. 4a). In such cases, writing the full
stripe in RAID5 is optimal. Here it is not immediately clear

5

whether it is beneficial to migrate to RAID5. These two questions
will be answered in the next subsection.

3.2 Data Migration
This section elaborates the data migrations that would help the
overall performance. Fig. 5 shows the situations in which the
data tier may need to be changed. Fig. 5a shows the state where
the update request is less than the full stripe size, while it was
previously accessed and allocated in the RAID5 tier (as indicated
by the red full stripe SUSes shown in Fig. 4). As the request
size is less than a full stripe, RAID1 offers higher performance.
Therefore, the requested data is assigned without data movement
by placing it in the corresponding address in the RAID1 tier.
However, because addressing is based on the stripe size, it is
necessary to migrate the rest of the stripe from RAID5 to the
RAID1 tier. This migration is performed online, in which the
requested data is directly written to RAID1 while other chunks
within the stripe are simultaneously migrated from RAID5 to
RAID1. The request acknowledgment is issued after all chunks are
migrated successfully and the corresponding stripes in RAID5 are
marked as freed for subsequent requests. In Fig. 5b, the requested
update data is a full stripe write that was previously written into
RAID1 (as indicated by the blue partial stripe SUSes shown in Fig.
4). HybRAID optimizes performance by placing aligned full stripe
size requests in the RAID5 tier. Since all the chunks within the
stripe need to be updated, there are no remaining chunks that need
to be moved from RAID1 to RAID5. Therefore, if the decision is
to migrate data from RAID1 to RAID5, there is no need to transfer
data between the two tiers. Instead, only the corresponding stripes
in RAID1 are marked as freed for subsequent requests.

Fig. 5c shows a situation where all physical addresses in the
RAID1 tier are filled. Therefore, it is necessary to free up space
for subsequent requests. In this case, since the RAID1 tier is
usually smaller in space than the RAID5 tier, it is necessary to
migrate data blocks from RAID1 to the RAID5 tier offline based
on the adopted policies. Offline migration allows for more critical
data to be placed in the RAID1 tier and can be performed in the
background, without affecting servicing of original requests.

3.3 Architecture
Here, we illustrate the architecture, modules, and data structures
used to implement HybRAID. HybRAID consists of three parts
(Fig. 6): the user, the operating system (kernel), and the data
storage space. We implement HybRAID in the user space, which
sends requests to the block I/O layer after performing a pre-
processing operation. The requests are then issued to the data
storage layer, which composed of two tiers of RAID1 and RAID5.
Each part includes specific arrangements for implementing the
proposed architecture, which are detailed next.

There are four basic units in the user space section, including
the following: 1) I/O parser unit, 2) tier selection decision-making
unit, 3) dispatcher (thread generator) unit, and 4) tier reclamation
unit (as shown in the top part of Fig. 6). In the I/O parser
unit, requests are read from a workload trace. As explored in
the motivational results in Section 2.1, 3.1, the addressing of
HybRAID is based on the stripe size to achieve the highest
performance of the RAID5 tier. Hence, the requests are divided
into stripe sizes and then the start and end offsets of each stripe
size are determined. In the tier selection decision-making unit, the
data placement and migration procedures are applied. Based on the
size (and also update frequency, further detail in Section 3.4) of the
divided stripes of the request, if the divided stripe is an aligned full
stripe write, it is prepared to be sent to the RAID5 tier; otherwise,

SUS

RAID1

Alloca�on to RAID1 �er
1: Update Request 2: Alloca�on

3: Online migra�on of not requested
chunks of the stripe to RAID1

Online Migra�on: RAID5à RAID1
Large to small request size update

High Frequency Small Write Update Request

Previously wri�en
Allocated

Stripen of RAID1Stripem of RAID5 SUSSUSSUSSUS

SUS
SUS

SUS: Stripe Unit Size

RAID5

(a) Online migration of a stripe from RAID5 to RAID1 tier
(requires online data movement)

RAID5 RAID1

High Frequency Full Stripe Update RequestAlloca�on to RAID5 �er (without migra�on)
1: Update Request2: Alloca�on

Migra�on without data movement: RAID1à RAID5
Small to large request size update

Stripex of RAID5 Stripey of RAID1SUSSUSSUSSUS SUS SUS

SUSPreviously wri�en
SUSAllocated

(b) RAID1 to RAID5 migration of a stripe (without data move-
ment)

RAID5 RAID1

Offline Migra�on: RAID1à RAID5
Full Migra�on

Stripez of RAID1Stripew of RAID5

(c) Offline migration of a stripe from RAID1 to RAID5 tier
(requires offline data movement)

Fig. 5: Examples of tier migrations of an LBA (Logical Block
Address) triggered by a,b) update requests for previously written
stripes shown in Fig. 4, and c) reaching the full capacity of RAID1
in HybRAID.

Code Structure (User Level)

Applica�on / Workload
User

Space

Kernel
Space

I/O

System Calls
1. Open (Options:
 O_DIRECT, O_SYNC)
2. Lseek64
3. Read
4. Write
5. Close

I/O Schedulers
({noop}, cfq, deadline)

Block I/O Devices
(/dev/md0, /dev/md1, /dev/sda,…)

Kernel Module
(mdadm)

blktrace blkparse

Ca
n

be
 a

dd
ed

 in
m

da
dm

 k
er

ne
l

m
od

ul
e

Stripe-based Request
Division (Offsets Handler)

Mapping
Planner

Online Migra�on
Planner

Storage
Space

St
rip

e-
ba

se
d

W
rit

e
Th

re
ad

s

I/O Parser Unit Tier Selec�on Decision-making Unit
I/O Parser

[Size, Address, Timestamp,
Type(Read/Write)]

Offline Migra�on
Planner

Tier Reclama�on Unit

Thread Generator

Dispatcher Unit

Migra�ons
SSD1 SSD2 SSDn

...

.

RAID5/50 �er RAID1/10 �er

SSD1
...
. SSD2m

Block I/O
Layer

Fig. 6: Architecture of HybRAID in Linux OS stack diagram.

if it is smaller than the full stripe size, it is prepared to be sent
to the RAID1 tier. If any stripes of the request require online
migration, it will be performed by the online migration planner.
Concurrent with this procedure, the offline migration planner (in
tier reclamation unit) monitors the used capacity of the RAID1
tier. It will migrate the RAID1 stripes to RAID5 when the RAID1
tier is full and requires reclamation. The offline migration planner
decides which stripes of the RAID1 tier would be more suitable to
migrate to the RAID5 tier. The entire process of offline migration
planner is managed in the background. Finally, in the dispatcher
unit, separate stripes of a request are concurrently sent by the block

6

LBA: Logical Block Address
 PBA: Physical Block Address

Tier Selec�on Decision-making Unit

Mapping
Planner

Freed PBAs

History of LBA
Access Records

Offline Migra�on
Planner

Tier Reclama�on Unit

Vic�m Selec�on for Reclama�on
(based on the least number of accesses)

Online Migra�on
Planner

Online Migra�on
Threshold

Full RAID1/RAID5 Threshold
Number of Offline

Migra�onsData Structures

Storage Space
RAID1/10 �er

SSD1 SSD2m

SSD2

RAID5/50 �er

SSD1 SSDn

RAM
Mapping Table

(LBAàPBA)

Writes
Writes

Reads

Modules

Fig. 7: Modules and data structures of HybRAID with used
thresholds for migrations. (RAM: Random Access Memory)

I/O layer using a multi-threaded function to enhance performance.
We utilize the mdadm software RAID module available in

Linux to implement RAID1 and RAID5. Additionally, we employ
the blktrace and blkparse modules to monitor and verify the
workloads running on top of the storage devices. We opt for the
noop scheduler since it offers the best performance for SSDs [15].
The requests are issued directly to the underlying layer of storage
devices using the O DIRECT and O SYNC options of the open
system call function to directly issue requests to the storage layer
devices. We utilize the read and write system calls to issue read
and write requests to the block I/O layer of the operating system.
The lseek64 library function is exploited for addressing a device.
The valloc, memset, and free library functions are utilized for
allocating and deallocating a buffer in memory, which is employed
either in write requests as the content to be written or in read
requests as the read content. In the storage layer, we have two tiers
of RAID1 and RAID5 consist of enterprise SSDs, which are seen
as distinct storage devices. The mapping table is responsible for
connecting logical addresses to physical ones. We implement the
mapping table in a structure using both SSD and main memory to
provide a persistent and high-speed mapping structure (shown in
Fig. 7). Write requests that change the mapping between Physical
Block Address (PBA) and Logical Block Address (LBA) will be
issued to both SSD and main memory, whereas other requests will
only be issued to main memory. Since the mapping table entries
are small (4 bytes), we use a portion of the RAID1 tier (shown
in Fig. 7) to maintain the mapping table, which provides higher
performance for small write requests and also ensures protection
against disk failures. Since the migration overhead of HybRAID
is quite low (averaging at 6.3%, with further details in Sec. 4.4.1),
and the mapping table entries are small in size, the performance
of the proposed architecture is not significantly affected.

Fig. 7 illustrates the detailed data and software structures of
the HybRAID architecture. The request is first divided into stripe
sizes. For each stripe size, the mapping module is executed to
determine the physical stripe address and required migrations for
the request logical stripes. Before assigning a physical address,
each logical address is checked for an entry in the mapping table.
If an entry is found, it indicates an update request; otherwise,
the request is a new assignment. If it is a new assignment, the
corresponding tier is determined from the tiering placement unit,
and a physical stripe address is assigned in the mapping table
for further access. To allocate physical addresses in each tier, a
data structure is used to store freed physical addresses during
migrations. Initially, physical address allocation is done linearly
up to the size of each tier, and then the data structure of freed
physical addresses is utilized. If the requested address already
exists in the mapping table, the online migration assessment unit
checks whether online migration is necessary. If it is required,
the destination physical address is determined and placed in the

mapping table. The physical address of the source tier is freed
and placed in the data structure of freed physical addresses for
subsequent allocations.

In the online migration planner, if the number of write
accesses to an address is greater than the specified threshold
(online migration threshold), online migration (from RAID5 to
RAID1) is performed; otherwise, it remains in its current tier.
This is determined through a data structure named the history of
LBA access records, which dynamically creates a counter for each
accessed logical address (in stripe size unit), increments its value
after each write access, and removes it when the stripe is migrated.
We determine the optimal value for the online migration threshold
through empirical experiments with write-intensive workloads. In
our experiments, a very low threshold increases migrations with
diminished performance gain, as it results in migrating chunks
with negligible benefits lower than the migration cost, while a
very large threshold reduces the performance gain by neglecting
the migration of frequently updated stripes. Hence, the appropriate
online migration threshold lies between these values, practically
determined to move only chunks where the benefit outweighs the
migration cost. This empirically determined value of the online
migration threshold is four, which we use in the experiments
section.

The offline migration module specifies a filling threshold
for RAID5 (full RAID5 threshold) and RAID1 tier (full RAID1
threshold). To be able to respond to new requests, the offline
migration is conducted in the background once the number of
occupied physical addresses reaches the specified threshold. Dur-
ing this process, stripes are transferred from the full tier to the free
tier. It selects victim stripes to migrate from the full tier based on
the access history of logical addresses, prioritizing those with the
lowest access count. Another threshold is specified in the offline
migration module to determine the number of stripes that must
be transferred (number of offline migrations) to reclaim the full
tier. After specifying the final physical address for each request
stripe, the thread generator module sends all the request stripes
simultaneously to the storage layer via the OS block I/O layer
functions (such as read/write/lseek64 system calls). The entire
code structure in the user space can be integrated into the mdadm
module of the Linux OS kernel.

3.4 Algorithm Used in HybRAID

As previously stated, RAID5 provides higher performance for
aligned full stripe size write requests while RAID1 is better
suited for small or partial stripe writes. If a new write access
to an LBA is requested and it is an aligned full stripe, it will
be directed to the RAID5 tier. Otherwise, it will be directed to
the RAID1 tier. When an update access to an LBA is requested,
the destination tier depends on three factors: 1) the current tier,
2) the size of the corresponding stripe of the request (full stripe
or small/partial stripe), and 3) the access history of the requested
LBA in the current tier. Table 2 demonstrates the placement policy
for determining the destination tier of update requests based on
the current tier and the size of the write request. If the size of the
update request is below the full stripe size, RAID1 may be the best
destination tier, but whether migration is necessary depends on the
current tier. Migrating from RAID5 to RAID1 requires moving
some not-updated chunks from the source tier to the destination
tier. In contrast, during the migration from RAID1 to RAID5, full
stripe write requests will completely fill the stripe and eliminate
the need for any data movements. Instead, it only modifies specific
metadata such as the write access history, mapping table, and freed
physical addresses during the migrations. In other scenarios where

7

TABLE 2: Placement policy of HybRAID for update write re-
quests based on current tier and write request size.

Stripe-based divided
update request

Current
tier

Destination
tier

Migration Data Movement

size < full stripe RAID5 RAID1 Yes Yes
size < full stripe RAID1 RAID1 No –
size = full stripe RAID5 RAID5 No –
size = full stripe RAID1 RAID5 Yes No

RAID1
(Full-RAID1

threshold is not
reached)

RAID5
(Full-RAID5

threshold is not
reached)

High access frequency full stripe write
update

(No data movement required)

High access frequency small/par�al stripe
write updateàOnline Migra�on

New small/par�al
stripe write

Small/par�al stripe
write update

Low access
frequency full stripe

write update

New full stripe
write

Full stripe write
update

Low access frequency
small/par�al stripe write update

Fig. 8: State diagram of HybRAID.

the destination tier remains unchanged, only the requested chunks
will be written, and also certain metadata (such as the history of
write accesses) will be updated. Meanwhile, the remaining chunks
will remain unchanged without any data movements. Therefore,
according to Table 2, only one transition from RAID5 to RAID1
requires data movement.

Fig. 8 illustrates the state diagram of HybRAID, which con-
sists of two states: RAID1 and RAID5. This figure does not
include offline migration because both tiers have free space and
do not require reclamation. This state diagram shows all possible
transitions between the two tiers, which depend on the current tier,
the write request size, and the requested LBA access history. For
first access write requests, HybRAID directs small/partial stripe
sizes to the RAID1 tier, while directing aligned full stripe sizes to
the RAID5 tier for higher performance. For second and subsequent
write accesses to an LBA (i.e., update requests), HybRAID also
considers the LBA write access history. To minimize the number
of ineffective migrations, HybRAID changes the LBA tier only
when its access history exceeds a predefined threshold called
the online migration threshold. As shown in Fig. 8, migrations
(from RAID5 to RAID1 or vice versa) occur only when the access
history of the requested LBA reaches this threshold. For instance,
if an LBA exists in the RAID5 tier and a small/partial stripe
update is requested, it will be migrated to RAID1, provided that its
access history in RAID5 reaches the online migration threshold.
Otherwise, it will remain in the same tier (RAID5). It is worth
noting that changing the LBA tier in HybRAID does not always
result in data movements between the two tiers. For example, if
full stripe size requests are issued to RAID1, changing the LBA
tier from RAID1 to RAID5 only requires some metadata updates
and does not require data movements.

Algorithm 1 depicts the workflow of the tier selection and
migration decision, which was presented in Fig. 8. This module
triggers online when a write request is dispatched. First, map-
ping table and mapping tier are set to their initial values (Line
1), which preserve physical addresses and tiers corresponding
to LBAs, respectively. Then, for each divided stripe size of the
request, the start and end offset within each stripe are determined
(Line 4). The assignable physical address is obtained for each
tier in Lines 5 through Line 9. If tier(1||5) stripe counter3 has
not reached the end of the tier space, the assignable phys-
ical address will be equal to tier(1||5) stripe counter. Other-

3. Here 1||5 represents two variables declared for RAID1 tier:1 and RAID5
tier:5

wise, the assignable physical address is extracted from the
tier(1||5) f reed table, which is used for keeping freed physical
stripes during migrations. When exploiting freed physical ad-
dresses in tier(1||5) f reed table, we should erase the used entry
since it is currently in use (Line 8). Determining destination tier
and online migrations are accomplished from Line 10 through
Line 29. This has two states: 1) the first write access (Line 10
through Line 15) and 2) the second (or more) write accesses
to the LBA (Line 16 through Line 29). The first access to
the LBA is specified such that Mapping Table has its initial
value in that LBA (Line 10). In this state, the divided request
size determines its destination tier and the Mapping Table[LBAi]

Algorithm 1 Tier selection and Migration Decision
LBAi : Logical block address of ith stripe of Write Request
Mapping Table / Mapping Tier : Input is stripe’s LBA, output is stripe’s PBA / tier
tier(1||5) f reed table : maintains the freed physical stripe addresses during migrations
per tier (RAID1 or RAID5)
tier(1||5) history : Input is stripe’s LBA, output is number of write accesses to the LBA
per tier (RAID1 or RAID5)
migrationi : Declares whether ith stripe of request requires migration or not
tier(1||5) stripe counter : A counter for traversing on physical stripe address per tier
(RAID1 or RAID5)
tier(1||5) physical stripe add : Current assignable physical stripe address per tier
(RAID1 or RAID5)

1: Mapping Table for all entries← 0; Mapping Tier for all entries← ‘N’;
tier(1||5) stripe counter ← 0

2: procedure MAPPING MODULE (WRITE REQUEST)
3: for each stripe size of Write Request as stripei do
4: Set startoffset and endoffset for stripei as sto f f seti and endo f f seti
5: if tier(1||5) stripe counter < tier(1||5) number o f stripes then
6: tier(1||5) physical stripe add ← tier(1||5) stripe counter;

tier(1||5) stripe counter += 1
7: else tier(1||5) physical stripe add ← tier(1||5) f reed table.begin()
8: Erase tier(1||5) f reed table.begin()
9: end if

10: if Mapping Table [LBAi] = 0 then migrationi← False
11: if (sto f f seti + endo f f seti = RAID5 data disk number−1) then

Mapping Tier [LBAi]← ‘5’
12: insert tier5 history[LBAi] and set it to 1; Mapping Table [LBAi]←

tier5 physical stripe add
13: else insert tier1 history[LBAi] and set it to 1; Mapping Tier [LBAi]←

‘1’
14: Mapping Table [LBAi]← tier1 physical stripe add
15: end if
16: else if (Table Tier[LBAi] = ‘5’) and (sto f f seti + endo f f seti ̸=

RAID5 data disk number−1) and (tier5 history[LBAi] ≥
online migration threshold)) then

17: migrationi ← True; insert tier1 history[LBAi] and set it to 1
18: erase tier5 history[LBAi]; pre physical stripe addi ←

Mapping Table [LBAi]
19: Mapping Table[LBAi]← tier1 physical stripe add;

Mapping Tier[LBAi]← ‘1’
20: After receiving the migration ack, insert tier5 f reed table with

pre physical stripe addi
21: else if (Table Tier[LBAi] = ‘1’) and (sto f f seti+endo f f seti =

RAID5 data disk number−1) and (tier1 history[LBAi] ≥
online migration threshold) then

22: migrationi ← False; insert tier5 history[LBAi] and set it to 1
23: erase tier1 history[LBAi]; insert tier1 f reed table with

Mapping Table[LBAi]
24: Mapping Table[LBAi]← tier5 physical stripe add;

Mapping Tier[LBAi]← ‘5’
25: else migrationi ← False
26: if Table Tier[LBAi] = ‘5’ then tier5 history[LBAi] += 1
27: else tier1 history[LBAi] += 1
28: end if
29: end if

/* Set thread write data of all stripes of the request to be dispatched in
multi-thread manner to the storage layer */

30: thread write datai.address← Mapping Table[LBAi]
31: thread write datai.tier← Mapping Tier[LBAi]
32: set thread write datai.blksize to stripei’s size in bytes
33: thread write datai.migration← migrationi

/* Set thread migration data of migration stripes of the request to be dispatched in
multi-thread manner to the storage layer */

34: if migrationi = True then
35: thread migration datai.pre address← pre physical stripe addi
36: thread migration datai.new address← Mapping Table[LBAi]
37: end if
38: end for
39: end procedure

8

and Mapping Tier[LBAi] will be inserted to their corresponding
values (Lines 11 through 14). Additionally, the history of the
destination tier for that LBA is inserted and initialized to ‘1’ by
tier1||5 history[LBAi] (Lines 12, 13).

There are three different states in the second (or more) write
access to the LBA (i.e., update access). The algorithm for the first
state is from Line 16 to Line 20 and is related to migration from
RAID5 to RAID1 tier. According to Table 2, if the current tier
of the LBA is the RAID5 tier and an ongoing request aims to
update to a small/partial stripe size and the write access frequency
to that LBA is higher than the online migration threshold, we
migrate it to the RAID1 tier. We also erase the history of the LBA
in its previous tier (RAID5). Then, we insert the history of that
LBA in the RAID1 tier and initialize it to ‘1’ (Line 17 and Line
18). Since the physical address of the previous tier (RAID5) is no
longer required after receiving migration acknowledgment from
the thread generator, we put this address in the tier5 f reed table
to be used for future requests (Line 20). The algorithm for the
second state is from Line 21 to Line 24 and is related to migrating
the tier of a stripe from RAID1 to RAID5. Since the request fill
the stripe, there are no residual chunks to migrate from RAID1
and the migration flag (here declares data movement) is set to
false (Line 22). For the third state, if it does not fall into the
first or second states, the destination tier is the same as before
and no migrations are required. We will only increase the LBA
access frequency in the corresponding tier history (Line 26 and
Line 27). These are the cases where the state diagram in Fig. 8
depicts them as self-loop edges (low access frequency or updating
with the request size suited at its current tier). At the end of this
algorithm, we will assign the required data (address, tier, and
request size) to the thread write data (Line 30 through Line
33) and thread migration data (Line 34 through Line 37) data
structures to prepare the write and migration threads. The thread
generator module in the dispatcher unit will later use these data
structures to simultaneously write the stripes of the request to the
destination tiers.

4 EXPERIMENTAL RESULTS

This section presents comprehensive experiments to assess the
performance improvements resulting from the proposed architec-
ture. Furthermore, we examine the impact of implementing this
architecture on endurance and the associated overheads.

4.1 Experimental Setup
To evaluate the proposed architecture, we conducted experiments
on a real testbed: an HP ProLiant DL180 Gen9 server with 24 In-
tel(R) Xeon(R) CPU E5-2650 v4 cores, each running at 2.20GHz.
The server is equipped with 4 sets of 16GB DDR4 RAM and
five Samsung SSD 860PROs, each with a capacity of 256GB. We
construct RAID5, RAID10, and the proposed tiered architecture
(HybRAID) using these SSDs. We implement HybRAID at the
user level on the server, which runs the Linux operating system
with Ubuntu Server 18.04.5 LTS distribution using 5.15.0-46-
generic kernel. We set up the RAID using the mdadm software
RAID Linux kernel module. In all experiments, we use a stripe
unit size of 4KB, which provides the highest performance and the
least amount of extra writes in stripe-based RAID levels [26].
To compare HybRAID with mirroring and parity-based RAIDs
(RAID10 and RAID5), we implement RAID10 and RAID5 using
four SSDs. The proposed architecture uses the same SSDs with
three SSDs in the RAID5 tier and two SSDs in the RAID1 tier.
We partition each disk to 30GB and use the partitioned space in the
RAID construction. As a result, the usable capacity of RAID5 and

TABLE 3: Write and read ratio in write- and read-intensive
workloads with respect to the number of requests, and also the
number of online migrations for write-intensive workloads.

W
ri

te
-I

nt
en

si
ve

W
or

kl
oa

ds

Workload
Total request size

(GiB)
Write requests (#) Read requests (#) Migrations (#)

R
ea

d-
In

te
ns

iv
e

W
or

kl
oa

ds

Workload Read ratio (#)

hm 0 44.6 2,575,570 (64.5%) 1,417,750 (35.5%) 162,261 (6.3%) hm 1 95.3%
mds 0 14.9 1,067,060 (88.1%) 143,973 (11.9%) 53,353 (5%) mds 1 92.9%
prn 0 78.4 4,983,410 (89.2%) 602480 (10.8%) 303,988 (6.1%) proj 1 89.4%
proj 0 169.2 3,697,140 (87.5%) 527,381 (12.5%) 366,017 (9.9%) proj 2 87.6%
prxy 0 94.7 12,135,400 (96.9%) 383,524 (3.1%) 206,302 (1.7%) proj 3 94.8%
rsrch 0 17.5 1,300,030 (90.7%) 133,625 (9.3%) 75,402 (5.8%) proj 4 98.5%
src 1 2 60.1 1,423,690 (74.6%) 484,079 (25.4%) 125,285 (8.8%) src 1 1 95.3%
src 2 0 16.2 1,381,080 (88.7%) 176,729 (11.3%)) 70,435 (5.1%) src 2 1 97.8%
stg 0 29.6 1,722,480 (84.81%) 308,437 (15.19%) 127,464 (7.4%) stg 1 63.8%
ts 0 22 1,485,040 (82.4%) 316,692 (17.6%) 66,827 (4.5%) usr 1 91.5%

usr 0 56.8 1,333,410 (60%) 904,483 (40%) 96,006 (7.2%) usr 2 81.1%
wdev 0 14.1 913,732 (79.9%) 229,529 (20.1%) 59,393 (6.5%) web 2 99.2%
wdev 2 2.1 181,077 (99.9%) 189 (0.1%) 15,211 (8.4%) src 1 0 56.5%
web 0 36.4 1,423,460 (70.1%) 606,487 (29.9%) 6,645 (9%)
web 1 5 73,833 (45.9%) 87,058 (54.1%) 3,544 (4.8%)
web 3 1.25 21,330 (68%) 10,050 (32%) 342 (1.6%)
AVG (79.5%) (20.5%) (6.3%) AVG 87.9%

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3

Ave
rag

e0 0
1 1
2 2
3 3
4 4
5 5
6 6

IO
PS

 S
pe

ed
up

3.
5

4.
5

3.
4

1.
2 1.
4

5.
3

4.
4

1.
7

5.
3

3.
6 4.

2

1.
9

4.
3 5.

0

2.
9

1.
2 1.

7

3.
33.
4 3.
6

2.
6

1.
1

0.
8

4.
4

3.
0

1.
2

3.
8

2.
8 3.
1

2.
0

3.
2 3.
4

2.
7

1.
4

1.
0

2.
6

(a) Write-intensive workloads

hm
_1

mds_
1

pro
j_1

pro
j_2

pro
j_3

pro
j_4

src
1_0

src
1_1

scr
2_1

src
2_2 stg

_1
usr

_1
usr

_2
web

_2

Av
era

ge

Workloads

5 5
4 4
3 3
2 2
1 1
0 0
1 1
2 2

IO
PS

 S
pe

ed
up

vs. RAID5 vs. RAID10

(b) Read-intensive workloads

Fig. 9: Performance gain of HybRAID compared to flat4 RAID5
and flat RAID10 in write- and read-intensive workloads.

the proposed architecture is 90GB, while RAID10 with four disks
has 60GB. The detailed specification of exploited write- and read-
intensive workloads (SNIA block I/O traces [25]) are reported
in Table 3. Also, for a comparison with more recent studies on
RAID5 optimizations for small writes, indeed CRAIS5 [22], we
implement CRAIS5 using OpenCAS (Open Cache Acceleration
Software) developed by Intel [3]. This implementation incorpo-
rates a RAM cache for effectively caching small writes. We utilize
version 20.03.3.0307 of OpenCAS with a cache-line size equal to
4KB on the Ubuntu Server 18.04.5 LTS operating system. A RAM
disk in Linux is created to serve as the RAM cache in CRAIS5. To
be able to implement CRAIS5 on real SSDs and RAID systems,
minor modifications are made to its implementation, ensuring no
impact on its performance improvement. Instead of employing a
write-through cache between the RAM cache and the main array,
a write-only RAID1 cache is implemented. In this configuration,
one drive is an SSD and the other is a RAM disk. This setup
maintains the same performance and functionality as CRAIS5,
caching small writes and protecting the cache value by mirroring
it with the SSD inside RAID1 without updating the parity.

4.2 Performance Improvement
Fig. 9 shows the performance improvement of the proposed
architecture for (a) write- and (b) read-intensive workloads com-

4. “Flat” typically refers to a pure RAID array that has not been modified
or adjusted in any way. For example, in a flat RAID5 array with N disks,
data blocks from N− 1 disks is used for storage, while the remaining disk is
dedicated to parity.

9

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

web
_0

web
_1

web
_3

Ave
rag

e

Workloads

40 40
30 30
20 20
10 10
0 0

10 10
20 20
30 30
40 40

To
ta

l R
ea

d
Re

du
ct

io
n

(%
)

vs. RAID5 vs. RAID10

Fig. 10: Percentage of read overhead reduction of HybRAID com-
pared to flat RAID5 and flat RAID10 in write-intensive workloads.

pared to RAID5 and RAID10 with equivalent costs. As can be
seen in Fig. 9a, HybRAID with five disks (3+2) (three disks in
RAID5 and two disks in RAID1 tier) improves the performance
in IOPS (I/O Per Second) on average by 3.3× and 2.6× compared
to RAID5 (3+1) and RAID10 (2+2), respectively. Since write-
intensive workloads are a mixture of small and large size writes,
HybRAID outperforms both RAID10 and RAID5, which are
best suited for only one kind of write requests, i.e., RAID5
for large writes and RAID10 for smaller size writes. HybRAID
offers higher performance than RAID10 because it exploits parity-
based RAID for full stripe writes, which have higher performance
compared to RAID1. However, the performance improvement
obtained by HybRAID over RAID10 is always lower than its
improvement against RAID5. This is due to the significant impact
of small/partial stripe write performance overhead on parity-based
RAIDs, which is addressed and resolved by HybRAID. Fig. 10
illustrates the total percentage reduction in read overhead of
HybRAID compared to RAID5 and RAID10 in write-intensive
workloads. It shows that the proposed architecture leads to an
average reduction of 12.3% in read overhead compared to RAID5.
This is because HybRAID redirects small or partial stripe writes
to the RAID1 tier, which helps to reduce the number of reads
needed for parity updates. On the other hand, since no additional
reads are performed in RAID10, as expected, HybRAID induces
more reads than RAID10 by 14.4% in write-intensive workloads.
This is due to the additional reads required for parity updates
within the RAID5 tier of HybRAID. Indeed, HybRAID does not
redirect all small and partial stripe write requests to the RAID1
tier unless their update frequency exceeds the online migration
threshold. Instead, these requests are rewritten to the RAID5 tier,
necessitating extra pre-reads. This contributes to the observed
extra 14.4% reads in HybRAID compared to traditional RAID10.

In read-intensive workloads, as depicted in Fig. 9b, HybRAID
exhibits lower performance on average compared to RAID5 and
RAID10, with reductions of -2.1× and -0.3×, respectively. Since
some values are positive, the average reduction factor can fall
between -1 and 0, where negative values indicate a decrease in
performance. This disparity in performance can be attributed to
the fact that parity-based RAIDs outperform RAID1/10 in terms
of read performance due to their larger number of disks, enabling
a higher level of concurrency. Analyzing read-intensive workloads
reveals that the most significant performance decrease is linked to
the workloads with a high percentage of read requests (exceeding
92%), where dominant requests (over 74%) have a large size (68
KB). This observation is attributed to the fact that larger-sized read
requests typically perform better in traditional RAID5 due to the
distribution of requests among more disks.

Also, Fig. 11 shows the performance gain obtained by Hy-
bRAID over RAID5 and the performance gain obtained by
CRAIS5 over RAID5 with three usable SSDs in each array. As
can be seen, in write-intensive workloads, HybRAID results in
an average 3.3× performance gain over RAID5, while CRAIS5
leads to an average 1.5× performance gain over RAID5. This

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3

Av
era

ge
0 0
1 1
2 2
3 3
4 4
5 5
6 6

Pe
rfo

rm
an

ce
 G

ai
n

3.
5 4.

5

3.
4

1.
2 1.
4

5.
3

4.
4

1.
7

5.
3

3.
6 4.

2

1.
9

4.
3 5.

0

2.
9

1.
2 1.

7

3.
3

1.
4

1.
4

1.
3 1.
4 1.
8

1.
1 1.
4 1.
7

1.
4

1.
3

1.
4 1.
5

1.
4

1.
4

1.
4

1.
4 1.

9

1.
5

HybRAID vs. RAID5 CRAIS5 vs. RAID5

Fig. 11: Performance gain of HybRAID over RAID5 versus
performance gain of CRAIS5 over RAID5 with three usable SSDs
for write-intensive workloads.

40 40
30 30
20 20
10 10
0 0

10 10
20 20
30 30
40 40
50 50

W
rit

e
Re

du
ct

ion
 (%

)

vs. RAID5 vs. RAID10

(a) Maximum amount of writes among all disks

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3

Ave
rag

e

Workloads

15 15
10 10
5 5
0 0
5 5

10 10
15 15
20 20
25 25
30 30

W
rit

e
Re

du
ct

io
n

(%
)

(b) Total writes in all disks

Fig. 12: Write reduction percentage of HybRAID compared to flat
RAID5 and flat RAID10 in write-intensive workloads.

is because CRAIS5 still directs partial stripe writes to RAID5
without enhancing their performance, leading to additional read
requests. Moreover, partial stripe writes may contain small writes
within them, which CRAIS5 does not consider for caching. Fur-
thermore, HybRAID incorporates a multi-threading mechanism
for large requests to further enhance the performance, which is
not implemented here. Lastly, the improvement of CRAIS5 relies
on the locality of the workload to reduce the small writes flushed
to the main array, a restriction that HybRAID does not have.

4.3 Endurance Results

We obtained endurance results as shown in Fig. 12 by measuring
the maximum of writes among all disks (Fig. 12a) and the total of
the writes across all disks (Fig. 12b) for RAID5, RAID10, and Hy-
bRAID under write-intensive workloads. On average, HybRAID
results in a 16.1% reduction in maximum of writes compared to
RAID10 and a 7% increase in maximum of writes compared to
RAID5 (Fig. 12a). These results are based on the final implemen-
tation of HybRAID, incorporating all aspects of the architecture,
including the migration policies. In a few workloads (such as
prn_0, prn_1, and web_3), however, HybRAID resulted in a
lower maximum write than RAID5. To analyze this result, we
conducted a theoretical estimation of the maximum writes for
RAID5, RAID10, and our proposed architecture (Fig. 13). We
assume that write requests are evenly distributed among disks,
so the portion of writes per disk for RAID5 is 1

N−1 and for
RAID10 is 1

N/2 , where N is the total number of disks. To obtain
the theoretical maximum writes for HybRAID, we calculated the
maximum amount of writes associated with RAID5 and RAID1
tiers. We consider the write portion of the small/partial stripe
writes for the workloads, denoted as RatioSmallSizes, which are
redirected to the RAID1 tier. Assuming an even distribution of
writes between disks, the write portion in the RAID1 tier is
equal to RatioSmallSizes, and in the RAID5 tier, it is equal to

10

0.1 0.15 0.2 0.25 0.3 0.35 0.40.0 0.0
0.1 0.1
0.2 0.2
0.3 0.3
0.4 0.4
0.5 0.5

W
rit

e
Ra

tio

RAID5
HybRAID

RAID10

(a) Maximum amount of writes among all disks

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Size Ratio of Writes Inside RAID1 Tier of HybRAID to Total Writes

0.0 0.0
0.5 0.5
1.0 1.0
1.5 1.5
2.0 2.0

W
rit

e
Ra

tio

(b) Total writes in all disks

Fig. 13: Theoretical write portion in flat RAID5, HybRAID, and
flat RAID10 for different size ratios of workloads that are directed
to the RAID1 tier in HybRAID (i.e., small/partial stripe writes).

(1−RatioSmallSizes)
N−2 . Thus, the maximum write portion is obtained

from the maximum of these two values. Fig. 13a shows the
maximum write in each architecture versus RatioSmallSizes (up to
40% of write workload size) when N = 4. As can be seen, the
maximum write portion of RAID5 and HybRAID is almost equal
for RatioSmallSizes ranging from 0.25 through 0.35. Hence, the
write portion of HybRAID could be lower than RAID5 in the
practical results shown in Fig. 12a. This is because migrations
are not counted in the theoretical measurements. Additionally,
the distributions of writes between disks in real-world workloads
depend on the workload request addresses and additionally, parity
writes could also affect the distributions, which are not considered
in the theoretical estimations. In Fig. 13a, the maximum amount
of writes in RAID10 is always higher than that in HybRAID,
which was also seen in the practical results shown in Fig. 12a (on
average, 16.1% write reduction).

As shown in Fig. 12b, HybRAID results in a 15.3% reduction
in the total of writes compared to RAID10 and 9.8% increase in
the total of writes compared to RAID5. The theoretical estimations
presented in Fig. 13b validate the practical results shown in
Fig. 12b, where the total write portion of HybRAID always
falls between RAID5 and RAID10. This is because the proposed
architecture uses parity-based RAID alongside RAID1, which
writes only a parity for the whole stripe. In contrast, RAID10
repeats all data in the corresponding redundant disks, producing
more writes than HybRAID. On average, HybRAID produces
9.8% more total writes than RAID5. This endurance overhead
of HybRAID is considerably lower compared to its performance
gain. Nevertheless, we will use heterogeneous SSDs in each tier
to cost-effectively compensate this write increase of HybRAID, as
we will describe in Section 4.4.2.

4.4 Overheads
In this section, we quantify the overheads associated with Hy-
bRAID, including migration overhead, processing overhead, and
cost overhead. Additionally, we present the performance-per-
cost results of HybRAID compared to flat RAID5 and RAID10.
Furthermore, we explore potential applications of the proposed
architecture and outline future research directions in this area.

4.4.1 Migration and Processing Overhead
Figure 14 illustrates the migration percentage relative to the total
number of writes for write-intensive workloads. In the case of
HybRAID, online migration occurs exclusively when updating a
small or partial stripe write request that was previously located in
the RAID5 tier. On average, this type of migration accounts for
only 6.3% of the total writes in HybRAID, where the number

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3

Av
era

ge

Workloads

0 0
2 2
4 4
6 6
8 8

10 10

M
ig

ra
tio

n
(%

)

Fig. 14: Percentage of I/O requests migrated by HybRAID in
write-intensive workloads.

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3

Av
era

ge

Workloads

0 0
10 10
20 20
30 30
40 40
50 50
60 60
70 70
80 80
90 90

100 100

Ra
tio

 to
 To

ta
l

 M
ig

ra
tio

ns
 (%

)

period < 10 ms
10 ms < period < 1s

1s < period < 1m
1m <period < 1h

period > 1h

Fig. 15: Time period between migrations in write-intensive work-
loads (s: second, ms: millisecond, m: minute, h: hour.).

of migrations per workload is demonstrated in Table 3. This
low percentage is due to the use of access history for write
accesses in each tier, which sets the threshold for migrating data
from RAID5 to RAID1. Fig. 15 illustrates the periods between
migrations for write-intensive workloads, which depends on the
workload characteristics. These results show that the total of 6.3%
migrations (shown in Fig. 14) are, on average, more than ten
milliseconds apart from each other for 92.7% of the time, and only
7.3% of them are less than ten milliseconds apart. Since we are
using high-performance SSDs, which can handle multiple requests
simultaneously in less than one millisecond, the overhead caused
by migrations in HybRAID is negligible. Therefore, the proposed
architecture can achieve performance gains even when migration
overheads are included.

The processing overhead of using HybRAID is only 75% of a
processor core compared to conventional RAIDs. This information
is obtained using the user command htop available in Linux.
Obviously, with the prevalence of multi-processor systems with
hundreds of cores, this overhead becomes negligible.

4.4.2 Cost Overhead
The cost overhead of HybRAID includes the cost of a mapping
table and an extra disk compared to conventional RAID5. In
HybRAID, addressing is based on the stripe size, and each entry in
the mapping table links a physical stripe address to a logical stripe
one. The size of each entry must be four bytes in order to address
the stripes. Table 4 shows the mapping table overhead based on
the storage size, number of disks in the RAID5 tier, and various
stripe unit sizes. For example, suppose there are three disks in the
RAID5 tier (plus two disks in the RAID1 tier) and a 4KB stripe
unit size. In this case, the stripe size is 8KB (8192 bytes), and the
overhead is 4

8192 = 0.05% of the storage size. As can be seen from
the table, the maximum amount of mapping table overhead is only
0.05% of the storage size and it decreases with an increase in the
stripe unit size or the number of disks in the RAID5 tier.

The extra storage cost of HybRAID is due to the exploitation
of the RAID1 tier, which requires one additional SSD compared
to the flat (baseline) RAID5 with equal usable capacity. Fig. 16
illustrates the cost overhead/cost-benefit of HybRAID compared
to flat RAID5 (baseline) and flat RAID10, respectively, both with
equal usable capacity. When using homogeneous SSDs such as
flat (baseline) RAID5, the cost overhead of HybRAID with N +1

11

TABLE 4: Mapping table overhead regarding storage size for
various numbers of RAID5 disks and stripe unit sizes.

of Total disks
in RAID5 tier

Stripe
unit size

Stripe size Overhead

3
4KB

8KB 4B / 8KB = 0.05%
5 16KB 4B / 16KB = 0.02%
3

8KB
16KB 4B / 16KB = 0.02%

5 32KB 4B / 32KB = 0.01%

disks over flat RAID5 with N disks is equal to (N+1)−N
N+1 = 1

N+1 ,
where N is the total number of disks in flat RAID5. Additionally,
the cost-benefit of HybRAID over flat RAID10 is determined
by the number of disks used in each architecture with equal
usable capacity (for N = 4, RAID10 requires six disks equal
to (2× (N − 1)) while HybRAID requires five disks equal to
(N + 1)). Hence, the cost-benefit of HybRAID over flat RAID10
is 2×(N−1)−(N+1)

2×(N−1) = N−3
2×(N−1) . So, as shown in Fig. 16a when using

homogeneous SSDs, the cost overhead of HybRAID compared to
flat RAID5 decreases from 20% to 11.1% as N grows from 4 to
8 disks, while the cost-benefit over flat RAID10 increases from
16.7% to 35.7% (Fig. 16b).

Since the amount of writes among the two tiers of HybRAID
is different, we suggest using heterogeneous SSDs in each tier
to provide the best-tuned endurance per tier at an efficient cost.
Assuming a completely even distribution of requests between data
disks, the writes inside flat RAID5 are equal to S

N−1 per disk (flat
RAID5 has (N−1) data disks), where S is the write workload size.
Considering that 70% of the write workload is issued to the RAID5
tier in HybRAID (as described in the workload characterization in
Fig. 3), the writes inside the RAID5 and RAID1 tiers of HybRAID
are equal to S×0.7

N−2 (the RAID5 tier has (N− 2) data disks) and
0.3× S, respectively. Hence, the writes inside the RAID5 tier
are always lower than flat RAID5, while the RAID1 tier always
has more writes than flat RAID5 per disk. Therefore, we can use
higher and lower endurance SSDs than flat RAID5 for the RAID1
and RAID5 tiers in HybRAID, respectively, which are optimal in
terms of endurance and cost while maintaining performance. To
measure the cost of optimal SSDs in the two tiers, we utilize
the ratio between endurance and cost of real enterprise SSDs
with the same performance. We observe that by doubling the
endurance, the cost becomes 1.7× higher (Samsung 970 PRO
(higher endurance) [2] vs. Samsung 970 EVO (lower endurance)
[1] with almost the same performance). Hence, the endurance-
to-cost ratio will be 2×

1.7× = 1.17×. Therefore, considering this
endurance-to-cost ratio, we calculate the optimal SSD costs for
RAID5 and RAID1 tiers of HybRAID compared to flat RAID5.
Equation 1 declares the total cost ratio of HybRAID compared to
flat RAID5 using optimal heterogeneous SSDs per tier. Using this
equation, Fig. 16a demonstrates the cost of HybRAID compared
to flat RAID5 using optimal SSDs in each tier. As can be seen,
the cost-overhead is at most only 6.4%, which is considerably
reduced compared to using homogeneous SSDs (resulting in 1.7×
up to 3.2× lower cost-overhead than using homogeneous SSDs).
Furthermore, as depicted in Figure 16b, utilizing heterogeneous
SSDs yields a cost-benefit advantage of at least 28.9% over flat
RAID10. This advantage translates into more cost saving benefits
compared to using homogeneous SSDs, resulting in a 1.1× up
to 1.7× improved cost-benefit. Moreover, this method leads to
improved endurance, as each tier requires different endurance
levels relevant to their writes.

Total Cost Ratio =
(N−1)× [(N−1)×0.7

N−2]+2× [0.3× (N−1)]
Endurance− to−Cost Ratio = (1.17)

(1)

4 5 6 7 8
Number of Disks (data + parity) in Baseline RAID5

0 0
5 5

10 10
15 15
20 20

Co
st

 O
ve

rh
ea

d
 (%

)

Using Homogeneous SSDs (same as baseline)
Using Heterogeneous (optimal) SSDs per Tier

(a) Cost overhead over flat RAID5

4 5 6 7 8
Number of Disks (data + parity) in Baseline RAID5

0 0
10 10
20 20
30 30
40 40

Co
st

Be
ne

fit
(%

)

(b) Cost benefit over flat RAID10

Fig. 16: Cost overhead/cost-benefit of HybRAID with heteroge-
neous (optimal) or homogeneous (same as flat RAID5) SSDs
compared to flat RAID5/flat RAID10 with equal usable capacity,
respectively.

4.5 Performance Per Cost Results

Fig. 17 illustrates the comparison of performance per cost of
HybRAID compared to flat RAID5 and flat RAID10. The compar-
ison is done using a) homogeneous SSDs same as flat RAID5 as
depicted in Fig. 17a and b) heterogeneous SSDs per tier (optimal)
as shown in Fig. 17b. The usable capacity in HybRAID, RAID5,
and RAID10 is equivalent to three SSDs, with RAID5, RAID10,
and HybRAID having a total number of four, six, and five SSDs,
respectively. The performance per cost metric is calculated by
dividing the performance improvement (as described in Section
4.2) by the cost-overhead (as discussed in Section 4.4.2) of
HybRAID over flat RAID5 and flat RAID10. Performance per cost
exceeding “1” indicates superior performance when considering
the cost factor. With homogeneous SSDs, HybRAID shows an
average of 2.8× and 2.6× improvement in performance per cost
compared to flat RAID5 and flat RAID10, respectively. Using
heterogeneous SSDs, on average, HybRAID results in a 3.1×
and 3.0× improvement in performance per cost compared to flat
RAID5 and flat RAID10, respectively.

4.6 Discussion

In this section, we present several essential capabilities of Hy-
bRAID that can be leveraged in future research or serve as a basis
for discussions on the versatility of the architecture.

Contributing factors to the overall performance gain:
Comparing tests without migration to scenarios including online
migration implementation, we found that implementing migration
results in an average performance improvement of 15.4% (up
to 24.5% in the results). This improvement is contingent upon
workload characteristics, with online migration accounting for
an average of 6.25% in write-intensive workloads (shown in
Fig. 14), contributing to the overall performance improvement
of 15.4%. The most significant performance increase factor over
RAID5 is attributed to the tiering between RAID5 and RAID1,
delivering improvements from both arrays with stripe-based ad-
dress mapping, averaging 66.7%. Another noteworthy factor is
the multi-threading module in HybRAID, affecting performance
by an average of 17.9%. This approach is crucial for handling
large requests, as HybRAID divides original requests into stripe-
size segments, optimizing performance gain by managing each
segment simultaneously.

12

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3

Av
era

ge
0 0
1 1
2 2
3 3
4 4
5 5
6 6

Pe
rfo

rm
an

ce
 P

er
 C

os
t

3.
0 3.

7

2.
9

1.
0 1.
2

4.
4

3.
7

1.
4

4.
4

3.
0 3.

5

1.
6

3.
6 4.

1

2.
4

1.
0 1.

4

2.
82.
9 3.
1

2.
5

1.
2

1.
2

4.
9

3.
3

1.
3

4.
0

3.
3 3.
4

2.
3 3.

4

3.
4

2.
1

1.
2 1.
6 2.

6

vs. RAID5 vs. RAID10

(a) Performance per cost of HybRAID using homogeneous
SSDs

hm
_0

mds_
0

prn
_0

prn
_1

pro
j_0

prx
y_0

rsr
ch_

0
src

1_2
src

2_0 stg
0 ts

0
usr

_0

wde
v_0

wde
v_2

web
_0

web
_1

web
_3

Ave
rag

e0 0
1 1
2 2
3 3
4 4
5 5
6 6

Pe
rfo

rm
an

ce
 Pe

r C
os

t

3.
3 4.

2

3.
2

1.
1 1.
3

5.
0

4.
2

1.
6

4.
9

3.
4 4.

0

1.
8

4.
1 4.

7

2.
7

1.
1 1.

6

3.
13.
4 3.
6

2.
9

1.
4

1.
4

5.
7

3.
9

1.
6

4.
7

3.
9 4.
0

2.
7

4.
0

3.
9

2.
5

1.
4 1.

8

3.
0

(b) Performance per cost of HybRAID using heterogeneous
(optimal) SSDs per tier

Fig. 17: Performance per cost results of HybRAID compared to
flat RAID5 and flat RAID10 with equal usable capacity (three
SSDs) using a) homogeneous (same as flat RAID5) and b) hetero-
geneous (optimal) SSDs.

Scalability of HybRAID when the number of disks scales:
Firstly, as data volume and disk count increase, migration tends to
rise, but this is counterbalanced by the improved performance of
RAIDs with more disks. Secondly, the simplicity of our migration
policies, avoiding complex computations, ensures that scaling the
number of disks does not introduce additional complexity or
overhead to migrations. Thirdly, the direct placement and retrieval
of metadata with an O(1) complexity minimizes the impact of ex-
panding storage capacity on metadata access complexity. Finally,
we partition the total disks into two tiers based on the results
gathered in Fig. 3, which shows that the average percentage of
small writes in real workloads is 30%. Accordingly, we allocate
30% of the total disks to the RAID10 tier. For example, if the
total number of available disks is 12, then 30% (4 disks) will be
allocated to the RAID10 tier, and the remaining 70% (8 disks)
will be allocated to the RAID50 tier. We also recommend using
RAID5(3+1) as the base RAID5 configuration for RAID50 due to
its better reliability and acceptable performance. For this example,
in the RAID50 tier, we have RAID0 across two RAID5(3+1)
arrays, and in the RAID10 tier, we have RAID0 across two
RAID1(1+1) arrays. Consequently, the performance improvement
remains consistent.

Compatibility to read-intensive workloads: Read requests
exhibit excellent performance in both RAID5 and RAID10, re-
sponding from all disks simultaneously without additional oper-
ations or overheads. Consequently, read-intensive workloads are
not the focus of this work, as normal RAIDs are more suitable for
them. This is while, write requests can experience performance
degradation in both RAID5 and RAID10, for small or partial
stripe writes and full stripe writes, respectively. Moreover, write
requests are generally slower than read requests in SSDs due to
inherent characteristics of flash memories and write amplification
of SSDs. Hence, the objective of this paper is to address the write
performance degradation in RAID levels and propose optimiza-
tions to reduce the write overheads. However, for applications
generating a substantial number of read requests, a suggested
future enhancement involves introducing a migration policy. This
policy would entail relocating frequently accessed read-intensive
requests, irrespective of their size, to the RAID5 tier. The aim is
to leverage the larger number of disks in RAID5 for enhanced

parallel data access, ultimately boosting read performance.

5 RELATED WORKS

The proposed solutions for reducing the overheads of parity
updates in parity-based RAIDs commonly fall into two main
categories.

1) Parity logging: In HDD-based RAID5, [29] suggests using
an additional HDD that logs the parity instead of writing them di-
rectly to the main array. This log disk generates the parity between
the old and new values of the updated data chunk and sequentially
issues them to the log disk. Although it reduces the number of
extra reads and writes from two to one, it fails to completely
eliminate the read overhead because it still needs to read the old
value of the updated data. Another research initiative, EPLOG,
[18] proposes a parity logging scheme for SSD-based RAID5. It
takes advantage of the out-of-place update characteristics of SSDs,
where invalid data remains in the SSD until Garbage Collection
(GC)5 process [31], [27], [20] is established. EPLOG uses this
invalid data so as not to read the old value, which is already set
as invalid (unlike [29]). The old value is also utilized to recover
the operational data within a stripe in case of disk failure. How-
ever, although EPLOG eliminates the read-before-write process,
it requires a new garbage collector that constructs new parity
for each stripe. This GC operation imposes considerable time
overhead and cannot be used for commodity SSDs with built-
in controllers. In addition, if a disk fails, the controller must also
recover the old data, which can extend the recovery process and
reduce the reliability. To address the limitations of EPLOG, RFPL
[38] uses workload skewness to reduce the number of old data
per stripe. However, parity logging solutions still fail to match
the sequential performance of the log disk in the steady-state.
Furthermore, exploiting HDDs for all-flash storage systems will
significantly reduce the overall performance.

2) Parity or data caching: The Leavo Cache [16] utilizes an
SSD cache for HDD-based RAID5, which sends the updated data
to both RAID and cache while also storing the old data in the
cache. This ensures that updated data is protected in mirroring
form, while parity protects the other chunks within a stripe.
However, this solution needs to pre-read the old data, so the read-
before-write problem for small writes still exists. The CRAIS5
[22] is similar to Leavo Cache, but it is suggested for SSD-based
RAID5. Due to the out-of-place update characteristic of flash
memories, CRAIS5 does not require pre-reading the old data, and it
only stores the updated data in the cache. However, the limitation
of this work, like EPLOG, is related to the overheads imposed
on GC operation. The PPC [11], [10] is similar to CRAIS5 and
suggested for SSD-based RAID5. The difference is that it reduces
the size of cached data by storing the parity of updated data instead
of pure data. To efficiently leverage the cache presented on PPC,
another study [39] proposes demoting highly correlated accessed
chunks of a stripe from the cache to the RAID5. Other studies
[35], [12] enhance existing caching/tiering methods in all-flash
data storage systems, which are orthogonal to our work.

Other related works: Small random writes can also fragment
the physical space of SSDs and lead to more GC operations. To ad-
dress this issue, HPDA [21] uses an HDD-based RAID1 for SSD-
based RAID4, which absorbs small random writes and demotes
them to RAID4 during idle time. Additionally, a portion of one
HDD is used for storing parity to mitigate the endurance problem
of SSDs. However, exploiting HDDs for AFS will significantly

5. “GC” involves the identification and reclamation of SSD blocks that
contain invalid data in order to optimize storage efficiency and maintain
performance. This process is similar to defragmentation in traditional HDDs.

13

decrease the performance. Moreover, they work for high workload
skewness; otherwise, the parity update overheads remain. LDM
[36]/HRAID6ML [40] proposes an HDD log disk mirroring for
SSD-based RAID5/RAID6, respectively, as a solution similar to
HPDA. So at the same way, using HDDs for AFS will significantly
decrease performance. Besides, they work for high workload
skewness; otherwise, the parity update overheads remain. RAFS
[30] proposes a new file system for SSD-based RAIDs, which
allocates space based on stripe groups (instead of file) at the block
level and then absorbs the small writes in one RAM buffer. FRA
[17] delays the parity update to the idle time of storage array to
mitigate the parity update overheads. However, this scheme will
have data loss between idle times in case of disk failure. Wilkes
et al. [34] aim to achieve a cost-performance benefit through
the use of a tiered-based structure in HDD-based RAID. Their
approach involves employing a mirroring array as the performance
tier and a parity-based array as the capacity tier to optimize cost
and performance. They embed mirrored stripes in a parity-based
RAID to implement both in one structure, but it wastes the usable
capacity in mirrored stripes because other requests cannot use free
chunks of these stripes. They assign frequent and infrequent access
data to mirroring and parity-based portions, respectively. However,
it is assumed that mirroring RAIDs consistently outperform parity-
based RAIDs in all cases while the impact of request size and
alignment on allocations and migrations has been neglected. This
is while our investigations reveal that parity-based RAIDs exhibit
poor performance compared to mirroring RAIDs for both small
(using the read-modify-write parity update scheme) and partial
stripe writes (using the read-construct-write parity update scheme)
to a similar extent.

Another group of studies suggests new parity generators, such
as those presented in [13], [14], [23], which change the normal
parity production in a RAID5 array to reduce the parity update
overheads. Another group try to modify the architecture of RAID
levels to improve their performance in real time [9], [32] or
in the reconstruction process [41]. StRAID [32] employs a one-
worker-per-stripe model, which reduces the number of stripe-
states and their lock-based checks, and a fine-grained stripe-
level lock to mitigate contentions on shared data structures. Gu
et al. [9] explore the implementation of RAID over SSDs with
built-in transparent compression, allowing for the possibility of
elastically mixing RAID levels to improve performance without
compromising storage capacity. The proposed elastic RAID can
dynamically adjust the mixture of RAID5 and RAID10, as well
as retain drive failure protection during RAID level conversion.
However, the practical implementation of elastic RAID is non-
trivial due to differences in data mappings and storage capacity
between RAID5 and RAID10, and the effectiveness of elastic
RAID depends on the runtime compressibility of user data.

6 CONCLUSION

In this paper, we demonstrated that parity- and mirroring-based
RAIDs alone cannot offer high performance for write workloads
consisting of various write request sizes. Previous studies only tar-
geted the small write performance problem of parity-based RAIDs
and did not address the poor performance of their partial stripe
writes. Furthermore, RAID1 write performance at full stripe writes
is much lower than parity-based RAID and is also more expensive.
To mitigate these performance problems, we proposed HybRAID,
a high-performance hybrid RAID architecture for write-intensive
applications in all-flash storage systems. HybRAID is a tiered
architecture consisting of two tiers, RAID5 and RAID1. By
directing full stripe writes to parity-based RAID and small/partial

stripe writes to RAID1, it aims to improve performance. Compared
to flat RAID5 and RAID10 with equal cost, HybRAID achieves,
on average, 3.3× and 2.6× higher performance. Additionally, it
provides an average performance per cost improvement of 3.1×
and 3.0× compared to flat RAID5 and RAID10, respectively.

REFERENCES

[1] 970EVO. 2018. SAMSUNG SSD. [Online]. Available: https:
//semiconductor.samsung.com/consumer-storage/internal-ssd/970evo/.
Accessed: Jul. 2023.

[2] 970PRO. 2018. SAMSUNG SSD. [Online]. Available: https:
//semiconductor.samsung.com/consumer-storage/internal-ssd/970pro/.
Accessed: Jul. 2023.

[3] Open-CAS. [Online]. Available: https://open-cas.github.io/. Accessed:
Feb. 2024.

[4] Mohammadamin Ajdari, Pouria Peykani Sani, Amirhossein Moradi,
Masoud Khanalizadeh Imani, Amir Hossein Bazkhanei, and Hossein
Asadi. Re-architecting i/o caches for emerging fast storage devices. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
pages 542–555, 2023.

[5] Mohammadamin Ajdari, Patrick Raaf, Mostafa Kishani, Reza
Salkhordeh, Hossein Asadi, and André Brinkmann. An enterprise-grade
open-source data reduction architecture for all-flash storage systems.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 6(2):1–27, 2022.

[6] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and
David A Patterson. Raid: High-performance, reliable secondary storage.
ACM Computing Surveys (CSUR), 26(2):145–185, 1994.

[7] Haiwei Deng, Ranhao Jia, and Chentao Wu. A graph-assisted out-of-
place update scheme for erasure coded storage systems. In International
Conference on Parallel Processing, pages 1–10, 2021.

[8] Takayuki Fukatani, Hieu Hanh Le, and Haruo Yokota. Delayed parity
update for bridging the gap between replication and erasure coding in
server-based storage. In ADMS@ VLDB, pages 1–9, 2021.

[9] Zheng Gu, Jiangpeng Li, Yong Peng, Yang Liu, and Tong Zhang.
Elastic RAID: implementing raid over SSDs with built-in transparent
compression. In ACM International Conference on Systems and Storage,
pages 83–93, 2023.

[10] Soojun Im and Dongkun Shin. Delayed partial parity scheme for reliable
and high-performance flash memory SSD. In IEEE Symposium on Mass
Storage Systems and Technologies (MSST), Nevada, USA, May, pages
1–6. IEEE Computer Society, 2010.

[11] Soojun Im and Dongkun Shin. Flash-aware RAID techniques for
dependable and high-performance flash memory SSD. IEEE Trans.
Computers, 60(1):80–92, 2011.

[12] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xiaosong Ma, Junyu
Wei, Zhiyue Li, and Weimin Zheng. Fusionraid: Achieving consistent
low latency for commodity SSD arrays. In USENIX Conference on File
and Storage Technologies (FAST), February, pages 355–370, 2021.

[13] Jaeho Kim, Eunjae Lee, Jongmoo Choi, Donghee Lee, and Sam H.
Noh. Chip-level RAID with flexible stripe size and parity placement
for enhanced SSD reliability. IEEE Trans. Computers, 65(4):1116–1130,
2016.

[14] Jaeho Kim, Jongmin Lee, Jongmoo Choi, Donghee Lee, and Sam H. Noh.
Improving SSD reliability with RAID via elastic striping and anywhere
parity. In IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Budapest, Hungary, June, pages 1–12, 2013.

[15] Jieun Kim, Dohyun Kim, and Youjip Won. Fair I/O scheduler for
alleviating read/write interference by forced unit access in flash memory.
In ACM Workshop on Hot Topics in Storage and File Systems, pages
86–92, 2022.

[16] Eunjae Lee, Yongseok Oh, and Donghee Lee. SSD caching to overcome
small write problem of disk-based RAID in enterprise environments. In
ACM Symposium on Applied Computing, Salamanca, Spain, April, pages
2047–2053, 2015.

[17] Yangsup Lee, Sanghyuk Jung, and Yong Ho Song. FRA: a flash-aware
redundancy array of flash storage devices. In International Conference on
Hardware/Software Codesign and System Synthesis, Grenoble, France,
October, pages 163–172. ACM, 2009.

[18] Yongkun Li, Helen H. W. Chan, Patrick P. C. Lee, and Yinlong Xu.
Elastic parity logging for SSD RAID arrays. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Toulouse,
France, June, pages 49–60, 2016.

[19] Jakob Lüttgau, Michael Kuhn, Kira Duwe, Yevhen Alforov, Eugen Betke,
Julian M. Kunkel, and Thomas Ludwig. Survey of storage systems for
high-performance computing. Supercomput. Front. Innov., 5(1):31–58,
2018.

https://semiconductor.samsung.com/consumer-storage/internal-ssd/970evo/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/970evo/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/970pro/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/970pro/
https://open-cas.github.io/

14

[20] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder.
Operational Characteristics of SSDs in Enterprise Storage Systems: A
Large-Scale Field Study. In USENIX Conference on File and Storage
Technologies (FAST), pages 165–180, 2022.

[21] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, Dan Feng, Jianxi Chen, and
Lingfang Zeng. HPDA: A hybrid parity-based disk array for enhanced
performance and reliability. ACM Trans. Storage, 8(1):4:1–4:20, 2012.

[22] Linjun Mei, Dan Feng, Jianxi Chen, Lingfang Zeng, and Jingning Liu. A
write-through cache method to improve small write performance of ssd-
based RAID. In International Conference on Networking, Architecture,
and Storage (NAS), Shenzhen, China, August, pages 1–6, 2017.

[23] Linjun Mei, Dan Feng, Lingfang Zeng, Jianxi Chen, and Jingning Liu.
A high-performance and high-reliability RAIS5 storage architecture with
adaptive stripe. In Algorithms and Architectures for Parallel Processing.
Guangzhou, China, pages 562–577. Springer, 2018.

[24] Rino Micheloni, Alessia Marelli, and Kam Eshghi. Inside solid state
drives (SSDs). Springer, 2013.

[25] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. MSR
Cambridge traces. In SNIA IOTTA Trace Repository. Storage Networking
Industry Association, 2007.

[26] Farzaneh Rajaei Salmasi, Hossein Asadi, and Majid GhasemiGol. Impact
of stripe unit size on performance and endurance of SSD-based RAID
arrays. Scientia Iranica, 20(6):1978–1998, 2013.

[27] Reza Salkhordeh, Kevin Kremer, Lars Nagel, Dennis Maisenbacher,
Hans Holmberg, Matias Bjørling, and André Brinkmann. Constant
time garbage collection in ssds. In IEEE International Conference on
Networking, Architecture and Storage (NAS), pages 1–9. IEEE, 2021.

[28] EMC Education Services. Information storage and management: Storing,
managing, and protecting digital information in classic, virtualized, and
cloud environments. Wiley Publishing, 2012.

[29] Daniel Stodolsky, Garth A. Gibson, and Mark Holland. Parity logging
overcoming the small write problem in redundant disk arrays. In
International Symposium on Computer Architecture, San Diego, USA,
May, pages 64–75. ACM, 1993.

[30] Chenlei Tang, Jiguang Wan, Yifeng Zhu, Zhiyuan Liu, Peng Xu, Fei Wu,
and Changsheng Xie. RAFS: A RAID-Aware file system to reduce the
parity update overhead for SSD RAID. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), Florence, Italy, March, pages
1373–1378, 2019.

[31] Qiuping Wang, Jinhong Li, Patrick PC Lee, Tao Ouyang, Chao Shi, and
Lilong Huang. Separating data via block invalidation time inference
for write amplification reduction in log-structured storage. In USENIX
Conference on File and Storage Technologies (FAST), pages 429–444,
2022.

[32] Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie Yao, and Yuanyuan
Dong. StRAID: stripe-threaded architecture for parity-based raids with
ultra-fast SSDs. In USENIX Annual Technical Conference (USENIX
ATC), pages 915–932, 2022.

[33] Shucheng Wang, Qiang Cao, Ziyi Lu, and Jie Yao. Mlog: multi-log write
buffer upon ultra-fast ssd raid. In International Conference on Parallel
Processing, pages 1–11, 2022.

[34] John Wilkes, Richard A. Golding, Carl Staelin, and Tim Sullivan. The
HP AutoRAID hierarchical storage system. ACM Trans. Comput. Syst.,
14(1):108–136, 1996.

[35] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan,
Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. The storage hierarchy is not a hierarchy: Optimizing
caching on modern storage devices with orthus. In USENIX Conference
on File and Storage Technologies (FAST), February, pages 307–323,
2021.

[36] Suzhen Wu, Bo Mao, Xiaolan Chen, and Hong Jiang. LDM: log disk
mirroring with improved performance and reliability for ssd-based disk
arrays. ACM Trans. Storage, 12(4):22:1–22:21, 2016.

[37] Ping Xie, Zhu Yuan, and Yu Hu. Nscale: an efficient raid-6 online
scaling via optimizing data migration. The Journal of Supercomputing,
79(3):2383–2403, 2023.

[38] Gaoxiang Xu, Dan Feng, Zhipeng Tan, Xinyan Zhang, Jie Xu, Xi Shu,
and Yifeng Zhu. RFPL: A recovery friendly parity logging scheme for
reducing small write penalty of SSD RAID. In International Conference
on Parallel Processing (ICPP), Kyoto, Japan. ACM, 2019.

[39] Gaoxiang Xu, Zhipeng Tan, Dan Feng, Yifeng Zhu, Xinyan Zhang, and
Jie Xu. Cap: Exploiting data correlations to improve the performance and
endurance of ssd raid. In IEEE International Conference on Computer
Design (ICCD), pages 59–66. IEEE, 2018.

[40] Lingfang Zeng, Dan Feng, Jianxi Chen, Qingsong Wei, Bharadwaj
Veeravalli, and Wenguo Liu. HRAID6ML: A hybrid RAID6 storage
architecture with mirrored logging. In IEEE Symposium on Mass Storage
Systems and Technologies (MSST), April, CA, USA, pages 1–6, 2012.

[41] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin Yang, Zhufan
Wang, and Weimin Zheng. RAID+: deterministic and balanced data

distribution for large disk enclosures. In USENIX Conference on File
and Storage Technologies (FAST), pages 279–294, 2018.

Maryam Karimi received the BSc degree in
computer engineering from Shahid Beheshti
University (SBU), in 2014 and the MSc degree
in computer architecture from the Sharif Uni-
versity of Technology, in 2016. She is working
toward the PhD degree with the Data Storage,
Networks, and Processing (DSN) Lab, Sharif
University of Technology. Her current research
focuses on the performance and endurance of
all-flash data storage systems.

Reza Salkhordeh received the BSc degree in
computer engineering from the Ferdowsi Univer-
sity of Mashhad, in 2011, the MSc degree in
computer engineering from the Sharif University
of Technology, in 2013, and the PhD degree from
Data Storage, Networks, and Processing (DSN)
Lab, SUT, in 2018. He is currently a postdoctoral
researcher with Efficient Computing and Storage
Group, Johannes Gutenberg University Mainz
under supervision of Prof. André Brinkmann. His
research interests include operating systems,

solid-state drives, and data storage systems.

André Brinkmann received the PhD degree in
electrical engineering from the Paderborn Uni-
versity, in 2004. He is a full professor with
the Computer Science Department of Johannes
Gutenberg University Mainz (JGU)(since 2011).
He has been the head of the data center with
the JGU from 2011 until 2021. He has been an
assistant professor with the Computer Science
Department, Paderborn University from 2008 to
2011. Furthermore, he has been the manag-
ing director of the Paderborn Center for Parallel

Computing PC2 during this time frame. His research interests focus on
the application of algorithm engineering techniques in the area of data
center management, cloud computing, and storage systems. He has
published more than 150 papers in renowned conferences and journals
and is a senior associated editor of the ACM Transactions on Storage.

Hossein Asadi (Senior Member, IEEE) received
the BSc and MSc degrees in computer engi-
neering from the Sharif University of Technology,
Tehran, Iran, in 2000 and 2002, respectively, and
the PhD degree in computer engineering from
Northeastern University, Boston, MA, USA, in
2007. He is currently a full professor with the
Department of Computer engineering, SUT. He
is the founder and director of the Data Storage,
Networks, and Processing (DSN) Lab. and the
director of Sharif HPC Center. He was a recipient

of the Distinguished Lecturer Award from SUT in 2010, the Distinguished
Researcher Award and the Distinguished Research Institute Award from
SUT in 2016, the Distinguished Technology Award from SUT in 2017,
and the Distinguished Research Lab Award from SUT in 2019. He also
received the Best Paper Award at IEEE/ACM Design, Automation, and
Test in Europe (DATE) in 2019. More recently, he received Distinguished
National Technology Award in 2022 by Ministry of Science & Technology.
His current research interests include data storage systems, SSDs,
operating systems, and HPC.

	Introduction
	Motivation
	Performance characterization of RAID5 and RAID1 in write-only workloads: request size
	Workload characterization: write request size and number of write requests

	Proposed Architecture
	Data Allocation
	Data Migration
	Architecture
	Algorithm Used in HybRAID

	Experimental Results
	Experimental Setup
	Performance Improvement
	Endurance Results
	Overheads
	Migration and Processing Overhead
	Cost Overhead

	Performance Per Cost Results
	Discussion

	Related Works
	Conclusion
	References
	Biographies
	Maryam Karimi
	Reza Salkhordeh
	André Brinkmann
	Hossein Asadi

