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Abstract—ScratchPad Memory (SPM) is an important part
of most modern embedded processors. The use of embedded
processors in safety-critical applications implies including
fault tolerance in the design of SPM. This paper proposes
a method, called FTSPM, which integrates a multi-priority
mapping algorithm with a hybrid SPM structure. The proposed
structure divides SPM into three parts: 1) a part is equipped
with Non-Volatile Memory (NVM) which is immune against soft
errors, 2) a part is equipped with Error-Correcting Code, and 3)
a part is equipped with parity. The proposed mapping algorithm
is responsible to distribute the program blocks among the
above three parts with regards to their vulnerability level. The
simulation results demonstrate that the FTSPM reduces the SPM
vulnerability by about 7x in comparison to a pure SRAM-based
SPM. In addition, the dynamic energy consumption of the
proposed method is 77% and 47% less than that of a pure
NVM-based SPM and a pure SRAM-based SPM, respectively.

Keywords—Reliability, Mapping of SPM, SPM, Non-Volatile
Memory.

I. I NTRODUCTION

Energy consumption, performance, and reliability are the
major concerns in designing embedded processors [1]. These
concerns are mainly affected by on-chip memory cells that
constitute about 60% of the chip area [2]. On-chip mem-
ory cells, i.e., cache and scratchpad memories (SPMs), have
been widely used to decrease the energy consumption and
to improve the performance. A comparison between cache
and SPM shows that SPM requires less area and energy
than cache memory because of the absence of tag array
and controller circuits in SPM [3]. In addition, the use of
embedded processors in real-time applications are developed
explosively [4]. Here, predictability is one of the major re-
quirements of the real-time applications. In comparison to
software-managed SPM, hardware-controlled cache memory
complicates the predictability of the system [3]. Based on this
fact and due to lower power consumption of SPM, cache has
been replaced by SPM in many embedded processors [5].

One of the main applications of embedded processors is
in Safety-Critical Real-Time systems, where the reliability of
SPM is of decisive importance. Soft errors due to radiation-
induced bit-flips are a major contributor affecting the reliability
of SPMs. With continuous down scaling of emerging technol-
ogy and the vulnerability paradigm shift fromSingle Event
Upsets (SEUs) to Multiple-Bit Upsets (MBUs), SPMs have
become more vulnerable to soft errors [6].

Almost all previous studies dealing with radiation-induced

soft errors in SPMs are based on either duplicating the memory
contents, or using traditional memory protection methods,
e.g.,Error Correction Codes (ECC) [2], [7], [8]. Duplicating
the memory contents imposes high overheads in terms of
power and die size while ECCs have severe limitations on
correcting MBUs.

SPM mapping algorithms that deal with allocating SPM
space to program blocks are one of the major challenges in
exploiting SPM. Since various program blocks have different
vulnerability to soft errors, mapping algorithms have direct
effects on the reliability of SPM; however, the reliabilityof
SPM has not been considered in previous studies during the
mapping phase.

This paper proposes a Fault-Tolerant method for SPM,
called FTSPM, which integrates a multi-priority reliability-
aware mapping algorithm within a hybrid fault-tolerant SPM
structure. The proposed hybrid structure supports three levels
of protection: 1) aNon-Volatile Memory (NVM) which is
immune against soft errors, 2) a SRAM part protected with
ECC, and 3) a parity-protected SRAM. The proposed mapping
algorithm is responsible to distribute the program blocks
among the above three parts with regards to their vulnerability
level. Using NVM cells in the SPM structure results in the
following advantages:

1) The different structure of NVM cells from the tra-
ditional SRAM cells completely immunes some of
these memory technologies against radiation-induced
soft errors [9]. Consequently, we can immunize parts
of SPM area without imposing any protection redun-
dancy overhead to these parts.

2) Since NVMs have ultra-low leakage power [10],
using these memory cells alongside of SPM space
significantly decreases SPM static energy consump-
tion.

Due to some limitations of NVMs, e.g., write latency and
endurance (maximum number of write operations that an NVM
cell can tolerate), SRAMs should be used in conjunction with
NVMs to take advantages of low latency and high endurance
of SRAMs and low leakage power of NVMs [10]. To strike
a balance amongReliability, Performance, Power, and NVM
Endurance, the proposed multi-priority mapping algorithm
allocates different SPM areas to different program blocks
according to program blocks vulnerabilities. The proposedal-
gorithm is also able to optimize the mapping of program blocks
for reliability, performance, power, or endurance according to



system requirements.
The remaining of this paper is organized as follows. In

Section II, previous work is reviewed. In Section III, the
proposed hybrid SPM structure and mapping algorithm are
explained. An example which helps to understand the details
of FTSPM is presented in Section IV. Section V describes
the simulation setup and results. Conclusions are presented in
Section VI.

II. RELATED WORK

Most of the previous studies in SPM have management
focused on proposing an optimized mapping algorithm to min-
imize energy consumption or to maximize the system perfor-
mance. The SPM mapping algorithm is responsible to manage
the limited SPM space and map the most frequently accessed
blocks of application to SPM space. SPM management is an
optimization problem that can be handled by the programmer
or the compiler [11]. Basically, there are two approaches to
map program blocks to SPM:static approach and dynamic
approach. In the static approach, a subset of program blocks
are transferred to SPM when the application starts and there
is no block transfer between the off-chip memory and SPM
during the application execution. In the dynamic approach,
program blocks can be transferred between SPM and the off-
chip memory during the application execution [12].

In addition to performance and energy consumption, SPM
as an SRAM-based on-chip memory plays a major role in the
reliability of embedded systems. It is a well-known fact that
SRAM cells are extremely susceptible to radiation-induced
errors, i.e. soft errors [13]. As technology shrinks toward
nanometer era, they become even more vulnerable to these
errors [14].

Many investigations have been done to protect cache and
main memory against MBUs; however, there are a few studies
that focused on protecting SPMs against even SEUs. Thus in
this section, the previous studies including the methods for
improving the performance or energy consumption of SPM are
introduced first and then the previous work on SPM reliability
is investigated.

A. Improving Performance and/or Energy Consumption of
SPM

In [15], a dynamic mapping algorithm, which maps the
code section of the programs to SPM, has been introduced.
In this study, coarse- and fine-grained program blocks are
considered. In the coarse-grained mode, program blocks are
constructed from functions, and in the fine-grained mode, a
sequence of instructions constructs a block. After partitioning
the program to the blocks, the number of accesses to each
block is computed by a static profiling. Based on the profiling
result, the most frequent accessed blocks are selected as
candidates for mapping to the SPM. Then, the SPMs energy
consumption and performance of each mapping scenario are
calculated and the most efficient mapping scenario is selected
for implementation. The method which used in this study
has also been exploited in many researches on SPM mapping
algorithms.

A dynamic mapping algorithm has been developed for
code section of the programs in [16] which implies hardware
modifications to the system. This study has introduced a SPM

controller unit that records the corresponding mapping address
of each block on the SPM space. The main difference of
this study and [15] is in the implementation of dynamic
transferring of program blocks to the SPM. This study has
suggested adding a new type of commands to theIstruction
Set Architecture (ISA) of processor, named asSPM Mapping
Instruction (SMI). SMI commands that stall the processor are
executed before the execution of candidate blocks. After this
interrupt, the candidate block is copied from its current address
in the off-chip memory to the allocated SPM space, which
registered in the SPM controller unit. Then in the executionof
program is resumed.

In [17], a dynamic SPM allocation algorithm for mapping
data section of programs has been presented. This study has
concentrated on mapping of arrays to SPM space. Unlike the
studies in [15] and [16], in this work, the related commands
for mapping the arrays are also generated automatically. The
proposed algorithm consists of three consequent steps. First,
the SPM space is partitioned into the sections with different
sizes. Each section of the SPM is then divided into different
parts with the same size alongside the section. In the second
step, the total amount of execution time related to each array
as well as the reference aggregation to the specific part of
each array is determined based on static profiling. Finally,
the candidate parts of arrays are selected and the transition
commands which will be added to the code are generated
automatically.

In recent years, the trend of using NVMs (e.g., STT-RAM,
MRAM, and PCM) in the design of caches and SPMs has
been increased; however, all of the previous work proposing
to use NVM-based SPMs have only concentrated on improving
performance or energy consumption of the system.

A dynamic SPM allocation algorithm has been proposed
in [10] to transfer the best subset of application blocks between
off-chip memory and hybrid SRAM-NVM SPM. Due to high
dynamic energy consumption and write latency of NVM,
write-intensive data blocks are mapped to the SRAM part and
read-intensive data blocks are mapped to the NVM part. In this
way, the write endurance of NVM and the energy consumption
and the latency of the SPM are improved.

In [18], the energy overhead and the latency of write
operations into NVM cells are significantly improved by
decreasing the retention time (the time which an NVM cell
could correctly sustain its value) in the STT-RAM cells . The
proposed algorithm has tried to allocate the STT-RAM part to
blocks with least life-time while keeping other blocks in the
SRAM part across the SPM space.

B. Improving SPM Reliability

To the best of our knowledge, among previous work for
improving SPM reliability, only three methods have targeted
dealing with soft errors caused by high-energy particle strike
while other studies have considered the reliability of SPM
against thermal fluctuation across the SPM space. In this sec-
tion, first the previous methods to cope with thermal fluctuation
are reviewed and then studies on protecting the SPM against
soft errors are introduced.

In [19], a dynamic compiler-based mapping algorithm has
been proposed which concentrates on mapping data parts of
program to SPM. In the first step of the algorithm, the most
frequently accessed blocks of program are determined. These



blocks mostly include the program loops. In the next step,
the candidate loops are partitioned based on their iterations.
Finally, the algorithm decides to map those loops only in some
of their iterations and leaves the remainder of loop iteration for
the cache. In this way, a thermal balance is formed between
cache and SPM and the algorithm prevents the formation of
hot-spots alongside of SPM and cache space.

Unlike the method presented in [19] which is only appli-
cable on the systems utilizing cache and SPM simultaneously,
a method has been introduced in [20] to improve the thermal
reliability of SPM without engaging other parts of the system.
This study has introduced an algorithm based on theregularity
or irregularity of memory access sequence in each program.
For regular access patterns, a hardware unit manipulates the
address bits of accessed blocks in order to distribute the
blocks alongside the SPM space and prevents the reference
aggregation at a specific part of SPM. For those programs
that have irregular access patterns, the program codes are
analyzed and program blocks are categorized into two groups,
namelyhot variables and cold variables. Then, the mapping
algorithm tries to map some cold variables between each hot
variable in order to form a thermal balance along SPM space.

As mentioned earlier, there are few studies concentrating
on the reliability of SPM against radiation-induced soft errors.
Indeed, these studies have focused on protecting the SPM
blocks against soft errors without considering the vulnerability
of blocks that should be mapped to the SPM space. The
proposed method in [3] is based on data block duplication
under the control of compiler. This method does not guarantee
to duplicate all data blocks and provides no solution for
updating the replicas.

In [8], with interpretation ofRedundant Array of Indepen-
dent Disks (RAID) systems for memories, distributed SPMs
in multicore systems are protected against soft errors. To
reduce energy consumption of extra SPMs accesses due to
RAID architecture, an aggressive voltage scaling is applied
to the system which leads to exponentially increase in the
vulnerability of SPMs against soft errors.

In [7], the reliability of instruction part of SPM has been
increased by the means of traditional protection techniques.
The SPM space in this study is assumed to remain unchanged
during the program execution. Because of this assumption, the
proposed method cannot be applied to data part of SPM due to
frequent data update. In addition, the reliability achievement of
this method is limited to the ability of applied detection and
protection techniques to deal with bit flips, which decreases
with technology scaling.

III. FTSPM: PROPOSEDSPM STRUCTURE AND MAPPING
ALGORITHM

In this section, the hybrid SPM structure as well as
the mapping algorithm ofFault-Tolerant SPM (FTSPM) is
explained in detail. To the best of our knowledge, this is the
first work that has proposed to use NVM along SRAM cells
to design a reliable and low-power SPM structure. In addition,
this work has introduced a reliability-aware hybrid SPM space
mapping algorithm. For the NVM part of SPM, STT-RAM
technology is exploited which is the most promising NVM
technology for on-chip memories [21].

In [9], the reliability of STT-RAM against high-energy
particle strike and thermal fluctuation have been evaluated. It

Fig. 1. The interaction of the proposed architecture in a system

has been reported that unlike SRAM cells, STT-RAM cells
are completely immune against particle strikes. Furthermore,
considering the results, the probability of errors caused by
thermal fluctuation would be less than 10-15 for a year,
which is significantly less than the probability of SRAM
radiation-induced transient errors. These results confirmthat
STT-RAM cells would be considerably more reliable than
SRAM cells against radiation-induced transient errors as well
as thermal fluctuations.

Due to significantly higher robustness of STT-RAM cells
against soft errors as compared to SRAM cells, FTSPM
proposes to partition SPM area to a STT-RAM section and
a SRAM section; and to map the program blocks to the
SPM hybrid space such that the reliability is enhanced while
providing an efficient trade-off between performance, energy
consumption, and STT-RAM endurance. To provide a trade
off between reliability, performance, and energy consumption,
SRAM section is also partitioned to a parity protected
part and aSingle Error Corrected-Double Error Detected
(SEC-DED) protected part. The proposed approach is based
on the following key observations:

• Vulnerabilities of various program blocks to soft errors
are not the same. In other words, the probability of a
faulty block to produce an erroneous output is different
for various program blocks.

• Fully STT-RAM-based SPM structure satisfies the re-
liability requirement; however it endures performance
and energy consumption overheads of write operations
in addition to limited STT-RAM endurance.

• Overhead of protecting fully SRAM-based SPM
against soft errors is significantly higher than partially
SRAM-based SPM.

• Software controlled SPM allows to manage available
SPM space according to the required level of reliabil-
ity.

According to these observations, a hybrid SPM structure is
proposed to improve the reliability of SPM while taking advan-



Algorithm 1 Mapping Determiner Algorithm (MDA)
Input: Data and Code Blocks of Program
Output: Proper Position of each Block across the hybrid SPM

1: while any block existdo
2: if (current block== code block) and (current block

size≤ instruction SPM size)then
3: map the current block to instruction SPM
4: end if
5: if (current block== data block) and (current block

size≤ STT-RAM size in data SPM)then
6: map the current block to STT-RAM part of data

SPM
7: end if
8: end while
9: while any block exist in STT-RAM part of data SPMdo

10: current block susceptibility← number of block’s
reference * it’s life time

11: constructing a descending order susceptibility list of
blocks in STT-RAM section of data SPM

12: end while
{Checking the performance overhead of current mapping
scenario}

13: while performance overhead of current mapping scenario
> performance thresholddo

14: omit the least susceptible block from STT-RAM of
data SPM

15: update susceptibility list
16: calculate performance overhead of current mapping

scenario
17: end while
{Checking the power overhead of current mapping sce-
nario}

18: while power overhead of current mapping scenario>
power thresholddo

19: omit the least susceptible block from STT-RAM of
data SPM

20: update susceptibility list
21: calculate power overhead of current mapping scenario
22: end while
{Checking the endurance of current mapping scenario}

23: while any block exist in STT-RAM part of data SPMdo
24: if number of write in current block> write cycles

thresholdthen
25: omit current block from STT-RAM part of data

SPM
26: end if
27: end while
{Determining the position of evicted blocks from STT-
RAM part of data SPM}

28: avgsus ← calculate ”avg. susceptibility over evicted
blocks”

29: while any block exist in STT-RAM part of data SPMdo
30: if (current block susceptibility≥ avgsus) and ( cur-

rent block size≤ ECC size in data SPM)then
31: Map the current block to ECC part of data SPM
32: end if
33: if (current block susceptibility≤ avgsus) and (current

block size≤ Parity size in data SPM)then
34: Map the current block to Parity part of data SPM
35: end if
36: end while

tages of both SRAM and STT-RAM technologies to overcome
their limitations. Fig. 1 shows the suggested structure forSPM.

The main challenge for the proposed hybrid structure is
to distribute program blocks between the STT-RAM section
and the SRAM section such that the system requirements are
satisfied. As mentioned, STT-RAM cells are immune against
soft errors and their static power is significantly lower than that
of SRAM cells; however, they suffer from limited endurance,
high latency, and high dynamic power of write operation.
On the other hand, the limitations of STT-RAMs are not
experienced in SRAM cells but they have their own drawbacks.
Firstly, in nano-scale technologies (45nm and beyond), the
static power is becoming the dominant factor of the total
power consumption [22]. This limits the use of SRAM cells
for on-chip memories in nano-scale technologies. In addition,
it is a well-known fact that SRAM cells are highly vulnerable
to radiation-induced errors especially in [23] where particle
strikes may cause MBUs. ECCs can be used to protect SRAM
cells against soft errors; however, the area and power con-
sumption of ECCs significantly increases when designed for
detection and correction of multiple bit flips.

According to the above discussions, the proposed SPM
structure consists of three regions with different characteristics
in term of reliability, performance, power, and endurance.The
proposed mapping algorithm is also responsible to generate
a reliable SPM allocation without noticeably affecting other
parameters. From the reliability point of view, all of the
program blocks are better to be mapped to the STT-RAM
region; from the performance and dynamic energy points of
view, all the program blocks are better to be mapped to the
parity-protected SRAM region and finally, it is not efficient
to map write intensive blocks to the STT-RAM region for
endurance point of view. The proposed mapping algorithm
considers these extreme points and tries to allocate the more
reliable SPM regions to more vulnerable program blocks
without violating performance, energy, and endurance budget.

The mapping algorithm consists of two phases; an off-
line phase and an on-line phase. The off-line phase which
is namedMapping Determiner Algorithm (MDA) is respon-
sible for determining each program block to be mapped to
which SPM region. Algorithm 1 represents this phase of the
algorithm. The inputs of this off-line phase are the profiling
information of the application. The second phase is responsible
for on-line transferring of blocks between SPM and the off-
chip memory.

Prior to applying Algorithm 1, a pre-characterization of
program blocks is accomplished based on the profiling infor-
mation to distinguish which blocks should be mapped to SPM.
Afterward, Algorithm 1 specifies the SPM region that should
be allocated to each block in the following six steps:

1) All data blocks and instruction blocks are mapped
to the STT-RAM region of D-SPM and I-SPM,
respectively. We have proposed to use fully STT-
RAM I-SPM instead of hybrid structure because the
write operation overhead and STT-RAM endurance
is not a concern for read-only instruction blocks.
Instruction mapping is accomplished in this step and
the algorithm continues in the next five steps to
deallocate a subset of data blocks from the STT-
RAM region and allocate the SEC-DED protected
and the parity protected SRAM region to them. This



TABLE I. RESULTS OF PROFILING CASE STUDY PROGRAM

Block Name Number of
Reads

Number of
Writes

Average
Number of

Reads in each
Reference

Average
Number of

Writes in each
Reference

Number of
Stack Calls

Maximum Stack
Size Needed

(Byte)

Life-Time
(Cycles)

Main 3,327,700 0 2,620 0 397,561 348 2,086,576

Mul 25,973,000 0 40,710 0 6,400 72 4,221,439

Add 906,200 0 1,433 0 7,100 72 193,356

Array1 2,181,630 1,114,894 10,800 5,519 0 0 4,217,662

Array2 1,113,200 484 5,538 2 0 0 4,215,929

Array3 2,178,000 1,113,684 10,835 5,540 0 0 4,207,400

Array4 1,113,200 484 5,538 2 0 0 4,205,142

Stack 234,009 177,052 1 1 0 0 19,813

is performed in order to satisfy performance, energy
consumption, and endurance budgets.

2) Data blocks mapped to STT-RAM region are sorted
according to their vulnerability to soft errors. Vulner-
ability of a block is calculated as the multiplication
of the number of block reference and itslife-time.

3) The performance overhead of the current SPM al-
location scenario is calculated. If the performance
overhead exceeds its predefined threshold (a custom
predefined percentage of overhead from the ideal
situation), a data block with the least vulnerability
is removed from STT-RAM region and then this step
will be re-executed. The process is then repeated until
satisfying the performance constraint.

4) The energy overhead of the current SPM allocation
scenario is calculated. If the energy overhead exceeds
its predefined threshold, a data block with the least
vulnerability is removed from the STT-RAM region.
This step will be re-executed until satisfying the
energy requirement.

5) To satisfy the endurance of the STT-RAM region, the
number of writes to each STT-RAM-allocated data
block is calculated and all the blocks with write-
cycles greater than STT-RAM write threshold are
removed from the STT-RAM region, regardless of
their vulnerability.

6) After satisfying performance, energy, and endurance
thresholds in the previous steps, the blocks that have
been removed from the STT-RAM region would
be assigned to the SEC-DED protected or parity
protected region of SRAM. This is done based on
blocks vulnerability and size limitations.

After specifying the SPM region of each data block, the
sequence of blocks accesses will be extracted from the static
profiling information. Based on this sequence, the exact SPM
address of each block and the sequence of blocks transfer,
i.e., the exact point of mapping and un-mapping of blocks
during application execution will be generated. In the next
step, instructions that transfer program blocks between off-
chip memory and SPM are inserted in proper lines of the code
to transfer the blocks at run-time.

IV. M OTIVATIONAL EXAMPLE

In this section, the efficiency of the FTSPM mapping
algorithm and the corresponding mapping tool is verified by
considering a case study example. For this purpose, the pseudo

code presented in Algorithm 2 is executed on the simulation
platform. This program contains two multiply functions, two
add functions, and a quick sort library function using four
arrays as their inputs. The size of each array is about 2 KB.

The SPM configuration of the platform used in this ex-
periment consists of a 16 KB instruction SPM and a 16 KB
data SPM. Data SPM constitutes of a 2 KB ECC protected
SRAM region, a 2 KB parity protected SRAM region, and
a 12 KB STT-RAM region which is completely immune
against radiation-induced soft errors; the instruction SPM is
completely implemented by STT-RAM cells.

After executing the considered program on the simulation
platform, the information shown in Table I is retrieved by
means of application profiling. As it is shown, the programs are
separated into 8 different blocks, which consists of data blocks
and instruction blocks. Based on this profiling, the information
which is necessary for the second phase is achieved.

After completing the profiling phase, the MDA algorithm
is called. Based on the information extracted from profiling
phase, in this algorithm, the proper place of each block in
the proposed hybrid structure is determined. Among all of the
program blocks in Table I, theMain block could not be mapped
to the instruction SPM because of the size limitation in the 16
KB instruction SPM. TheAdd and theMul blocks will be
mapped to instruction SPM since their sizes are small enough
to be mapped to the instruction SPM and no writing operation
is done in these blocks. So they do not limit the endurance
of STT-RAM cells. It should be noted that the primary write
operations which are done during coping of these blocks from
the main memory to SPM, have not been considered in the

Algorithm 2 Case study program
Input: Array1, Array2, Array3 and Array4
Output: Addition and multiplication of arrays and sorting the

Array1
1: Initializing Array1, Array2, Array3 and Array4
2: i← 0
3: while i<100 do
4: Array1←Multiply(Array1, Array2)
5: Array3←Multiply(Array3, Array4)
6: Array1← Add(Array1, Array2)
7: Array3← Add(Array3, Array4)
8: end while
{Sorting the Array1}

9: Array1← Qsort(Array1)
{Qsort is a library function and it uses stack frequently.}



Fig. 2. Distribution of read/write operations across the FTSPM structure

Table I, as these operations are performed just once before the
first running of the blocks .

The blocks ofArray1, Array3, andStack are removed from
the STT-RAM part of data SPM, because of their intensive
write operation which violates the write threshold on the STT-
RAM region.Array3 andArray4 blocks can be mapped to the
STT-RAM region of data SPM. Among the blocks which have
been removed from the STT-RAM region, theStack block is
mapped to the parity part of data SPM based on its vulnerabil-
ity to radiation-induced soft errors.Array1 andArray3 blocks
are also mapped to the ECC region of data SPM.

The developed profiler tool used in this experiment also
reports the number of stack calls during each reference to an
instruction block and its required stack size during that refer-
ence. This helps the MDA Algorithm to map instruction blocks
with their desirable stack area, whenever those instruction
blocks are mapped to the instruction SPM. Another important
factor reported after profiling is the life-time of the blocks.
The lifetime of a block is the total duration of time periods
across the program execution, which is started by referringthat
block and ended by the first reference to the other blocks by
the program counter. The output of the MDA Algorithm has
been shown in Table II.

After mapping the blocks to the SPMs, mapping and un-
mapping commands are set and located in the proper position
within the main source code, based on the sequence of program
execution achieved by static profiling. In addition, the address
of each block in the SPM is determined in this step. These
processes are done by an automatic tool which is developed
as a part of this work.

After determining the positions of all blocks across the
SPM and modifying the source code to implement the proper
mapping scenario, the application is ready to be executed on
the proposed SPM structure. For verifying the effectiveness of

TABLE II. M APPING DETERMINER ALGORITHM OUTPUT FOR CASE

STUDY PROGRAM

Block Name Mapping of SPM STT-RAM/SRAM

Main No −

Mul Yes STT-RAM

Add Yes STT-RAM

Array1 Yes SRAM(ECC)

Array2 Yes STT-RAM

Array3 Yes SRAM(ECC)

Array4 Yes STT-RAM

Stack Yes Parity

the proposed method, the execution of the new code is also
profiled.

The primary information to validate the results of mapping
scenario is the manner of blocks distribution across the hybrid
structure. In Fig. 2, the distribution of read and write operations
for the case study program has been shown. The reported
percentages for the ECC and parity regions have been cal-
culated based on the total read and write operations occurring
alongside the SRAM cells.

Indeed, the hybrid structure affects the primary properties
of the SPM, e.g.,Reliability, Performance, Energy Consump-
tion, and Endurance. In the following, we explain how the
reliability of the proposed method has been calculated.

Based on different vulnerabilities among the regions of the
hybrid SPM structure, the equation used for calculating the
reliability should be aware of two fundamental parameters.
The first one is the percentage of references to each region of
the hybrid SPM or distribution pattern of the program blocks
across the SPM; the second parameter is the vulnerability of
each region against radiation-induced soft errors.

Errors in a system can be categorized in the following three
types [6]:

• Silent Data Corruption (SDC): In this error type, the
appearance of the errors is not detected in the target
system.

• Detectable Un-recoverable Error (DUE): This cate-
gory refers to the errors detected by the protection
techniques, but the corrupted data cannot be recovered.

• Detectable Recoverable Error (DRE): This category
refers to the errors that can be detected and recovered
by the protection techniques.

The conventional parity protection technique can detect
single bit error and the conventional ECC, i.e. SEC-DED, is
capable of detecting two bits error or correcting single biterror.
Thus, the major challenge in determining the reliability ofthe
proposed method is to calculate the probability distribution of
the one or multi-bit errors caused by particle strikes.

The rate of bit-flips in different technology node has been
reported in [6]. According to this study, if it is assumed that
a radiation-induced soft error has occurred alongside the 40-
nm technology size, the probabilities of one, two, three, and
more than three bit-flips are about 62%, 25%, 6%, and 7%,
respectively.

Based on the above information and theArchitectural
Vulnerability Factor (AVF) [24], the reliability of the proposed



method is computed by considering the following formulas:

V ulnerability = SDCAV F +DUEAV F (1)

SDCAV F =

n∑

i=0

(ACEtimeofParityBlocki

× SDCprobabilityofParityBlocki)

+
m∑

i=0

(ACEtimeofECCBlocki

× SDCprobabilityofECCblocki)

(2)

DUEAV F =

n∑

i=0

(ACEtimeofParityBlocki

×DUEprobabilityofParityBlocki)

+
m∑

i=0

(ACEtimeofECCBlocki

×DUEprobabilityofECCblocki)

(3)

DUEprobabilityinParity = P (1 bit Corruption) (4)

DUEprobabilityinECC = P (2 bits Corruption) (5)

SDCprobabilityinParity = P (≥ 2 bits Corruption) (6)

SDCprobabilityinECC = P (≥ 3 bits Corruption) (7)

The Architecturally Correct Execution (ACE) Time used
in the above equations is the percentage of execution time in
which the block is vulnerable to the fault.

After considering the distribution of read/write operations
and using the calculated formulas, the reliability of the case
study program which was executed on the FTSPM structure is
about 86% while the reliability of the corresponding execution
on the baseline ECC-protected SRAM-based SPM was about
62%. In addition, since the amount of writes which had done
on the STT-RAM region of SPM is efficiently controlled by the
MDA Algorithm, the performance degradation is negligible.
Furthermore, for the same reason the dynamic energy con-
sumption is 44% lower than the baseline SRAM SPM; and as
it was expected, the static energy consumption is significantly
lower than the baseline SRAM SPM (56% reduction was
observed).

As mentioned, the write endurance of STT-RAM cells is
one of the major challenges in using this memory technology
in the SPM. Table III shows the endurance of SPM for a
pure STT-RAM SPM and FTSPM. As reported, the proposed
FTSPM structure and the mapping algorithm significantly
increase the endurance of the SPM. Since there is no common
idea about the threshold number of writes that a STT-RAM
cell could tolerates, the thresholds between lower and upper
bounds which can be found in the articles [2] were considered
in Table III.

Considering the performance of the system, using the NVM
technologies in on-chip memories may increase the execution
time because of its extra write cycle duration in comparisonto
SRAM-based memories. To overcome this NVMs drawback,
the FTSPM algorithm considers this challenge through the
primary stage of mapping and deports the write intensive
blocks from the STT-RAM region of the SPM. Furthermore, it
can be seen in Fig. 1 that the read latency of STT-RAM is only
one clock cycle; while for the ECC-protected SRAM region

TABLE III. C OMPARISON OF ENDURANCE BETWEEN BASELINE PURE

STT-RAM SPMAND PROPOSED STRUCTURE

Number of Writes
Threshold

Baseline Pure
STT-RAM SPM FTSPM

1012 ∼40 Minutes ∼ 61 Days

1013 ∼7 Hours ∼1.5 Years

1014 ∼3 Days ∼16 Years

1015 ∼28 Days ∼166 Years

1016 ∼3 Months ∼1665 Years

of the SPM, the read and write latencies are two clock cycles.
Thus, the total amount of time savings on read operations, and
penalties on write operations with considering the mapping
strategies lead to almost the same performance on the FTSPM
and the baseline SRAM SPM.

V. SIMULATION SETUP AND RESULTS

To evaluate the proposed approach,FaCSim, a cycle-
accurate ARM processor simulator is used [25]. In the ex-
periments, FTSPM has been compared to two baselines SPM
structures, i.e., a pure SRAM-based structure protected by
SEC-DED and a pure STT-RAM-based structure. A pure STT-
RAM-based structure is completely immune against radiation-
induced soft errors. The first baseline suffers from high static
power and vulnerability to MBUs and the second one suffers
from the endurance as well as energy consumption and the
latency of write operations. The detail characteristics ofeach
structure are presented in Table IV.

The latency and the energy consumption of the memory
subsystem are calculated usingNVSIM [26]. Synopsis Design
Compiler c© [27] is also used to measure the latency and
energy consumption of the parity and SEC-DED combinational
circuits. MiBench benchmark suite [28] has been used as the
workload. Performance, energy consumption, endurance, and
reliability of the system which runs this benchmark suite are
measured to evaluate the efficiency of the proposed method.

Dynamic energy consumption per access of each region
is depicted in Fig. 3, while the static power consumption of
the proposed method, baseline SRAM, and baseline STT-RAM
are 7.1 mW, 15.8 mW, and 3 mW, respectively. As mentioned
in section III, the reliability of the SPM is measured based
on Architectural Vulnerability Factor (AVF) [24]. To measure

Fig. 3. Dynamic energy consumption per access in different structures



TABLE IV. C ONFIGURATION PARAMETERS USED INFaCSim

Baseline pure SRAM SPM Baseline pure NVM SPM FTSPM

Type Size Read
Latency

Write
Latency Type Size Read

Latency
Write

Latency Type Size Read
Latency

Write
Latency

Cache Inst./Data (1) 8KB 1 Clock 1 Clock (1) 8KB 1 Clock 1 Clock (1) 8KB 1 Clock 1 Clock

Inst. SPM (3) 16KB 2 Clocks 2 Clocks (4) 16KB 1 Clock 10 Clocks (4) 16KB 1 Clock 10 Clocks

(3) 16KB 2 Clocks 2 Clocks (4) 16KB 1 Clock 10 Clocks

(2) 2KB 1 Clock 1 Clock

Data SPM (3) 2KB 2 Clocks 2 Clocks

(4) 12KB 1 Clock 10 Clocks

(1): Unprotected SRAM (2): Parity protected SRAM (3): SEC-DED protected SRAM (4): STT-RAM

Fig. 4. Distribution of read/write operations alongside FTSPM structure

the vulnerability of the SPM, vulnerable intervals of each
block is multiplied by the probability of MBUs in the case of
particles strike, which is reported in [6]. Fig. 4 illustrates the
read/write distribution of each benchmark alongside FTSPM
structure. Fig. 5 presents the vulnerability of FTSPM and the
pure SRAM SPM. It is noteworthy that the pure STT-RAM
SPM is supposed to be immune against soft errors.

According to Fig. 5, the vulnerability of the pure SRAM
SPM is about 7x more than FTSPM. As it can be observed
in Fig. 5, the vulnerability of the baseline SRAM structure
is a constant value and it is independent from the behavior
of the workload. It was revealed that this observation relies
on the distribution of radiation induced soft errors acrossthe
surface of uniform baseline SRAM structure and non-uniform
FTSPM structure. As it was anticipated, the shortcoming of
ECC method against MBUs resulted in higher vulnerability
of the baseline SRAM structure, while the robustness of the
NVM part of FTSPM structure against MBUs and the proper
distribution of more vulnerable blocks across more reliable
area in FTSPM resulted in less SPM vulnerability.

Static energy consumption of the baseline structures and
FTSPM is depicted in Fig. 6. As expected, the static energy
consumption of FTSPM is significantly less than that of the
pure SRAM SPM due to replacement of a large fraction of
SRAM cells by STT-RAM cells; however, the static energy
consumption of FTSPM is higher than that of pure STT-RAM
SPM due to high static energy of included SRAM cells. Static
energy consumption of the proposed hybrid SPM and pure

Fig. 5. Vulnerability results for different structures

STT-RAM SPM is about 45% and 25% less than that of the
of the pure SRAM SPM, respectively.

On the other hand, as presented in Fig. 7, the dynamic
energy consumption of FTSPM is 47% less than that of the
pure SRAM SPM and 77% less than that of pure STT-RAM
SPM. Besides, lower read energy and higher write energy of
STT-RAM cells compared to SRAM cells and the intelligent
distribution of program blocks in SPM regions using the
FTSPM mapping algorithm made the FTSPM hybrid structure
considerably more dynamic energy efficient than the pure SPM
and the pure STT-RAM SPM baseline.



Fig. 6. Static energy consumption results for different structures

Fig. 7. Dynamic energy consumption results for different structures

Fig. 8 illustrates the endurance of FTSPM and the pure
STT-RAM SPM baseline. Fig. 8 confirms that by distributing
program blocks between STT-RAM and SRAM regions of
SPM, the proposed algorithm enhances the STT-RAM en-
durance of the hybrid SPM compared to a pure STT-RAM
SPM by three orders of magnitude. Note that the endurance of
the pure SRAM SPM is not reported because it is supposed that
there is no endurance limitation in the SRAM cells. Finally,
due to the strategy of the FTSPM algorithm which tries to
decrease the write aggregation of program alongside STT-
RAM cells, the simulation results shows that the performance
overhead of the proposed method is negligible in comparison
to pure SRAM-based SPM.

VI. CONCLUSION

This paper proposed a method which called FTSPM to
protect SPM against soft errors. FTSPM utilizes a hybrid
STT-RAM/SRAM structure for SPM in order to improve the
reliability of SPM. FTSPM also employs a reliability-aware
mapping algorithm to allocate SPM hybrid regions to program
blocks. According to the simulation results, vulnerability of
the FTSPM structure to soft error is about 7x less than
that of the pure SRAM-based SPM baseline, in addition to
about 55% and 47% reduction in static energy and dynamic
energy consumption, respectively. Furthermore compared to

Fig. 8. Endurance results for different structures

the pure STT-RAM-based SPM baseline, FTSPM increases the
endurance of SPM by three orders of magnitude and decreases
the dynamic energy consumption up to 23%. Moreover, the
performance overhead of FTSPM is less than 1%.
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