
1

Estimating and Mitigating Aging Effects in Routing
Network of FPGAs

Behnam Khaleghi, Behzad Omidi, Hussam Amrouch Member, IEEE, Jörg Henkel Fellow, IEEE, and Hossein
Asadi Senior Member, IEEE

Abstract—In this paper, we present a comprehensive analysis
of the impact of aging on the interconnection network of
Field-Programmable Gate Arrays (FPGAs) and propose novel
approaches to mitigate aging effects on the routing network. We
first show the insignificant impact of aging on data integrity
of FPGAs, i.e., Static Noise Margin (SNM) and Soft Error Rate
(SER) of the configuration cells, as well as we show the negligible
impact of the mentioned degradations on the FPGA performance.
As such, we focus on performance degradation of datapath
transistors. In this regard, we propose a routing accompanied by
a placement algorithm that prevents constant stress on transistors
by evenly distributing the stress through the interconnection
resources. By observing the impact of the signal probability on
the aging of routing buffers, we enhance the synthesis flow as well
as augment the proposed routing algorithm to converge the signal
probabilities towards aging-friendly values. Experimental results
over a set of industrial benchmarks and commercial-like FPGA
architecture indicate the effectiveness of the proposed method
with 64.3% reduction of stress duration in multiplexers and up
to 45.2% improvement of the degradation of buffers. Altogether,
the proposed method reduces the timing guardband by from
14.1% to 31.7%, depending on the FPGA routing architecture.

I. INTRODUCTION

By providing promising advantages such as the flexibility
to implement various digital systems, short time-to-market,
and reduced Non-Recurring Engineering (NRE) cost, Field-
Programmable Gate Arrays (FPGAs) have widely been used in
a diverse range of use-cases from embedded systems to high-
performance to safety-critical applications. These advantages,
however, come at the cost of significant power and perfor-
mance disadvantages compared to their Application-Specific
Integrated Circuit (ASIC) counterpart [1]. To reclaim the
aforementioned gap and keep up with the advances in ASICs,
FPGA devices are continuously adopting the most recent
transistor technologies. This, in turn, has been accompanied
by pronounced reliability challenges, e.g., aging [2].

Aging is mainly caused by Hot Carrier Induced Degrada-
tion (HCID) and Bias Temperature Instability (BTI) phenom-
ena which have a stronger effect compared with other aging
mechanisms such as Time-Dependent-Dielectric Breakdown

This work was supported by ICT Innovation Center of Sharif Univer-
sity of Technology and Iran National Science Foundation (INSF) under
grant number 96006071, and in parts by the German Research Foundation
(DFG) as part of the priority program “Dependable Embedded Systems”
(SPP 1500 - spp1500.itec.kit.edu). B. Khaleghi, B. Omidi, and H. Asadi
(corresponding author) are with the Sharif University of Technology, Tehran,
Iran. H. Amrouch and J. Henkel are with the Karlsruhe Institute of Tech-
nology (KIT), Chair for Embedded Systems (CES), Karlsruhe, 76131, Ger-
many. E-mails: {behnam khaleghi; omidi}@ce.sharif.edu, asadi@sharif.edu,
{amrouch; henkel}@kit.edu.

(TDDB) [3]. While HCID affects both nMOS and pMOS
transistors [4], BTI manifests as Negative BTI (NBTI) which
is well known to degrade pMOS transistors, and Positive BTI
(PBTI) whose effect is intensified in nMOS transistors in deep-
nano feature sizes, e.g., 22nm [5]. Aging occurs when a so-
called stress phase (i.e., when |VGS | > 0) is applied to the
transistor. At the physical level, it induces interface and oxide
traps at the Si-dielectric interface, which weakens the gate-
bulk electric field. These defects are manifested as shifting two
key parameters of transistors, i.e., increasing the magnitude of
threshold voltage (Vth) and reducing the carrier mobility (µ)
which, according to Equation 1, reduce the drain current (Id)
which leads to increased RC delay eventually. As Equation 2
shows the other factors than VGS affecting the Vth degradation,
including t the total time, λ or stress cycle which determines
the ratio of total time the transistor is under stress, and T that
accounts for the thermal cycle [6].

Id '
µCox

2

W

L
(VGS − (Vth + ∆Vth))2 (1)

∆Vth ∝ tn × λn × e
−Ea
kT (2)

In addition to performance degradation, aging also reduces
the Static Noise Margin (SNM) of SRAM memory cells, which
is defined as the maximum extrinsic DC voltage noise that an
SRAM cell can tolerate without flipping its value. Degradation
of SNM can lead to imperfect read or write operations or data
corruption especially in presence of the intrinsic fluctuations
in circuit operation conditions. In ASIC designs, a straightfor-
ward approach to mitigate aging is to add a timing guardband
∆Taging corresponding to aging-induced degradations to the
original clock cycle. That is, instead of running the circuit
at Tinit, a clock cycle of T ′ = Tinit + ∆Taging is adopted.
Nevertheless, taking the intensified aging effects as well as
other sources of uncertainty such as process variations in deep-
nano CMOS technologies into consideration, undertaking a
pessimistic timing guardband offsets the potential performance
gain of the technology.

Various approaches have been proposed to mitigate the ag-
ing effects in ASIC circuits including (a) aging-aware standard
cell-based synthesis [7], [8], (b) tight and runtime (adaptable)
timing guardbanding rather than a worst-case guardband [8],
[9], (c) critical path gate up-sizing [10], and (d) stress balanc-
ing to increase the recovery phase [11] whereby the aging
phenomenon is reversed, i.e., the degraded characteristics
of transistors begin to heal. Similarly, techniques based on
balancing the stress duration of SRAM cells to mitigate aging
effects have been proposed [12].

2

Analysis and mitigation of aging in FPGA devices, however,
is less considered. This is primarily because of the complexity
of FPGA resources that encompass both complex datapath
components (e.g., large multiplexers) and memory elements, as
well as the dependency of the FPGA aging on the implemented
design as it affects the stress duration on individual transistors.
For instance, while it is adequate to measure/mitigate the aging
of (near-) critical paths in an ASIC design [8], the concept of a
fixed critical path does not apply for an FPGA device. That is,
a resource in a non-critical path, or even an unused resource
may undergo a constant stress in the currently implemented
design and haphazardly reside in the critical path of the
subsequent configurations (designs). Therefore, it is crucial to
consider the aging of all used and unused resources rather than
merely considering the critical path ones. For the same reason,
in contrast to ASIC methods, increasing the size of critical
path transistors during the design phase of FPGA device is
not beneficial because different designs have different critical
paths which will not necessarily be mapped on these upsized
transistors. For the case of configuration bits, several previous
studies have aimed to balance the stress duration of the SRAM
cells of FPGAs [13], [14]. However, in contrary to typical
memory arrays such as register file and cache memory [12],
evenly balancing the stress duration of interconnect SRAM
cells (e.g., by periodical inverting of the cells) in commercial
FPGA devices is not feasible due to the specific structure
of routing multiplexers of commercial devices. We discuss it
further in Section III.

Accordingly, previous studies regarding FPGA aging have
mainly aimed to measure or model the aging of these devices
[15]–[18]. Few studies target mitigating the aging [13], [14],
[19]–[23] either use abstract circuit models for building blocks
which may make their methods impractical in commercial
devices, and/or ignore the routing resources and solely focus
on logic resources, i.e., Look-Up Tables (LUTs), while routing
resources contribute to 80% of the total path delay in FPGA-
based designs [24]–[26]. We discriminate our work by, for the
first time, focusing on in-detail analyzing and mitigating the
aging of routing resources along with considering circuit and
aging models comparable to commercial ones. Our approach
is based on reducing the stress (λ) of transistors, which can
be employed together with other orthogonal methods such as
thermal management.

Our novel contributions in this paper are as follows.
(1) We present a detailed analysis of the impact of aging on
FPGA routing resources while considering FPGA architectures
and building blocks of contemporary commercial devices. This
work for the first time investigates the aging considering FPGA
architecture and building resources similar to commercial
devices, transistor sizing, and physics-based aging model that
jointly considers BTI and HCID [27].
(2) According to our analysis that shows the insignificant
impact of aging on data integrity of FPGA configuration
cells, we mitigate the performance degradation of routing
resources by using a novel routing algorithm accompanied
by a placement algorithm that attempt together to balance
the resource usage and reduce stress duration (λ) of device
transistors.

(3) According to our analysis that reveals the impact of
signal probability on aging degradation of routing buffers, we
enhance the synthesis flow and augment the routing algorithm
to converge the signal probabilities towards the value that
causes minimum delay degradation.

We have exploited the latest version of COFFE [28] with
22nm transistor technology model to generate the SPICE
netlist of FPGA resources and study the impact of aging by
incorporating our physics-based aging model. The proposed
mitigation method, including the constrained-mapping, routing
algorithm, and signal imbalancing in the synthesis phase is
then implemented with the aims of open-source VTR 7.0
toolset [29] that can model the FPGA architecture as well
as includes the corresponding CAD flow from synthesis to
routing. Experimental results show 64.3% enhancement of
the routing multiplexers stress and up to 45.2% improvement
in buffers guardbands. Together, 14.1% to 31.7% timing
guardband reduction is achieved depending on the FPGA
architecture.

The rest of this paper is organized as follows. Section II
reviews the related studies. In Section III, we describe the
routing architecture of state-of-the-art FPGAs. We articulate
the proposed method in Section IV. Experimental setup and
results are presented in Section V, and finally, Section VI
concludes the paper.

II. RELATED WORK

We categorize the previous work as the studies that (a)
measure or model the aging in FPGAs and (b) aim to mitigate
their aging which our proposed method also belongs to.

(a) Measuring and modeling aging: The majority of
previous studies aim at measuring and estimating the impact of
aging in FPGAs. In this regard, [18] proposes sensors by using
the unused resources of FPGA for online (runtime) monitoring
of aging impact. The principle of the sensor operation is based
on detecting forbidden transitions in a specific interval close
to the active clock edge which indicates the loss of signal
integrity due to aging. Resolution of the sensor, however, is
limited by the operating frequency and can be as low (i.e.,
inaccurate) as close to 80ps which may not detect aging
degradation of designs with small critical path. In addition,
in a typical design, there are manifold of near-critical paths
which may become critical after the aging [8]. Such a method
requires a large number of sensors, and hence unused resources
on the FPGA, as well as placing and routing the sensors
without disrupting the originally mapped design which is
challenging.

[15] analyzes the impact of NBTI on the LUT delay
assuming a 2-input LUT with a simple structure. While
improvement in rise delay and degradation in fall delay is
reported, the results cannot be generalized to the complicated
structure of LUTs [28], especially considering the effect of
transistor sizing on the behavior of aging [8].

The work presented in [16] measures the impact of aging
on the LUT delay while considering different stress cycles
(λ) in a commercial 65nm FPGA device. Impact of NBTI and
especially PBTI, however, is insignificant in such technology
node.

3

Finally, [17] investigates the impact of aging on the differ-
ent implementation of FPGA routing resources, i.e., routing
switches based on pass transistor, tri-state buffer, transmission
gate, and multiplexer by considering different wire lengths,
number of cascaded switches, and switch fanout. Nonetheless,
the authors do not carefully consider the structure of FPGA
resources which can lead to misleading outcome as follows.
First, unlike academically supposed structures, contemporary
devices only implement multiplexer-based switch boxes [30],
[31]. In addition, this study assumes minimum width tran-
sistors for multiplexers and particularly their output buffer,
while the size of transistors and buffers depends on other
architectural parameters (see Section III) and plays a major
role in the aging effect. Similarly, the length of wire and
number of fanout driven by a switch multiplexer depends on
the architecture.

(b) Aging mitigation: The studies in this category attempt
to balance the stress cycle of transistors to alleviate the
impact of aging. For this end, [13] has proposed to invert the
configuration bits of routing multiplexers to balance the aging
in SRAM cells. Nonetheless, as we show in this study, aging
has basically an insignificant impact (i.e., ∼ 3%) on SNM and
Soft Error Rate (SER) of FPGA configuration cells. Notice
that, as shown in Fig. 1b, the configuration bits are directly
connected to the gate of routing transistors so until they can
provide a strong Vdd, their degradation does not affect the
multiplexer delay.

The study in [19] measures the impact of aging on LUTs
and a representative interconnect of a 65nm FPGA device. It
reveals that unused LUTs are slightly affected by aging com-
pared to those undergone a constant stress or high input signal
frequencies. Thus, [19] suggests mitigating logic functions
from heavily affected LUTs to the unused ones. This, however,
requires unused LUTs to be in the same cluster of the used
one as well as a fully flexible intra-cluster crossbar to avoid
any overhead on the global routing that might compromise
the achieved gain. Similarly, this study shows small delay
increase for the unused routing resources (compared as to used
resources) and proposes to use alternative routing paths for an
aged design. This, however, highly depends on the existence
of an alternative routing path with the same length for all
near-critical paths.

[21] shows that various configurations of a LUT and its
inputs probabilities imposes different stress duration on the
LUT transistors. Thus, for a given LUT configuration and
input probabilities, the authors find the input permutation (and
corresponding configuration swapping) that leads to minimum
delay increase. This requires the LUT input probabilities
(which depends on application input) to be known in the
configuration time. Furthermore, specifying a certain order
(i.e., that with the minimum aging) for the connection of LUT
inputs eliminates its intrinsic input permutation capability and
incurs pressure on the global or local routing which incurs
to performance overhead which may outweigh the potential
aging improvement.

The study in [20] creates different configuration bits for
runtime reconfigurable modules to provide fault tolerance
and mitigate the aging. The minimal configurations bits are

(a) A routing tile: SB and CB
connections

CLB

CLB CLB

CLB

(b) Two-level (left) and tree-based (right)
multiplexers

0

1

2

3

0

1

2

4

0

1

2

0

1

2

3

4

5

0

1

2

3

5

4

6

7

Fig. 1. Routing tile and building blocks of island-style FPGAs

generated in a way that for any faulty cluster, there is at least
one configuration that does not use that cluster. In addition,
it determines the time fraction to use each configuration to
balance the stress duration. Indeed, while the HCI induced
degradation depends on the count of transistor triggering, BTI
merely depends on the long-term stress cycle of transistors
[32]. Thus, while a resource may not have any transition
(triggering) during the runtime, the applied constant stress can
impose high aging. Additionally, [20] manages the aging in
cluster level and does not guarantee periodic use of cluster re-
sources in a fine-grained manner (to eliminate the possibility of
hotspot resources). It also does not consider routing resources.
Similarly, [22] aims at reducing the aging by evenly placing
runtime reconfiguration modules during the design runtime to
converge the toggle rate of transistors. This study faces the
same challenges of [20].

[14] alleviates the aging of SB multiplexers by periodically
inverting the configuration bits. For this end, it assumes a
three-input multiplexer with tree-based structure (see Section
III). In each new configuration, [14] modifies the cost of
using specific inputs of each SB in such a way the resulted
configuration has large Hamming distance with the previous
ones, which helps to balance the stress cycle of SRAM cells.
Inversion of SRAM cells it not straightforward in commercial
devices that employ two-level multiplexers wherein only two
SRAM cells can hold logical one. This work also does not
consider aging of routing buffers that contribute to a significant
portion of FPGA delay.

III. FPGA ARCHITECTURE

In order to better explain the concepts of the proposed
method, it is essential to elaborate the routing architecture
of contemporary FPGAs and transistor-level structure of their
building blocks. Fig. 1 demonstrates the routing architecture
and building blocks of contemporary FPGAs. State-of-the-
art FPGAs have an island-style architecture in which the
logic clusters, namely Configurable Logic Blocks (CLBs)
are surrounded by routing resources [33], [34] as a two-
dimensional array. According to Fig. 1a, Switch Boxes (SBs)
and Connection Blocks (CBs) provide the routability between
CLBs. The outputs of each CLB (made up of N LUTs, each of
which has K inputs) are directly connected to several adjacent
SB multiplexers. Accordingly, a net (i.e., the output of a source
LUT) that is aimed to connect to a destination LUT inside a

4

particular CLB should be passed into routing network using
the CB multiplexer of source CLB, routed using the network
of connected SB multiplexers, and eventually passed to the
destination CLB using its neighboring CB multiplexer.

1) CB and SB: CB multiplexers are responsible to input the
global wires into the CLBs. There are I CB multiplexers for
each CLB, one per each of I global input to CLB, uniformly
arranged on four sides of the cluster for efficient routing.
The connectivity factor of CB (Fcin) determines the size of
its multiplexers, which is formulated in Equation 3. In this
equation, W is the channel width, i.e., number of wires in a
horizontal or vertical channel.

XCB = W × Fcin (3)

As shown in Fig. 1a, SB multiplexers are located at the
intersection of horizontal and vertical routing channels. Con-
sidering the number of branches (Fs, which is typically three),
number of fanouts of each cluster output (Fcout×W×Or) that
directly connect to the SBs, and wire segment length (L), the
size of each SB multiplexer can be obtained using Equation 4

XSB =
L

2
×Or + L× (Fs − 1) + 1 (4)

2) Structure of Multiplexers: Instead of conventional tree-
based structure, state-of-the-art FPGAs employ two-level Pass
Gate (PG)-based multiplexers which have been shown to pro-
vide better area-delay efficiency [30], [31]. Transmission Gate
(TG)-based multiplexer is an alternative for implementing two-
level multiplexers which outperform the performance of PG-
based FPGAs at the cost of a higher area [31]. In an X-input
two-level multiplexer, the first level is composed of m one-
level sub-multiplexers (i.e., m bunches) each of which has n
inputs forming n×m = X . To balance the area and delay of
two-level multiplexer stages, typically m = n '

√
X . Each of

the multiplexer bunches is followed by an nMOS transistor in
the second level. There are n shared SRAM cells for the first
level each of which controls a particular nMOS transistor in
every bunch. That is, as demonstrated in Fig. 1(b), SRAM0 is
shared in both bunches of the demonstrated 6-input two-level
multiplexer. Thus, when this SRAM is on (holds logical one),
the corresponding inputs in both bunches pass to the second
level wherein SRAM4 and SRAM5 select the appropriate one.
Hence, in a used multiplexer, only two of the n + m SRAM
cells (n SRAMs for the first level, and m SRAMs in the second
level) can be on. That is why the SRAM cells of routing
multiplexers cannot be arbitrarily inverted to balance the stress
duration.

In addition to their efficiency, two-level multiplexers afford
a high opportunity of aging relaxation compared to tree-based
structures. Precisely, since only one transistor in each bunch
is on, the stress probability of each transistor of a used two-
level multiplexer is λ = Nused

Ntotal
= 1√

X
. This provides higher

recovery opportunity compared to λ = 0.5 in a tree-based
multiplexer. More importantly, all transistors of an unused two-
level multiplexer connect to zero gate voltage and are in the
recovery phase.

3) Buffers: In order to effectively drive the load of wires,
each routing multiplexer is followed by a large output buffer,
particularly in the SB and cluster output multiplexers. Similar
to the buffers used in standard cell libraries [35], the second
stage of these buffers is typically larger than the first stage.
Moreover, the pMOS to nMOS channel ratio in these buffers
is customized to achieve a globally minimum area-delay
cost [28], [31] and does not necessarily follow the ratio of
minimum-size inverter. Because of the larger impact of NBTI,
a conventional inverter undergoes higher aging degradation for
a constant zero. Because of the relatively stronger impact of
NBTI, the unequal size of buffer stages and the irregular ratio
of each stage makes it impossible to estimate the impact of the
signal value in FPGA buffers without performing an accurate
circuit-level examination.

IV. THE PROPOSED METHOD

In this section, we mitigate the FPGA aging. To this end,
we first analyze the effect of aging of configuration cells on
the reliability of FPGA, involving data integrity and delay.
Based on our analysis, we target mitigating aging of routing
multiplexers in Section IV-B which involves the proposed
placement and routing method. In Section IV-C, we investigate
the impact of the signal value on aging of routing buffers.
Based on our examination, we modify the synthesis flow
towards generating signals with less adverse impact (from
delay perspective) on the aging of buffers.

A. Aging in Configuration Cells

Aging affects both SNM and SER of an SRAM cell which
may increase its vulnerability to data corruption due to, re-
spectively, intrinsic source of errors (e.g., voltage fluctuations
and noise), and extrinsic sources such as particle strikes. In
addition to data corruption, aging can cause timing errors
in an SRAM-based memory array, e.g., a processor cache,
because of increased read time. SRAMs, however, are em-
ployed differently in FPGAs. In contrary to a memory array
in which SRAM cells drive bit-lines during the read operation,
such concept of read operation does not apply for resources
in FPGAs. That is, as shown in Fig.1b, SRAMs nodes are
directly connected to multiplexer transistors, and hence, are
continuously being read. Therefore, the conventional read
failure either as timing violation or even data corruption
during the read/sense operation does not take place in FPGA
configuration cells.

Aging, however, may deteriorate the hold SNM of an SRAM
cell, i.e., the SNM corresponding to the cell when it maintains
the data, as it is in the case of FPGA configuration cells. In
this regard, Fig. 2 demonstrates the degradation of the hold
SNM of an SRAM cell considering different λ and over 10
years. The SNM data is obtained empirically by an industrial
partner [27], [32]. λ of an SRAM cell is defined as the ratio of
time the cell holds logical one. Due to the symmetric structure
of SRAM cell that comprises two back-to-back inverters, for
an SRAM cell we have SNM(λ) = SNM(1 − λ). This is
because whether stress cycle is λ or it is 1 − λ, the stress
ratio of transistors in one of the inverters is λ and 1 − λ,

5

1098

Time (year)
765432100.5

0.4

Duty Cycle
0.4

0.2
0.1

3

4

2

1

0
0

SN
M

 D
eg

ra
da

tio
n

(%
)

0

1

2

3

4

Fig. 2. Degradation of SRAM hold SNM due to aging. Data are derived from
[27].

and in the other inverter is 1 − λ and λ which causes the
same effect. Therefore, here only the SNM for λ ≤ 0.5 is
represented. As λ converges zero (or one), SNM degradation
increases because one pair of the pMOS-nMOS transistors will
undergo a severe stress (note that the case of SRAM cell is
different from transistor case whereby smaller λ means less
aging). Nonetheless, aging has a slight impact on hold SNM
of the SRAM cell on overall. Based on this figure, in the worst
case, only 3.4% reduction in hold SNM is observed.

Extrinsic source of errors, on the other hand, such as radia-
tion particles that deposit an electrical charge on SRAM nodes
can corrupt SRAM data whenever the induced charge exceeds
a threshold value, referred to as Qcrit. Since aging weakens
the transistors transconductance (gm ∝ Id), a reduction in
SRAM Qcrit and hence, an increase in the SER is expected.
Nonetheless, using a realistic distribution of energy and flux
of neutrons, [27] has revealed that aging slightly shifts the
Qcrit distribution which increases the failure probability by
only 2.4%.

The reduction in transconductance of SRAM transistors,
however, does not affect the multiplexer delay. This is because
the SRAM cells are connected to the gate of transistors; hence,
no driving current flows through them when an input of a
routing multiplexer switches. That is, until the SRAM cells
provide strong Vdd (which is not influenced by aging), delay
of the multiplexer remains intact. We demonstrate this in Fig.
3 for both pass-gate (with and without voltage boosting) and
tranmission-gate based architectures. The experimental setup
for these results follows the same detailed in Section V. As
shown in this figure, SRAM aging affects the delay of PG-
and TG-based multiplexers by less than 0.2% which is due to
the small voltage fluctuations of SRAM cells.

It is worth to remind that optimal balancing of SRAMs
stress cycle (i.e., λ = 0.5) basically is not practical in two-
level multiplexers. As explained in Section III, in a two-level
multiplexer, one of the SRAMs of the first level and another
one in the second level are on (Q = 1). Therefore, in a m×n
multiplexer, 1

n and 1
m of the SRAMs at the first and second

stage hold one. This leads to λL1 = 1− 1
n and λL2 = 1− 1

m
which becomes close to λworst = 1 as the size of multiplexer
increases.

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0 1 2 3 4 5 6 7 8

D
el

ay
 C

h
an

ge

Time (log Sec)

PG Boost CB PG Boost SB
PG CB PG SB
TG CB TG SB

Fig. 3. Impact of SRAM aging on the delay of SB and CB multiplexers

B. Multiplexers

The on SRAMs in each level of the multiplexers degrade
all corresponding nMOS transistors at the first stage. This
includes one transistor at each of m bunches in the first level,
and a single transistor at the second stage. Therefore, λ of
a transistor at the first and the second stage is, 1

n and 1
m ,

respectively. For large input multiplexets, these stress probabil-
ities might be considered small enough to cause degradation.
However, it is possible for a transistor to be connected to an
on SRAM in consecutive designs, which is a common issue
[14].

Fig. 4 demonstrates the impact of aging (after 10 years) on
the delay of CB and SB multiplexers for various stress level
(λ) on the transistors of the first (L1) and second (L2). Here,
only the aging of the multiplexer transistors is considered.
Aging of the output buffers is studied later. The experimental
setup for these results follows the same detailed in Section V.

The following observations can be made from the figure.
(a) Unlike the SRAM cells, aging of the transistors of rout-
ing multiplexers causes significant performance degradation.
Hence, alleviating the aging of multiplexers is vital.
(b) With the same level of degradation, L1 and L2 transistors
in certain architectures increase the multiplexer delay differ-
ently. This needs to be considered when giving priority to
stress reduction.
(c) Whether L1 or L2 transistor, the rate of delay increase with
respect to stress cycle, λ, is exponential. It has a spike as λ
increases from 0 to 0.2. Afterward, the slope of delay reduces
and saturates in the tail distribution.

In the following, we incorporate the aforementioned ob-
servations and explain the proposed placement and routing
algorithm.

1) Aging-aware Placement: State-of-the-art FPGAs supply
an abundant number of logic resources, ranging in number of
LUTs from 46K to 354K in Xilinx Virtex-6 [33], and 326K to
1,139K in Virtex-7 FPGA families [36], which is significantly
higher than the requirements of the majority of applications. In
such cases that the number of design blocks is considerably
less than the available FPGA blocks, the FPGA CAD flow
attempts to encompass the logic blocks in close proximity
to avoid using global, long wires. This causes non-uniform
utilization of FPGA logic clusters and hence interconnection
resources, because the placed clusters utilize the adjacent
interconnection resources for routing. Therefore, in a coarse-
grained approach, we first aim to balance the utilization prob-
ability of the clusters by defining placement bounding boxes

6

1.00.9

Duty Cycle (L2)
0.80.70.60.50.40.30.20.100

0.1
0.2

0.3

Duty Cycle (L1)

0.4
0.5

0.6
0.7

0.8
0.9

6

8

10

12

16

4

0

2

14

1.0

D
el

ay
 I

nc
re

as
e

(%
)

0

5

10

15

(a) Boosted PG-based CB

1.00.9

Duty Cycle (L2)
0.80.70.60.50.40.30.20.100

0.1
0.2

0.3

Duty Cycle (L1)

0.4
0.5

0.6
0.7

0.8
0.9

6

8

10

12

16

4

0

2

14

1.0

D
el

ay
 I

nc
re

as
e

(%
)

0

5

10

15

(b) Non-boosted PG-based CB

1.00.9

Duty Cycle (L2)
0.80.70.60.50.40.30.20.100

0.1
0.2

0.3

Duty Cycle (L1)

0.4
0.5

0.6
0.7

0.8
0.9

6

8

10

12

16

4

0

2

14

1.0

D
el

ay
 I

nc
re

as
e

(%
)

0

5

10

15

(c) TG-based CB

1.00.9

Duty Cycle (L2)
0.80.70.60.50.40.30.20.100

0.1
0.2

0.3

Duty Cycle (L1)

0.4
0.5

0.6
0.7

0.8
0.9

6

8

10

12

16

4

0

2

14

1.0

D
el

ay
 I

nc
re

as
e

(%
)

0

5

10

15

(d) Boosted PG-based SB

1.00.9

Duty Cycle (L2)
0.80.70.60.50.40.30.20.100

0.1
0.2

0.3

Duty Cycle (L1)

0.4
0.5

0.6
0.7

0.8
0.9

6

8

10

12

16

4

0

2

14

1.0

D
el

ay
 I

nc
re

as
e

(%
)

0

5

10

15

(e) Non-boosted PG-based SB

1.00.9

Duty Cycle (L2)
0.80.70.60.50.40.30.20.100

0.1
0.2

0.3

Duty Cycle (L1)

0.4
0.5

0.6
0.7

0.8
0.9

6

4

2

0

16

14

12

10

8

1.0

D
el

ay
 I

nc
re

as
e

(%
)

0

5

10

15

(f) TG-based SB

Fig. 4. Delay degradation of CB and SB two-level multiplexers (with output buffer) with respect to the aging of the first (L1) and second level (L2) transistors

or modifying the original placement of designs. According to
the size of the design and placement of the previous designs,
the size and location of bounding boxes vary in consecutive
configurations to help to balancing the resource utilization and
transistors stress.

Fig. 5 demonstrates the proposed method to equalize the
probability of resource utilization. Fig. 5b shows how the
original circuit in Fig. 5a has been forced to be placed in the
left upper-hand corner of the device. As mentioned before, the
original circuit in Fig. 5a is automatically placed densely to
shorten the global nets. Thus, defining a temperate bounding
box shown in Fig. 5b do not congest the routing, especially
considering the ample routing resources, i.e., channel tracks.
We examine the impact of the bounding box on the circuit
delay in Section V. Notice that the bounding box could be
defined in, for example, the center of the device. However,
to provide proximity to IO pads to avoid potential delay
overhead, the bounding boxes should be defined in a way to
include device sides. Therefore, the proposed method places
the designs on device corners (top-left, top-right, and so on)
repetitively.

The minimum length of the bounding box (in terms of logic
cluster) to provide sufficient logic clusters can be determined
by Equation 5 in which nLUT is the number of design LUTs,
N is the number of LUTs in each cluster, and kbb ≥ 1 is an
tuning constant to provide placement flexibility.

Length(bb) = d
√
nLUT

N
e × kbb (5)

In addition to defining bounding boxes, a mapped design can
be moved within the device to specific locations by flipping
and/or shifting it without disturbing its original mapping,
which keeps the design characteristics intact. Fig. 5c illustrates
the original design of Fig. 5a, flipped with respect to the
horizon. We should note that the purpose of the proposed
placement method is different than previous studies such as
[20], [22] that create multiple alternative configurations of
a design that occupy different regions of FPGAs in order
to reduce the toggle rate of transistors. Even though such
approaches mainly target logic resources alone, keeping the
resources unused does not guarantee aging reduction. The
resources in unused regions could be connected to constant
DC voltage which causes higher degradation even compared
to used regions with high toggle rate [19].

2) Aging-aware Routing: The proposed placement method
provides a high-level balancing, but it does not guarantee an
optimal fine-grained balancing. For designs that occupy less
than 1

4 of resources, the proposed placement can guarantee
a λmax = 1

4 by iteratively using different four quarter of
designs whereby in each configuration only one region is
utilized. However, such upper-bound for large designs cannot
be assured since the overlapping region might be permanently
under stress. Even for small designs, the effectiveness of
placement is limited by the fact that when placing a design in
a specific region, it has no fine-grained control of resources
within the region, so some resources might be used constantly.

To address the aforementioned issue, we propose our aging-

7

Placement. Cost: 0.992321 bb_cost: 48.1454 td_cost: 1.93461e-07 Channel Factor: 100

(a) Default (original) placement
Initial Placement. Cost: 0.946872 BB Cost: 73.7643 TD Cost 1.03485e-06 Delay Cost: 1.23677e-06 Channel Factor: 100

(b) Bounding box (left upper corner)

Placement. Cost: 0.992321 bb_cost: 48.1454 td_cost: 1.93461e-07 Channel Factor: 100

(c) Flipping (horizontal)
Placement. Cost: 0.992321 bb_cost: 48.1454 td_cost: 1.93461e-07 Channel Factor: 100

(d) Shifting (shift left)

Fig. 5. Modifying the FPGA placement to uniform utilization of resources

aware routing algorithm that controls the utilization of routing
transistors and their stress rate in the finest granularity, i.e.,
per transistor. By using the proposed aging-aware placement
followed by the proposed routing algorithm, the eventual goal
is to optimally balance the long-term transistors stress rate
which yields the value formulated by Equation 6, whereby
ᾱlogic denotes the average utilized FPGA footprint and de-
pends on the designs, and ᾱrouting indicates the utilization
rate of routing resources (within the used regions) that can be
as low as 20% [37]–[39]. 1√

X
stands for the stress probability

of a multiplexer transistor.

λmin = ᾱlogic × ᾱrouting ×
1√
X

(6)

The routing algorithm of state-of-the-art FPGAs is based on
the PathFinder algorithm [40] that performs multiple routing
iterations by re-routing the nets using different paths in each
iteration to achieve exclusive use of each resource as well as
to reduce the delay. PathFinder controls the congestion-delay
trade-off of the nets by their timing criticality. That is, the
timing critical nets are routed using shortest paths even if it
increases the congestion. The routing iterations are done until
all resource overuses are eliminated while at the end of each
iteration, the cost of overusing the resources will increase in
order to eventually obtain a legal routing. The criticality of
a connection from source block i to destination block j is
determined using Equation 7 wherein slack(i, j) and Dmax

(maximum delay of the nets) are updated based on timing
analysis of the current iteration [41].

Crit(i, j) = 1− slack(i, j)

Dmax
(7)

In the next iteration, the cost of using a resource r for the i
to j source-destination pair is obtained by Equation 8.

Cost(r) =

timing cost︷ ︸︸ ︷
Crit(i, j) · delay(r)

+

congestion cost︷ ︸︸ ︷(
1− Crit(i, j)

)
·
(
b(r) + h(r)

)
· p(r)

(8)

In this equation, delay(r) in the timing part denotes the delay
of the particular resource r (e.g., SB multiplexer). In the
second term (congestion), b(r) is the base cost of the node
r and is equal to delay(r) in the initial versions of PathFinder
[41]. h(r) is the historical congestion of the node and increases
in each iteration if the node is overused. Finally, p(r) stands
for the current congestion of the resource r; it is equal to 1
if using the resource r does not lead to overuse and increases
with the number of overuses. p(r) also depends on the number
of iterations as it grows rapidly when the number of iterations
increases.

We aim to modify Cost(r) in a way that it accounts for
the aging of a resource in the greatest detail, i.e., transistor
level. For this end, we assign a variable for each transistor to
keep track of its aging, λ. Note that an X-input multiplexer
requires only 2

√
X values. Afterward, we update the timing

term of Equation 8 to account for the degradation caused
by increased λ of transistors. As it is observed in Section
IV-B, the sensitivity of certain architectures to the aging of
transistors of the second level is less than that of the first
level. In addition, as λ diverges from 0, the multiplexers
delay increases exponentially. Therefore, as it is formulated
in Equation 9, we augment the timing cost of resource r with
a factor of ‘1 + kmux × (

√
λL1 + kL2

√
λL2)’ to account the

degradation of its active transistors whenever resource r is
used. kmux is a calibrating constant obtained empirically to
trade off between the pressure for balancing by avoiding the
use of highly stressed transistors and routability of the critical
path nets. kL2 determines the weight of L2 transistors and is
equal to 1 in the architectures with the same sensitivity to L1
and L2, and is equal to 0.5 (according to the observed slope
of L1 and L2) wherein L1 is more critical.

Costtiming(r)
′ = Costtiming(r) ·

(
1+kmux(

√
λL1+kL2

√
λL2)

)
(9)

The λ of each transistor is updated before configuration
of the next design based on the current configuration. It
needs the operation time of the current design and total
operation time of the FPGA device to be known which can be
handled in the software level. λnew of each transistor (trn) is
updated according to Equation 10. Tnew and Told represent the
total operating time of FPGA, respectively, with and without
considering the operating time of current design. According
to this equation, the operating duration of transistor trn in
the current design (Tnew − Told) is multiplied by its logical
gate voltage VSRAM (trn) that returns 0 or 1 to obtain the
stress duration of the transistor in the current design. Then,
it is summed up with the previous total stress duration of the
transistor, Told ·λold(trn) and is divided to the total operating
time to achieve the new λ.

λnew(trn) =
(Tnew − Told) · VSRAM (trn) + Told · λold(trn)

Tnew
(10)

C. Routing Buffers

As explained in Section III, the asymmetric transistor sizing
and stage ratio, together with the unequal impact of aging

8

-5%
0%
5%

10%
15%
20%
25%
30%
35%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

ay
 C

h
an

ge

Input Probability

PG Boost CB PG Boost SB
PG CB PG SB
TG CB TG SB

(a) Impact of the buffer aging on CB and SB delay

0%

5%

10%

15%

20%

25%

30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

ay
 C

h
an

ge

Input Probability

PG Boost PG TG

(b) Average impact of the buffer aging on routing delay

Fig. 6. Impact of the buffer aging on routing delay of different architectures

on pMOS and nMOS transistors cause the routing buffers to
have different levels of degradation for different probabilities
of input signals. Notice that for a logical one input, the nMOS
of the first stage (N1) and the pMOS of the second stage
inverter (P2) are degraded. While for a zero input, the pMOS
of the first stage (P1) and the nMOS of the second stage (N2)
will be aged.

Fig. 6a shows the impact of aging on the CB and SB buffers
of an FPGA considering different signal probabilities ps, the
probability of a signal to be logical one. The experimental
setup for these results follows the same detailed in Section
V. For the sake of brevity, only the aging values after 10
years have been illustrated and for each value of ps, the
maximum value of rise and fall delay is plotted since the
impact of aging on the increase (or reduction [8]) of a gate
delay is not necessarily similar. As it is shown in this figure,
different architectures and even different resources in the
same architecture have been affected differently by aging. By
considering the average relative contribution of SBs and CBs
in the total delay of a design, we show the average impact of
buffer aging on routing delay of different architectures in Fig.
6b. According to this figure, PG-based boosted architecture
(PG Boost) has minimum aging degradation for ps ' 0.5
while non-boosted PG- and TG-based architectures undergo
minimum aging for ps around 0.1. Our investigations over
the synthesized benchmarks show that around 70% of the
configuration bits of the utilized LUTs hold zero which gives
an intuition of imbalancing the signals toward 0.1 in the favor
of non-boosted PG- and TG-based architectures. However, the
signal probabilities do not necessarily follow the average value
of configuration bits and are a function of LUT input values,
as well.

To this end, we propose the following to imbalance the
signal probabilities of the used buffers toward ps = 0.1. First,
we rely on an activity estimation tool, namely ACE 2.0 [42]
to obtain the signal probabilities of a synthesized circuit. Fig.
7a demonstrates an example sub-circuit with the calculated

0

0

0

1

1

1
1
1

DFF

0

1

1

1

0

1
1
1

AB+C

A
+

B
⊕

C

n1 n2 n3 n4

A B
C

LSB

MSB

1

1

1

0

0

0
0
0

DFF

0

0

0

0

0

1
1
0

(A
B

+
C)
’

DFF

A B
C

Invert Perm→Invert→Perm

0.
2

0.
5

0.
9

0.09

0.
2

0.
5

0.
9

0.91 0.91

0.
7

0.94

DFF

0.09

0.
7

(A
+

B
⊕

C)
’

0.06 0.06

0.94

LUT 1 LUT 2

LUT 1 LUT 2

(a) Initial configuration and signal probabilities

0

0

0

1

1

1
1
1

DFF

0

1

1

1

0

1
1
1

AB+C

A+
B⊕

C

n1 n2 n3 n4

A B
C

LSB

MSB

1

1

1

0

0

0
0
0

DFF

0

0

0

0

0

1
1
0

(A
B+

C)
’

DFF

A B
C

Invert Perm→Invert→Perm

0.
2

0.
5

0.
9

0.09

0.
2

0.
5

0.
9

0.91 0.91

0.
7

0.94

DFF

0.09

0.
7

(A
+

B⊕
C)
’

0.06 0.06

0.94

LUT 1 LUT 2

LUT 1 LUT 2

(b) Modified configuration and resulted signal probabilities

Fig. 7. Modifying the synthesis follow to imbalance the signal probabilities

signal probabilities. Thereafter, we write an in-house script
laying over ACE 2.0 tool that iterates on the circuit netlist
and flips the configuration bits of LUTs with ps > 0.5. As
shown in Fig. 7b, ps of net n1 is changed from 0.91 to 0.09.
This required permuting the bits of all of fanout LUTs in
order to maintain the correct functionality. It is noteworthy
than unlike ACE 2.0 that conducts simulations to calculate
the signal probabilities of the sequential feed-back parts of
circuits, we iteratively solve a non-homogeneous recurrence
relation to obtain the ps of such LUTs. We should note that the
purpose of the proposed approach (negation and permutation)
is different than previous studies that try to maximally inverse
the SRAM cells to balance their aging. Our goal is to change
the signal probabilities, which does not necessarily mean to
negate all of SRAM cells. For instance, in Fig. 7b only half
of the SRAM cells in LUT 2 are changed.

To control the ps of the unused buffers, we route a constant
zero fake net from one or some of the unused LUTs that
have been configured to all zero. Similar to the placement
bounding box constraint which is supported by commercial
devices in detail [33], routing of such fake nets is facile
by either building in-house scripts [43] using Xilinx Design
Language (XDL) [44] or using already developed tools such
[45]. Fig. 8 demonstrates an FPGA before and after the routing
of constant (here, zero) fake nets. The gray blocks represent
the used clusters. Based on the fact that the proposed aging-
aware routing discussed in Section IV-B2 attempts to evenly
use the routing multiplexers (and hence their associated routing
buffers), the expected value for the long-term ps of buffers
denoted as ps,expt can be estimated as Equation 11 where
ᾱlogic× ᾱrouting denotes the utilization probability of a buffer
and p̄s is the average signals probability. We take a similar
approach for the boosted PG-based architecture for which the
optimal ps value is 0.5. Albeit, we imbalance the signals (both
the used and unused) consecutively towards zero and one to

9

Routing succeeded with a channel width factor of 60.

(a) Original (default) routing
Routing succeeded with a channel width factor of 60.

(b) Routing the constant nets

Fig. 8. FPGA layout without (a) and with (b) the zero nets

achieve a long-term average of 0.5.

ps,expt = ᾱlogic × ᾱrouting × p̄s (11)

We further calibrate the cost function of the routing re-
sources in Equation 9 to account for the aging of the output
buffer. Equation 12 represents the new cost function that takes
the aging of routing buffers into account in which ps,opt is the
optimal signal probability of the architecture (either 0.1 or 0.5)
and ps(r) is the long-term signal probability of the resource
r, updated at each configuration analogous to Equation 10.
kbuf is a calibrating constant that denotes the sensitivity of
architecture to deviating from ps,opt which is higher for non-
boosted PG architecture as was shown in Fig. 6b.

Costtiming(r)′′ = Costtiming(r)′ · (1 + |ps(r)− ps,opt|)kbuf

(12)

D. Discussion

The proposed placement algorithm keeps track of the placed
design and places the successive designs on the different
corners of FPGA device consecutively. Thus, after, e.g., appli-
cation A is placed starting the top left coordinate (0, 0) of the
device with a bounding box area defined in Equation 5, the
next application (e.g., application B) will be placed starting
from the top right coordinate (0, ncol) whereby ncol is the
number of device logic columns. The upper bound of λ in a
conventional placer is one (λmax = 1), because it is possible
for the conventional placer to place all applications in a certain
region, e.g., all encompass the top left corner of the device.
However, the proposed placer attempts to evenly distribute the
resource utilization. In the long term, λmax of the proposed
placement can be estimated according to Equation 13.

λmax =

∑N
i=1max(

1

4
,
nCLB(i)

nFPGA
)

N
(13)

In this equation, λmax simply shows the long-term utiliza-
tion probability of resources. The placement, itself, cannot

guarantee a λmax smaller than
1

4
since every four times, it

places a design in each of regions. Even if the design occupies

less than
1

4
of resources, the placer chooses the most corner

clusters to provide adjacency to IO blocks. Thus, the minimum

of λmax is
1

4
(at least for the corner clusters). The term

nCLB(i)

nFPGA
indicates the utilization probability of resources,

in which nCLB(i) is the number of clusters in application
i, nFPGA is the total number of device clusters, and N
is the number of designs that have been placed over time.
According to this equation, even designs occupying a large
area of FPGA still take advantage of the proposed placement
as it avoids successive utilization of regions and imposing
permanent aging. Note that this is an upper-bound for λ and
the proposed routing algorithm attempts to further reduce
it as available routing resources are far more than required
resources. Hence, utilization of a region does not mean all
routing resources of that region are occupied.

The proposed placement algorithm can be further aug-
mented by providing aging information for the placer. The
timing-driven placers use the following cost function during
their simulated-annealing based placement defined in Equation
14 [46].

∆cost = γ · ∆costtiming

costtiming
+ (1− γ) · ∆costwire

costwire
(14)

In this equation, ∆costtiming and ∆costwire, respectively,
indicate the difference of the timing and wiring costs between
the new and previous placements, which are normalized to
compensate the difference in their relative magnitudes. γ is
a weight factor to trade-off between the timing and wiring
costs. If ∆cost < 0, the placer accepts the new placement
and moves forward further enhancing. We define the aging
cost during placement as follows.

costaging(i, j) =

∑
∀ r∈ paths from i to j λr

Nr
(15)

In Equation 15, the aging cost between source node i and
destination node j is calculated by taking average of stress
cycle (λr) of all resources of potential shortest paths between
the two nodes. Fig. 9 demonstrates an example from source
S to destination D in which the switch box multiplexers in
all possible shortest paths are distinguished (by black color).
The rest of multiplexers are either diverging from destination
D, or do not reside in the shortest paths. Therefore, while
in the placement stage it is not exactly known which path
the router will choose, the defined cost function instructs
the placer to place the nodes in such a way that, during
routing, resources with less aging will be chosen. That is, the
potential paths between i and j will encompass the less-aged
resources. The final costaging is the sum of costaging(i, j) for
all available connections in the design. Eventually, we redefine
the placement ∆cost as Equation 16, wherein γ2 ≥ 0 indicates
the relative importance of costaging .

∆cost = γ·∆costtiming

costtiming
+(1−γ)·∆costwire

costwire
+γ2·

∆costaging
costaging

(16)

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we first detail the experimental setup used for
the evaluations, including the toolset, architectural parameters

10

D

S

Fig. 9. SBs (black) located in potential shortest paths from source S to
destination D.

and benchmark set. Afterward, using a third-party (i.e., trial)
benchmark suite, we adjust the tuning parameters attributed
to the placement constraint and cost function of the routing
algorithm, explained already in Section IV-B and Section IV-C.
Finally, we evaluate the effectiveness of the proposed method
in alleviating the aging of routing resources and compare it
with the baseline.

A. General Setup

We use the latest version of COFFE [28] to generate the
circuit-level SPICE netlist of the routing resources. To do
this, we feed it with the 22nm High-K transistor technology
model from Predictive Technology Model (PTM) [47] (the
architectural parameters are summarized in Table I). Similar to
[31], we use a channel width of W = 320 in which the largest
target benchmarks can be efficiently routed. Segment length
of L = 4 that provides the most efficient interconnect amongst
the fixed-length architectures [41] has been chosen. The other
parameters (e.g., K = 6 according to commercial FPGAs
[33], [36]) are adopted from VTR repository [29] which
have been shown to provide high performance with affordable
area. COFFE takes the resistive and capacitive parasitics of
the global and local interconnects carefully into account and
iteratively attempts to obtain a globally efficient architecture
(i.e., transistor sizing) according to the user constraint, which
we have set to minimize the area-delay product. As we

TABLE I
ARCHITECTURAL PARAMETERS USED IN COFFE

Parameter Value Parameter Value
K 6 Fs 3
N 10 Fcin 0.2
W 320 Fcout 0.1
L 4 Xlocal

N+I
2

= 25
I 40 Or 1

TABLE II
TRANSISTOR SIZING GENERATED BY COFFE

Boosted PG PG TMG
SB multiplexer size 12 12 12
CB multiplexer size 64 64 64
SB L1, L2 4, 5 5, 7 3, 3
CB L1, L2 2, 3 2, 3 1, 2
SB inverters ratios 14/5, 73/21 6/7, 52/15 6/9, 50/35
CB inverters ratios 10/2, 15/3 3/3, 10/2 3/5, 13/6

consider different types of architectures, i.e., boosted and non-
boosted PG-based as well as TMG-based FPGAs, we generate
the SPICE netlist (along with the delay characteristics) of
different resources in the mentioned architectures. We consider
an operating voltage of Vdd = 0.8V for all architectures while
for the boosted architecture the supply voltage of SRAM cells
have been set to VSRAM = 1.0V . To model the aging, we
employ an accurate physics-based aging model that jointly
considers BTI and HCID (the degradations in both Vth and µ)
[27]. Therefore, the results referring to the impact of aging in
Section IV are obtained using the SPICE netlist provided by
COFFE (with minor modifications) and simulating it with the
modified transistor model that considers aging degradations.
Table II summarizes the size of multiplexers and transistors
generated by COFFE. The sizes of transistors are represented
as multiple of minimum width transistor which is 45nm. For
instance, width of pMOS (nMOS) transistors in the first and
second stage of CB buffer in boosted-PG based architecture
is 450nm (90nm), and 675nm (135nm), respectively.

We implement the proposed method by using VTR 7.0
open-source toolset [29], including (a) ODIN-II [48] for initial
synthesizing of the benchmarks from Verilog to BLIF format,
(b) Berkeley ABC [49] to map the benchmarks of the previous
step to LUT-6 and also to implement the proposed method to
modify the signal probabilities (see Fig. 7), and (c) Versatile
Place and Route (VPR) in order to map, pack, place, and
route the benchmarks (already modified in the previous step by
the proposed synthesis algorithm) to the user-defined island-
style FPGA architectures by implementing the aging-aware
placement and routing algorithms. We discriminate a total
of 20 benchmarks including the largest benchmarks of VTR
repository [29], IWLS’2005 [50], and five different types of
processors: DSP, FFT, 5- and 6-stages RISC, and the Berkeley
RISC-V processor [51]. The average number of LUTs and
flip-flops of the benchmarks are, respectively, 15,553 and
6,560 where the largest benchmark (mcml) consists of 59,952
LUTs and 22,685 flip-flops. Therefore, we assume a 90× 90
array device with total of 81,000 LUT-6 (close to Xilinx
XC6VLX130T device [33] with 80,000 LUT-6) which can
encompass the largest benchmark. We should note that the
experiments in Section IV do not depend on FPGA size as
the architectural parameters of routing network is independent
of FPGA array size. In other words, for a particular FPGA
architectural parameters, transistor sizing for routing network
is fixed among all FPGA sizes.

11

-4%

-2%

0%

2%

4%

6%

al
u

4

ap
ex

2

ap
ex

4

b
ig

k
ey

cl
m

a

d
es

d
if

fe
q

d
si

p

el
li

p
ti

c

ex
1

0
1

0

ex
5

p

fr
is

c

m
is

ex
3

p
d

c

s2
9

8

s3
8

4
1

7

s3
8

5
8

4

se
q

sp
la

ts
en

g

A
V

G

P
er

fo
rm

an
ce

 C
h

an
ge Bounding Box Shift/Flip

Fig. 10. Impact of bounding box and shift/flip placement constraints on the
performance

B. Calibration of Parameters

The proposed aging-mitigation methods introduced in Sec-
tion IV involve defining a placement bounding box (accord-
ing to Equation 5) or using shift and/or flip to restrict the
placement boundaries to relax the aging in a coarse-grained
manner, as well as modifying the routing algorithm to account
for the multiplexers and buffers aging, according to Equation
9 and Equation 12. To calibrate the cost-function parameters
in the mentioned equations (to avoid being restricted in the
aforementioned specific benchmarks), we employ 20 largest
MCNC benchmarks [52] as trial or tuning benchmarks.

In this regard, first, we examine the impact of bounding box
and shift/flip based placement on the designs’ performance. To
do this, as the baseline and without any constraint, we map
all the benchmarks on an 18× 18 device with W = 130 that
can encompass all of MCNC benchmarks. Using the same
device, we then map the designs to an arbitrary corner using
the minimum bounding box (i.e., kbb = 1 in Equation 5). In ad-
dition, we examine the efficiency of shift/flip by shifting and/or
flipping the original mapping of the design to the nearest
corner (see Fig. 5c and Fig. 5d). Based on the results shown in
Fig. 10, on average, the bounding box and shift/flip placement
techniques do not impair the design performance wherein,
respectively, 0.8% and 0.2% improvement in designs perfor-
mance can be also observed. Note that such small changes in
the performance of the designs are due to the heuristic nature
of the placement. An advantage of shift/flip-based placement
is maintaining the original mapping of the design, which can
be the point of interest for partially reconfiguring designs
since the relative placement of the blocks is preserved. The
bounding box-based placement, however, precludes scattered
placement of the blocks (when the device is larger than the
mapped design) and assures minimum intersection between
consecutive designs. Therefore, in our experiments, we opt
the (minimum) bounding box solution, i.e., kbb = 1.

To adjust the kmux and kbuf which control the cost of
reusing the transistors and buffers, we place and route the
benchmarks iteratively on the device corners with bounding
boxes, starting from alu4 to tseng in a clockwise manner.
Larger values for kmux and kbuf maximize aging relaxation
(by avoiding the consecutive use of a specific resource) but
on the other hand impose higher pressure on the routing and
increase the routing delay.

Fig. 11 represents the impact of different cost function
factors, i.e., kmux and kbuf , on the stress cycle of the routing

0%

1%

2%

3%

4%

5%

0.0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

f.
 I

n
cr

ea
se

 (
∆

f)

D
u

ty
 C

yc
le

 (
λ)

Mux (λ) Buffer (λ) Mux (∆f) Buffer (∆f)

𝑘 (𝑘𝑚𝑢𝑥, 𝑘𝑏𝑢𝑓)

Fig. 11. Impact of kmux and kbuf on the stress cycle of routing multiplexers
and buffers (left axis) versus average performance degradation of the designs
(right axis)

multiplexer transistors and buffers. Note that x-axis has a base
of 3.0 and 2.0 for kmux and kbuf to be able to show the
same range for both parameters. According to this figure, we
opt kmux = 3.8 (3.0 + 0.8) since it provides an acceptable
stress cycle (λ ' 0.3) with negligible performance degradation
≤ 0.6%. As mentioned earlier, larger values of kmux lead
to smaller λ values at the cost of considerable performance
degradation. Unlike the multiplexer transistors, the optimum
value of buffers λ is not necessarily zero (actually, it is either
0.1 or 0.5 depending on the architecture). Thus, for each kbuf ,
we show the maximum |ps(r)− ps,opt| among all routing
buffers (r). According to Fig. 11, we choose kbuf = 2.0
(2.0 + 0.0) as it outcomes the smallest worst-case wherein
the upper-bound of |ps(r)− ps,opt| is 0.11, with only 0.32%
reduction of the performance.

C. Results

After tuning the cost function parameters using the trial
benchmarks, we examine the efficiency of the proposed
method by conducting the experiments using the large test
benchmarks explained in Section V-A. For the baseline case,
we run (i.e., place and route) the 20 benchmarks consecutively
and extract the stress cycle of the multiplexers and buffers
after each benchmark. An equal runtime for all benchmarks is
assumed while different runtime for each benchmark is also
covered by Equation 10. For the proposed method, we define
the benchmarks bounding boxes as a clockwise manner on the
FPGA corners, followed by the proposed aging-aware routing.
As already mentioned in Section IV-C, signal probabilities of
the buffers are controlled by inverting the signals of the used
buffers (if necessary) and routing the constant zero/one signals
for the unused ones. Notice that since different architectures
have different cost function parameters under the proposed
method (hence, different aging result is expected), the exper-
iments are performed separately for all architecture including
boosted PG, typical PG, and TMG.

1) Impact on Performance: First, we investigate the impact
of the proposed method on the FPGA performance to ensure
that it does not impose performance overhead. Fig. 12 com-
pares the performance of the proposed method and baseline
using the test benchmarks. Note that due to the heuristic nature
of FPGA placement algorithm, the initial placement plays
a considerable role (±5%) in determining the post-routing
timing characteristics. To compensate this effect in comparing
the proposed routing algorithm, we conduct the experiments

12

-6%
-4%
-2%
0%
2%
4%
6%
8%

10%
12%

ae
s_

co
re

b
gm

b
lo

b
_m

er
.

d
ct

d
sp

et
h

er
n

et ff
t

id
ct

lu
8

p
ee

n
g

m
k

d
el

ay

o
r1

2
0

0

p
ci

_b
ri

d
ge

ri
sc

-5
p

ri
sc

-6
p

ri
sc

-v

st
er

eo
.0

st
er

eo
.1

st
er

eo
.2

u
sb

_f
u

n
ct

v
g

a_
lc

d

av
g

Im
p

ac
t

o
n

 P
er

fo
rm

an
ce seed1 seed2 seed3 avg

Fig. 12. Performance impact of the proposed method with respect to the
baseline for different placement seeds

0.0

0.2

0.4

0.6

0.8

1.0

ae
s_

co
re

b
gm

b
lo

b
_m

er
.

d
ct

d
sp

et
h

er
n

et ff
t

id
ct

lu
8

p
ee

n
g

m
k

d
el

ay

o
r1

2
0

0

p
ci

_b
ri

d
ge

ri
sc

-5
p

ri
sc

-6
p

ri
sc

-v

st
er

eo
.0

st
er

eo
.1

st
er

eo
.2

u
sb

_f
u

n
ct

v
ga

_l
cd

D
u

ty
 C

yc
le

baseline PG Boost PG TG

Fig. 13. Stress cycle of the worst multiplexer among the baseline and the
architectures with the proposed method

using different initial placements (denoted by different seed
numbers) to offset the role of initial placement. These seed
numbers are passed to the pseudo-random generator func-
tion used in placement algorithm to generate different initial
random placements [46]. We perform the experiments using
10 different seed numbers (for the sake of simplicity, only
three are shown in Fig. 12). On average, only a trivial 0.01%
degradation of the performance is noticed. Therefore, while
the performance characteristic of each benchmark changes
because of modifying its placement and routing, the average
impact of the proposed method on the performance is negligi-
ble. Note that arbitrary oscillations in the performance of each
benchmark is expectable. This is because the overall efficiency
of the proposed algorithms is the same as the baseline. Hence,
changing the initial placement changes the performance of
each benchmark by a few percentage. This has nothing to do
with the size of the designs. It is expected that increasing the
number of runs (i.e., trying more seed numbers) will converge
the average performance differences of the proposed method
and the baseline in each benchmark towards zero.

2) Multiplexers Aging: After finding the multiplexer with
the worst aging (upon running all benchmarks), we trace
back the stress cycle of this worst-case multiplexer during the
consecutive running of the benchmarks, which is shown in
Fig. 13. Assuming the TG-based architecture, the worst-case
multiplexer is not used in the first three benchmarks (aes core,
ngm, and blob mer.), so its λ = 0 after these benchmarks.
However, it is used in the forth benchmark (dct), making its λ
equal to 0×3+1

4 = 0.25. As shown by the results, the proposed
method has reduced the multiplexers worst stress cycles from
0.7 in the baseline down to 0.25, i.e., a 64.3% reduction.
Such reclaiming of the stress cycle enhances the aging-induced
delay degradation of the multiplexers by 19.2%, 17.9%, and

0.0

0.2

0.4

0.6

0.8

1.0

ae
s_

co
re

b
gm

b
lo

b
_m

er
.

d
ct

d
sp

et
h

er
n

et ff
t

id
ct

lu
8

p
ee

n
g

m
k

d
el

ay

o
r1

2
0

0

p
ci

_b
ri

d
ge

ri
sc

-5
p

ri
sc

-6
p

ri
sc

-v

st
er

eo
.0

st
er

eo
.1

st
er

eo
.2

u
sb

_f
u

n
ct

v
ga

_l
cd

D
u

ty
 C

yc
le

baseline PG Boost PG TG

Fig. 14. Maximum and minimum stress cycle of the buffers in the baseline
and the proposed method

16.3% in, respectively, boosted PG-, regular PG-, and TMG-
based architectures.

3) Buffers Aging: Fig. 14 demonstrates the maximum (lines
with marker) and minimum (dashed lines) stress cycle of the
buffers for the baseline and the proposed method. Similar
to the multiplexers, since the baseline does not implement
any mitigation technique, stress cycles of the buffers are
independent of the underlying architecture. That is, ps of
boosted PG-, non-boosted PG-, and TMG-based architectures
is equal in the baseline case. However, since ps,opt of the
architectures is different, we implement the proposed method
separately for each architecture. According to Fig. 14, with-
out any aging mitigation technique, ps ranges from 0 to
0.42 after running 20 benchmarks. That is [0.46, 0.57] for
the boosted PG-, [0.085, 0.174] for the regular (non-boosted)
PG-, and [0.081, 0.174] for the TG-based architecture. The
worst ps of each architecture can be obtained from Fig. 6.
Comparing the delay corresponding to the worst ps of each
range reveals that the proposed signal imbalancing method
reduces the aging-induced delay of the buffers by 33.8%,
45.2%, and 10.4% in the boosted PG-, non-boosted PG-, and
TMG-based architectures. As an example, the worst signal
probability for the boosted PG-based architecture is ps = 0 for
ps ∈ [0, 0.42] which results in ∆delay = 9%. However, the
proposed method bounds the ps to [0.46, 0.57] which reduces
the maximum ∆delay to 5.9%.

VI. CONCLUSION

In this paper, we analyzed the impact of aging on the
reliability and delay degradations of FPGA routing resources
in details. Based on our investigations, we aimed to reduce
the stress duration of multiplexer transistors by balancing the
use of interconnect resources in a coarse-grained manner by
using constrained mapping without deteriorating the overall
performance, followed by a fine-grained (i.e., intra-resource)
method by proposing a stress-aware routing algorithm. By
demonstrating the fact that different signal probabilities have
different impact on aging-induced delay degradation, we mod-
ified the synthesis flow to converge the long-term probabilities
of the FPGA routing tracks towards the most aging-friendly
values (which can be different for various architectures).
Experimental results show 64.3% reduction of the multiplexers
stress duration which, in turn, enhances their aging-induced
degradations by up to 19.2%. This is up to 45.2% enhancement
for the routing buffers. Overall, 31.7%, 31.1%, and 14.1%

13

improvement in the aging guardband of routing network
achieved for FPGAs with boosted PG-, regular PG- and TMG-
based routing architectures. While most of the previous work
have focused on balancing the aging of SRAM cells, our ex-
periments revealed that aging has a negligible impact on SNM
and SER of configuration SRAM cells. Furthermore, aging of
SRAM cells basically does not influence the performance of
FPGA.

REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
IEEE transactions on computer-aided design of integrated circuits and
systems, vol. 26, no. 2, pp. 203–215, 2007.

[2] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte,
S. Chakraborty et al., “Design and architectures for dependable em-
bedded systems,” in Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2011 Proceedings of the 9th International Conference
on. IEEE, 2011, pp. 69–78.

[3] J. Keane, X. Wang, D. Persaud, and C. H. Kim, “An all-in-one silicon
odometer for separately monitoring hci, bti, and tddb,” IEEE Journal of
Solid-State Circuits, vol. 45, no. 4, pp. 817–829, 2010.

[4] Y. M. Randriamihaja, V. Huard, X. Federspiel, A. Zaka, P. Palestri,
D. Rideau et al., “Microscopic scale characterization and modeling
of transistor degradation under hc stress,” Microelectronics Reliability,
vol. 52, no. 11, pp. 2513–2520, 2012.

[5] K. Joshi, S. Mukhopadhyay, N. Goel, and S. Mahapatra, “A consistent
physical framework for n and p bti in hkmg mosfets,” in Reliability
Physics Symposium (IRPS), 2012 IEEE International. IEEE, 2012, pp.
5A–3.

[6] M. A. Alam and S. Mahapatra, “A comprehensive model of pmos nbti
degradation,” Microelectronics Reliability, vol. 45, no. 1, pp. 71–81,
2005.

[7] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Nbti-aware synthesis of
digital circuits,” in Proceedings of the 44th annual Design Automation
Conference. ACM, 2007, pp. 370–375.

[8] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-
aware design to suppress aging,” in Design Automation Conference
(DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[9] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock,
J. A. Tierno et al., “Active management of timing guardband to save
energy in power7,” in proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2011, pp. 1–
11.

[10] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy, “Neg-
ative bias temperature instability: Estimation and design for improved
reliability of nanoscale circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 26, no. 4, pp. 743–751,
2007.

[11] E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti, “Combating
aging with the colt duty cycle equalizer,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2010, pp. 103–114.

[12] H. Amrouch, T. Ebi, and J. Henkel, “Resi: Register-embedded self-
immunity for reliability enhancement,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 5, pp.
677–690, 2014.

[13] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan, M. J.
Irwin et al., “Toward increasing fpga lifetime,” IEEE Transactions on
Dependable and Secure Computing, vol. 5, no. 2, pp. 115–127, 2008.

[14] B. Khaleghi, B. Omidi, H. Amrouch, J. Henkel, and H. Asadi, “Stress-
aware routing to mitigate aging effects in sram-based fpgas,” in Field
Programmable Logic and Applications (FPL), 2016 26th International
Conference on. IEEE, 2016, pp. 1–8.

[15] E. Stott, P. Sedcole, and P. Y. Cheung, “Modelling degradation in fpga
lookup tables,” in Field-Programmable Technology, 2009. FPT 2009.
International Conference on. IEEE, 2009, pp. 443–446.

[16] M. Naouss and F. Marc, “Modelling delay degradation due to nbti in
fpga look-up tables,” in Field Programmable Logic and Applications
(FPL), 2016 26th International Conference on. IEEE, 2016, pp. 1–4.

[17] A. Amouri, S. Kiamehr, and M. Tahoori, “Investigation of aging effects
in different implementations and structures of programmable routing
resources of fpgas,” in Field-Programmable Technology (FPT), 2012
International Conference on. IEEE, 2012, pp. 215–219.

[18] M. D. Valdes-Pena, J. F. Freijedo, M. J. M. Rodriguez, J. J. Rodriguez-
Andina, J. Semiao, I. M. C. Teixeira et al., “Design and validation
of configurable online aging sensors in nanometer-scale fpgas,” IEEE
Transactions on Nanotechnology, vol. 12, no. 4, pp. 508–517, 2013.

[19] E. Stott, J. S. Wong, and P. Y. Cheung, “Degradation analysis and
mitigation in fpgas,” in Field Programmable Logic and Applications
(FPL), 2010 International Conference on. IEEE, 2010, pp. 428–433.

[20] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E. Imhof
et al., “Module diversification: Fault tolerance and aging mitigation for
runtime reconfigurable architectures,” in Test Conference (ITC), 2013
IEEE International. IEEE, 2013, pp. 1–10.

[21] P. M. Rao, A. Amouri, S. Kiamehr, and M. B. Tahoori, “Altering lut
configuration for wear-out mitigation of fpga-mapped designs,” in Field
Programmable Logic and Applications (FPL), 2013 23rd International
Conference on. IEEE, 2013, pp. 1–8.

[22] H. Zhang, M. A. Kochte, E. Schneider, L. Bauer, H.-J. Wunderlich,
and J. Henkel, “Strap: Stress-aware placement for aging mitigation
in runtime reconfigurable architectures,” in Computer-Aided Design
(ICCAD), 2015 IEEE/ACM International Conference on. IEEE, 2015,
pp. 38–45.

[23] Z. Ghaderi, N. Bagherzadeh, and A. Albaqsami, “Stable: Stress-aware
boolean matching to mitigate bti-induced snm reduction in sram-based
fpgas,” IEEE Transactions on Computers, 2017.

[24] M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong, “Performance benefits
of monolithically stacked 3-d fpga,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp.
216–229, 2007.

[25] H. Asadi, M. B. Tahoori, B. Mullins, D. Kaeli, and K. Granlund, “Soft
error susceptibility analysis of sram-based fpgas in high-performance
information systems,” IEEE Transactions on Nuclear Science, vol. 54,
no. 6, pp. 2714–2726, 2007.

[26] H. Asadi and M. B. Tahoori, “Analytical techniques for soft error rate
modeling and mitigation of fpga-based designs,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, no. 12, pp. 1320–1331,
2007.

[27] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel,
“Towards interdependencies of aging mechanisms,” in Proceedings
of the 2014 IEEE/ACM International Conference on Computer-Aided
Design. IEEE Press, 2014, pp. 478–485.

[28] S. Yazdanshenas and V. Betz, “Automatic circuit design and modelling
for heterogeneous FPGAs,” in International Conference on Field Pro-
grammable Technology (FPT). IEEE, 2017, pp. 9–16.

[29] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk
et al., “Vtr 7.0: Next generation architecture and cad system for fpgas,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 7, no. 2, p. 6, 2014.

[30] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman
et al., “The stratix ii logic and routing architecture,” in Proceedings
of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays. ACM, 2005, pp. 14–20.

[31] C. Chiasson and V. Betz, “Should fpgas abandon the pass-gate?” in Field
Programmable Logic and Applications (FPL), 2013 23rd International
Conference on. IEEE, 2013, pp. 1–8.

[32] H. Amrouch, J. Martin-Martinez, V. M. van Santen, M. Moras, R. Ro-
driguez, M. Nafria et al., “Connecting the physical and application
level towards grasping aging effects,” in Reliability Physics Symposium
(IRPS), 2015 IEEE International. IEEE, 2015, pp. 3D–1.

[33] “Virtex-6 fpga configurable logic block,” User Guide, Xilinx, February
2012.

[34] “Stratix iv device handbook,” Handbook, Altera, January 2016.
[35] (2016) Nangate Open Cell Library. [Online]. Available: http:

//www.nangate.com/
[36] “7 series fpgas data sheet: Overview,” Data Sheet, Xilinx, March 2017.
[37] Z. Seifoori, B. Khaleghi, and H. Asadi, “A power gating switch box

architecture in routing network of sram-based fpgas in dark silicon era,”
in 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017, pp. 1342–1347.

[38] Z. Ebrahimi, B. Khaleghi, and H. Asadi, “Peaf: A power-efficient
architecture for sram-based fpgas using reconfigurable hard logic design
in dark silicon era,” IEEE Transactions on Computers, vol. 66, no. 6,
pp. 982–995, 2017.

[39] Z. Seifoori, Z. Ebrahimi, B. Khaleghi, and H. Asadi, “Introduction to
emerging sram-based fpga architectures in dark silicon era,” Advances
in Computers, 2018.

[40] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based
performance-driven router for fpgas,” in Proceedings of the 1995 ACM
third international symposium on Field-programmable gate arrays.
ACM, 1995, pp. 111–117.

[41] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-
submicron FPGAs. Springer Science & Business Media, 2012, vol.
497.

[42] J. Lamoureux and S. J. Wilton, “Activity estimation for field-
programmable gate arrays,” in Field Programmable Logic and Appli-
cations, 2006. FPL’06. International Conference on. IEEE, 2006, pp.
1–8.

http://www.nangate.com/
http://www.nangate.com/

14

[43] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “Fpga-based
protection scheme against hardware trojan horse insertion using dummy
logic,” IEEE Embedded Systems Letters, vol. 7, no. 2, pp. 46–50, 2015.

[44] C. Beckhoff, D. Koch, and J. Torresen, “The xilinx design language
(xdl): Tutorial and use cases,” in Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2011 6th International Workshop on.
IEEE, 2011, pp. 1–8.

[45] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “Rapidsmith: Do-it-yourself cad tools for xilinx fpgas,” in
Field Programmable Logic and Applications (FPL), 2011 International
Conference on. IEEE, 2011, pp. 349–355.

[46] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
fpgas,” in Proceedings of the 2000 ACM/SIGDA eighth international
symposium on Field programmable gate arrays. ACM, 2000, pp. 203–
213.

[47] (2013 (accessed August 13, 2017)) Predictive technology model (ptm).
[Online]. Available: http://ptm.asu.edu/

[48] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin ii-
an open-source verilog hdl synthesis tool for cad research,” in Field-
Programmable Custom Computing Machines (FCCM), 2010 18th IEEE
Annual International Symposium on. IEEE, 2010, pp. 149–156.

[49] A. Mishchenko et al., “ABC: A system for sequential synthesis and
verification,” URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[50] C. Albrecht, “Iwls 2005 benchmarks,” in International Workshop for
Logic Synthesis (IWLS): http://www. iwls. org, 2005.

[51] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-v
instruction set manual, volume i: Base user-level isa,” EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62, 2011.

[52] S. Yang, Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

Behnam Khaleghi received his B.Sc. and M.Sc.
degrees in computer engineering from Sharif Uni-
versity of Technology (SUT), Tehran, Iran, in 2013,
and 2016, respectively. He is currently working as a
research assistant in the Data Storage, Networks, &
Processing (DSN) Laboratory at the Department of
Computer Engineering, SUT. He spent the summer
2014 and 2015 as a research assistant at the Chair
for Embedded Systems in the Karlsruhe Institute of
Technology. His research interests include reconfig-
urable architectures and computer-aided design. He

has two Best Paper Nominations at the DAC’17, and DATE’17.

Behzad Omidi received the B.Sc. and M.Sc. degrees
in computer engineering from Shahed University
and SUT, Tehran, Iran, in 2014 and 2016, respec-
tively. He has been with the DSN Laboratory at
the Department of Computer Engineering, SUT, as
a researach assistant for three years. His current
research interests include reconfigurable computing
and reliability.

Hussam Amrouch received the Ph.D.(summa cum
laude) degree from Karlsruhe Institute of Technol-
ogy (KIT), Germany, in 2015. He is currently a
Research Group Leader with the Chair for Embed-
ded Systems, KIT where he is in charge of the
Dependable Hardware Research Group. His main
research interests are design for reliability, thermal-
aware VLSI design, modeling, and mitigating aging
effects at the device/circuit levels. He holds five
HiPEAC Paper Awards. He has three Best Paper
Nominations at the DAC’16, DAC’17, and DATE’17

for his work on reliability. He currently serves as an Associate Editor of
Integration, the VLSI Journal.

Jörg Henkel received the Diploma degree and the
Ph.D. (summa cum laude) degree from the Technical
University of Braunschweig. He was a Research
Staff Member with NEC Laboratories, Princeton,
NJ, USA. He is currently the Chair Professor for
Embedded Systems with the Karlsruhe Institute of
Technology. His research is focused on co-design
for embedded hardware/software systems with re-
spect to power, thermal, and reliability aspects. He
has received six Best Paper Awards throughout his
career from, among others, the ICCAD, ESWeek,

and DATE. For two consecutive terms he served as the Editor-in-Chief of
the ACM Transactions on Embedded Computing Systems. He is currently
the Editor-in-Chief of the IEEE Design & Test Magazine and is/has been an
Associate Editor of the major ACM and IEEE Journals. He has led several
conferences as a General Chair including the ICCAD, and ESWeek and serves
as a Steering Committee Chair/Member for leading conferences and journals
for embedded and cyber-physical systems. He coordinates the DFG Program
SPP 1500 Dependable Embedded Systems and is a Site Coordinator of the
DFG TR89 Collaborative Research Center on Invasive Computing. He is the
Chairman of the IEEE Computer Society, Germany Chapter.

Hossein Asadi (M’08, SM’14) received the B.Sc.
and M.Sc. degrees in computer engineering from the
SUT, Tehran, Iran, in 2000 and 2002, respectively,
and the Ph.D. degree in electrical and computer
engineering from Northeastern University, Boston,
MA, USA, in 2007.

He was with EMC Corporation, Hopkinton, MA,
USA, as a Research Scientist and Senior Hardware
Engineer, from 2006 to 2009. From 2002 to 2003, he
was a member of the Dependable Systems Labora-
tory, SUT, where he researched hardware verification

techniques. From 2001 to 2002, he was a member of the Sharif Rescue
Robots Group. He has been with the Department of Computer Engineering,
SUT, since 2009, where he is currently a tenured Associate Professor. He
is the Founder and Director of the Data Storage, Networks, and Processing
(DSN) Laboratory, Director of Sharif High-Performance Computing (HPC)
Center, the Director of Sharif Information and Communications Technology
Center (ICTC), and the President of Sharif ICT Innovation Center. He spent
three months in the summer 2015 as a Visiting Professor at the School of
Computer and Communication Sciences at the Ecole Poly-technique Federele
de Lausanne (EPFL). He is also the co-founder of HPDS corp., designing
and fabricating midrange and high-end data storage systems. He has authored
and co-authored more than eighty technical papers in reputed journals and
conference proceedings. His current research interests include data storage
systems and networks, solid-state drives, operating system support for I/O
and memory management, and reconfigurable and dependable computing.

Dr. Asadi was a recipient of the Technical Award for the Best Robot Design
from the International RoboCup Rescue Competition, organized by AAAI
and RoboCup, a recipient of Best Paper Award at the 15th CSI International
Symposium on Computer Architecture & Digital Systems (CADS), the Dis-
tinguished Lecturer Award from SUT in 2010, the Distinguished Researcher
Award and the Distinguished Research Institute Award from SUT in 2016, and
the Distinguished Technology Award from SUT in 2017. He is also recipient
of Extraordinary Ability in Science visa from US Citizenship and Immigration
Services in 2008. He has also served as the publication chair of several
national and international conferences including CNDS2013, AISP2013, and
CSSE2013 during the past four years. Most recently, he has served as a
Guest Editor of IEEE Transactions on Computers, an Associate Editor of
Microelectronics Reliability, a Program Co-Chair of CADS2015, and the
Program Chair of CSI National Computer Conference (CSICC2017).

http://ptm.asu.edu/

	Introduction
	Related Work
	FPGA Architecture
	CB and SB
	Structure of Multiplexers
	Buffers

	The Proposed Method
	Aging in Configuration Cells
	Multiplexers
	Aging-aware Placement
	Aging-aware Routing

	Routing Buffers
	Discussion

	Experimental Setup and Results
	General Setup
	Calibration of Parameters
	Results
	Impact on Performance
	Multiplexers Aging
	Buffers Aging

	Conclusion
	References
	Biographies
	Behnam Khaleghi
	Behzad Omidi
	Hussam Amrouch
	Jörg Henkel
	Hossein Asadi

