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Abstract—Over the past few years, radiation-induced transient
errors, also referred to as soft errors, have been a severe threat to
the data integrity of high-end and mainstream processors. Recent
studies show that cache memories are among the most vulnerable
components to soft errors within high-performance processors.
Accurate modeling of the Vulnerability Factor (VF) is an essential
step towards developing cost-effective protection techniques for
cache memory. Although Fault Injection (FI) techniques can
provide relatively accurate VF estimations they are often very
time consuming. To overcome the limitation, recent analytical
models were proposed to compute the cache VF in a timely
fashion. In this paper, we extend previous work and propose an
alternative analytical model to compute System-level Vulnerability
Factor (SVF) for both write-through and write-back data caches.

In our proposed analytical model, we take into account
both read frequency and error masking to compute system-
level vulnerability of data cache. Previously suggested modeling
techniques overlook the issues of read frequency and error
masking, mainly focusing on time periods in which an error could
propagate in the system. In this work we show that overlooking
these two parameters can significantly impact the system-level
VFs for data caches. We report our estimations for SPEC’2K
benchmarks and compare to previously suggested models. Our
experimental results show that the proposed modeling technique
changes previous VF estimations by up to 40%.

Index Terms—System level vulnerability estimation, Architec-
tural vulnerability factor, Cache memory

I. INTRODUCTION

As CMOS technology continues to scale down, the issue

of estimating and mitigating the impact of radiation-induced

transient errors becomes more challenging. Radiation-induced

transient errors (also known as soft errors) caused by neutrons

and alpha particles from packaging are known to be a consid-

erable reliability threat to the data integrity of high-end and

mainstream processors. cache data integrity has been a main

concern for processor designers as errors in cache memory can

quickly propagate to higher memory levels, and lead to data

integrity issues [1], [2]. Recent research has shown that soft

errors could have significant impact on cache data integrity [3].

A previous study uses field results over several thousands of

systems, and shows that 92% of system reboots are initiated

by Single Event Upsets (or SEUs) occurring at first-level (L1)

and second-level (L2) cache memories [3]. Another study

estimates that unprotected SRAMs contribute to at least 40%

of the overall Soft Error Rate (SER) of commercial digital

circuits [4].

With continuous technology scaling down, per bit SER in

SRAMs is estimated to maintain relatively unchanged [4].

Consequently, cache soft error rates are expected to increase

with cache size for the next several years. Accordingly, design-

ers would need to incorporate aggressive protection techniques

in future cache designs. An important aspect of designing

cost-effective protection techniques is developing accurate soft

error vulnerability models for individual components. This will

help understanding the extend of vulnerability for different

components before developing protection techniques. Having

an accurate model for cache memories would facilitate making

informed decisions about the level of protection needed across

different cache organizations and target workloads. The right

protection level for cache memories reduces data loss proba-

bility and therefore would increase system reliability.

The most commonly used technique to compute cache

vulnerability to SEUs is exploiting Fault Injection (FI)

schemes [5], [6], [7], [8]. Using FI schemes, a limited number

of sites are selected for fault injection in applications running

for a limited number of clock cycles for each iteration of fault

injection. FI techniques are both time-consuming, due to the

large number of runs, and prone to inaccuracy, due to the

limited number of addresses targeted.

An alternate approach to compute cache vulnerability is to

use analytical models [9], [10], [11], [12]. Such models often

provide fast estimation; however, they suffer from inaccura-

cies. This is due to the fact that these analytical models mainly

rely on measuring the time period in which an error occurring

in a data block could propagate in the system, also referred

to as the Critical Time (CT), to estimate vulnerability. While

critical time is an important factor, it is not the only one.

In this paper, we introduce System level Vulnerability Factor

(SVF) as a new vulnerability estimation technique for data

cache. which while considering previously ignored parameters

maintains low estimation time. In our proposed modeling

technique, we take into account two important factors ignored

in previous studies. The first important parameter is read

frequency. We define read frequency as the number of times

a data block is accessed during the critical time. Intuitively,

we expect a block read several times during its critical time,

more influencing than one read only once. While both blocks

are equally vulnerable to SEUs, the former is more likely to

propagate an error to the system outputs, leading to system

failure. This is due to the fact that each read access provides an

opportunity for an error to find its way to the system outputs.

Therefore, the higher the number of reads the higher the risk of

having a cache error impacting the overall system reliability.

The second important factor influencing vulnerability is error

masking. Quite often an error occurring in the cache could



be masked by other components before reaching the system

output. We take this probability into account and reevaluate

cache vulnerability accordingly.

We report our estimations for SPEC’2K benchmarks and

compare to previously suggested models. In particular, our

results show that the proposed modeling technique changes

the previously suggested estimations by more than 40%.

The rest of the paper is organized as follows. In Section II

we review background on soft errors and vulnerability estima-

tion. In Section III we present previous vulnerability modeling

techniques and their limitations. In Section IV we explain

the inaccuracies existing in previous analytical techniques and

describe our motivating observations. In Section V we present

our vulnerability modeling technique. In Section VI we review

the algorithm used to compute the system-level vulnerability

for data cache. In Section VII we review the experimental

setup. In Section VIII we discuss our methodology and report

results. Finally, in Section IX we offer concluding remarks.

II. BACKGROUND

An energetic particle striking a CMOS transistor induces a

localized ionization capable to change the state of a memory

cell, logic gate, latch, or flip-flop causing a soft error [13].

In the past two decades, researchers have discovered three

major sources that cause soft errors in semiconductor devices

at terrestrial altitudes. These sources are a) alpha particles, b)

high-energy neutrons, and c) low-energy neutrons interacted

with the isotope boron-10 (10B) [14].

Soft Error Rate (SER) is defined as the system failure

rate due to soft errors. Failures-in-Time (FIT) is another

commonly used error rate metric. FIT of a component is

inversely proportional toMean-Time-To-Failure (MTTF) of the

component. This is shown in Equation 1. One FIT is equal to

one failure in a billion hours.

FITrate =
109

MTTF × 24hours × 365days
(1)

The overall FIT of a chip is calculated by adding the effec-

tive FIT rates of all the individual components as follows [9]:

FITchip =
∑

i

FITComponent(i) (2)

The FIT of each component in a chip is the product of

its raw FIT rate, associated Architectural Vulnerability Factor

(AVF), and Timing Vulnerability Factor (TVF) as follows:

FIT = AV F × TV F ×RawFITrate (3)

AV F expresses the probability that a transient fault in a

storage cell (like SRAM) results in a user visible error [10].

For example, a bit-flip in a branch predictor may cause a mis-

prediction, however, it will never result in a user-visible error.

As a result, the branch predictor’s AVF = 0%. In contrast,

a bit-flip in a program counter register will almost crash

the instruction execution sequence and produce control flow

error. Therefore, a program counter’s AVF is about 100%.

Computing the AVF of other components such as cache

memory is more complicated because an erroneous value in

such components can be masked by the CPU [15].

TV F is the fraction of time for which the circuit is

vulnerable to transient faults. As an example, a simple latch is

vulnerable against radiation-induced faults during 50% of its

clock cycle time [15]. SRAM cells (used in cache memory)

are always susceptible to these faults. Therefore, the associated

TVF for SRAMs is 100%.

Finally, RawFITrate is the circuit-level soft error rate of

a device from radiation-induced faults. RawFITrate of a

storage element relies on the device characteristics and the

flux that comes across the device [15].

III. PREVIOUS VULNERABILITY FACTOR MODELING

TECHNIQUES

Statistical Fault Injection (SFI) is commonly used in most

previously proposed cache reliability estimation methods [5],

[6], [7], [16], [17], [8]. When using an SFI technique, a

limited number of memory addresses are targeted. Several

workloads are then run to measure the number of detected

failures. Consequently, SFI studies are both time-consuming

(due to the large number of runs), and prone to inaccuracy

(due to the limited number of addresses targeted).

Li et al. introduced SoftArch as a model (and a tool)

to enable soft error analysis at the architecture level [18].

SoftArch uses a probabilistic error generation and propagation

process model in the processor. This tool, however, does not

consider device or circuit level details and does not support

application level masking.

Somani et al. presented a cache error propagation model-

ing technique [19]. The proposed model uses software fault

injection to determine the cache vulnerability to soft errors.

Kim et al. used the same model to measure data cache

access reliability [1]. They also studied tag array soft error

susceptibility [1].

Mukherjee et al. [10], [20] introduced the ACE analysis

method to quantify the architectural masking of soft errors in

different processor structures using the processor performance

model. The AVF of a structure is the likelihood of a failure

occurring as a result of a raw error event in the structure.

To measure the AVF of a structure, the bits that affect the

final program outcome are identified on a cycle-by-cycle basis.

These bits are referred to as Architecturally Correct Execution

(or simply ACE) bits. All other bits are termed un-ACE.

Examples of un-ACE bits are the operand bits of an NOP

instruction or opcode bits in a killed instruction. All bits are

assumed as ACE bits unless proven un-ACE.

Biswas et al. extended the ACE analysis method to cover

caches and other address-based structures [11]. The proposed

model extends AVF measurement to data and tag arrays

but does not cover status bits. The model determines the

vulnerability factor of a cache based on the ACE lifetime of

cache words.

Asadi et al. introduced a critical time model to estimate the

reliability of an unprotected or partially protected cache mem-

ory [9]. The proposed model computes cache vulnerability

2



using the residency time of critical words (CW) in the cache.

A CW is defined as a word in the cache that is guaranteed to

propagate to other locations in the memory system or to the

CPU. They used the proposed model to develop a simulation

model and measure the reliability of L1 caches.

S. Wang et al. introduced Temporal Vulnerability Factor as

a soft error characterization model [12] to capture the cache

vulnerability factor upper bound. The proposed model extends

the work presented in [9] by calculating the critical times

at various granularity levels, e.g. a cache line, a word, or a

byte [12].

Li et al. studied the limitations of AVF modeling [21] and

showed that AVF estimations can result in large discrepancies

where the raw error rates of individual components are very

large or when one considers tens of thousands of computers.

As an example, they showed that in space applications the

calculated vulnerability factor using AVF is twice bigger than

the actual vulnerability factor.

N.J. Wang et al. reported that statistical fault injection (SFI)

at register transfer level (RTL) can generate more accurate

AVFs compared to ACE analysis [22]. In response, Biswas et

al. [23] claimed that by adding more detail to the performance

model, they can reduce the discrepancy produced by AVF

using ACE analysis with SFI AVF. As an example, by adding

more detail to the instruction queue model, they reduced

the ACE AVF over-estimation up to 40% from the 260%

discrepancy reported in [22].

In this work we show that ACE analysis could further be

improved by taking into account issues such as read frequency

and error masking. We present more details in section IV.

In our previous work, we proposed Input-to-Output Masking

(IOM) factor to estimate system-level vulnerability of data-

path components in a high-performance processor [24]. Using

the IOM factor, we also presented a modeling technique

to estimate the Component-level Vulnerability Factor (CVF)

and the System-level Vulnerability Factor (SVF) of the data-

path components. In this paper we extend our previous work

for data caches and provide detailed systematic approach to

estimate SVF of cache memories. In particular, we present a

methodology to compute SVF for both write-back and write-

through data caches.

IV. LIMITATIONS OF PREVIOUS ANALYTICAL MODELS:

READ FREQUENCY AND ERROR MASKING

Previous vulnerability analytical models suffer from two

drawbacks. First, such models compute the vulnerability win-

dow independent of the cache access pattern. As explained

earlier in Section I, each read access can expose the system to

an erroneous bit. As a result, the more frequent read operations

occur the higher the likelihood of the system failure. Second,

such studies [9], [25], [12], assume that any error propagating

from cache to the CPU leads to a system failure. As we

show in this work many errors could potentially be masked by

different processor components. Below we explain both factors

in more details.

A. Read Frequency

To provide better understanding regarding the impact of read

frequency we offer an example in Fig. 1. Let’s consider the

two case studies (case A and case B) presented in Fig. 1. In

case A, a block is brought to the L1 cache at t1 and read by

the CPU at t5. Later the block is evicted from the cache at

t6. In case B, a block is brought to the cache at t1 and read

by the CPU at t2, t3, and t5. Eventually, the block is evicted

from the cache at t6. According to previous AVF modeling

techniques, the vulnerability of these two cases is computed

as follows:

V ulCaseA = t5 − t1

V ulCaseB = (t2 − t1) + (t3 − t2) + (t5 − t3) = t5 − t1 (4)

Note that according to previously suggested modeling tech-

niques, the vulnerability of these two cases are equal. This

is not an accurate estimation as the impact of these two

read patterns on the overall system failure rate could be very

different. While in case A, the error has a one-time opportunity

to propagate to the system outputs, in case B the error can

propagate to the system outputs at three different occasions.

Fig. 1. An example with two different access patterns to demonstrate previous
method limitations.

B. Error Masking

To provide better understanding regarding the masking

impact we present an example in Fig. 2. Assume that a byte

within data cache is struck by an SEU changing one of its

eight bits. The target byte is then read by the CPU and is sent

to the ALU unit. Previous VF estimation methods mark the

entire byte as ACE as all bits could produce an error.

Let’s also assume that the byte is used as an operand in a

Logical OR arithmetic operation. Although the incorrect value

of the byte is transferred from the cache to the inputs of the

ALU unit, it does not necessarily propagate from the ALU

inputs to the outputs of the ALU unit.

To elaborate this in more detail, assume that the target byte’s

initial value is 0x1A (denoted in hexadecimal format). Let’s

also assume that an SEU event inverts the most significant bit

of this byte, changing the byte from 0x1A to 0x9A. If this byte
is used as an operand of a logical OR operation with a second

operand equal to 0x83, the incorrect value of the byte would

not propagate to the outputs of the ALU unit. This is because

the logical OR will mask the error bit when producing the final

outcome, i.e., (0x1A OR 0x83) = (0x9A OR 0x83) = 0x9B.

Previous work has introduced the Derating Factor (DF)

to quantify the masking behavior [26]. DF is defined as the
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Fig. 2. Example of error masking in a CPU.

probability of propagating an incorrect value along logical

paths. In particular, DF [26], [27] is expressed as the prob-

ability of propagating an erroneous value from an internal site

to the circuit outputs. In this paper, we extend this concept

to compute the error propagation probability from the cache

memory to the outputs of the CPU.

V. PROPOSED MODEL

As stated in section IV, in order to accurately compute the

vulnerability of data cache, we need to consider the impact of

error masking and read frequency. In this work we use CPU

Input-to-Output Masking (IOM ) to model CPUs masking

behavior [24]. We define IOMcpu as the probability of an

erroneous value read by the CPU not being propagated to the

outputs of the CPU. As an example, if 60% of erroneous values

read by the CPU are masked by the CPU and not propagated

to the outputs of the CPU, then IOMcpu = 0.6.
As explained earlier, a previous study has defined a Critical

Word (CW) or Critical Byte (CB) as a word or a byte

guaranteed to propagate from the cache to other locations in

the memory system or to the CPU [9]. The residence time

of the CB (or CW) in the cache is referred to as the Critical

Time (CT). Here, we extend this concept to better estimate

the impact of cache vulnerability factor on the overall system

reliability.

We define System-level Vulnerability (SV) of a byte within

a cache memory as the sum of the time periods where an

incorrect value in those time periods leads to system failure.

As an example, let’s consider case B presented Fig. 1. Here,

the SV of the byte can be computed according to Equation 5.

SVCaseB = (t2 − t1).(1− IOMcpu)

+(t3 − t2).(1− IOMcpu)

+(t5 − t3).(1− IOMcpu)

+(t2 − t1).IOMcpu.(1− IOMcpu)

+(t3 − t2).IOMcpu.(1− IOMcpu)

+(t2 − t1).IOM2
cpu.(1− IOMcpu) (5)

The first three terms, (t2 − t1) × (1 − IOMcpu), (t3 −

t2)× (1− Iomcpu), (t5 − t3)× (1− IOMcpu), represent the
likelihood of an error occurring in t2 − t1, t3 − t2 and t5 − t3
being propagated to the system outputs by the read accesses

immediately following (here R1, R2, and R3, respectively).

The next two terms model errors being masked by the CPU

after the earlier read but propagated by a subsequent read

access. For example, (t2 − t1) × IOMcpu × (1 − IOMcpu)
represents the likelihood of an error masked by the CPU

after being read by R1, impacting the CPU output later by

being read (and not being masked) by R2. The last term,

(t2 − t1) × IOM2

cpu × (1 − IOMcpu), represents an error

occurring during t2 − t1, masked by the CPU after both R1

and R2, but propagated by to the system output after R3.

Note that if a byte within a dirty block is written back to

the memory system, the masking factor of the CPU will not

affect the vulnerability of the byte. Under this scenario, the

erroneous block would most likely impact the system output

eventually.

To provide better understanding, in Table I we report SV

for case A and B and for different IOM values. In this table,

we assume t0 = 0, t1 = 1, t2 = 2, t3 = 3, t4 = 4, t5 = 5, and
t6 = 6. We also report ACE time (or critical time) [9], [10],

[11], [12] to make comparison possible. Note that SV and CT

estimations are different for all IOM values but IOM = 0.

TABLE I
COMPARISON SV AND CT FOR THE EXAMPLE GIVEN IN FIG. 1.

Case A Case B

IOM SV CT SV CT

0.8 0.8 4 1.248 4

0.6 1.6 4 2.224 4

0.4 2.4 4 2.976 4

0.2 3.2 4 3.552 4

0 4 4 4 4

SV analysis formulation could vary based on different cache

access patterns. An erroneous data in a cache block results in

system failure in one of the following scenarios:

• An erroneous block is directly written back to main

memory.

• An erroneous block is read by CPU, then an erroneous

result is generated by the CPU, and written back to the

main memory.

The former scenario has been addressed in previous

work [12], [9], [25]. Therefore in this work we focus on the

second scenario.

In our proposed VF modeling technique, we identify three

important scenarios not studied by previous work. Under the

first scenario we assume that the accessed block remains

clean during the critical time and is evicted on cache block

replacement. Under the next two scenarios we assume that the

accessed block becomes dirty sometime during critical time

and is written back to L2 cache on cache block replacement.

Here we describe these cases as follows:

• Case 1: Clean Block

Under this scenario, the block is clean, i.e., all bytes in

the block are only accessed by read operations. This is

shown as Case 1 in Fig. 3. We use Equation 6 through

Equation 8 to calculate SV of the byte. In these equations,

SV (F : R1) computes SV from the fill time to the first

read operation (R1). SV (F : R2) computes SV from the
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Fig. 3. Read/write patterns to compute vulnerability.

fill time to the second read operation (R2), and finally,

SV (F : R3) computes SV from the fill time to the third

read operation (R3). Note that in Equation 6 through

Equation 11 we assume that tFill = t0 = 0.

SV (F : R1) = t1.(1− IOMcpu) (6)

SV (F : R2) = t1.(1− IOMcpu) + (t2 − t1).(1− IOMcpu)

+t1.IOMcpu.(1− IOMcpu)

= (t2 + t1.IOMcpu).(1− IOMcpu)

= t2.(1− IOMcpu) + t1.IOMcpu.(1− IOMcpu)

= t2.(1− IOMcpu) + SV (F : R1).IOMcpu (7)

SV (F : R3) = t1.(1− IOMcpu) + (t2 − t1).(1− IOMcpu)

+(t3 − t2).(1 − IOMcpu)

+t1.IOMcpu.(1− IOMcpu)

+(t2 − t1).IOMcpu.(1− IOMcpu)

+t1.IOM2
cpu.(1− IOMcpu)

= (t3 + t2.IOMcpu + t1.IOM2
cpu).(1− IOMcpu)

= t3.(1− IOMcpu) + (t2.(1− IOMcpu)

+t1.IOMcpu.(1− IOMcpu)).IOMcpu

= t3.(1− IOMcpu) + SV (F : R2).IOMcpu (8)

In general, for n successive read operations, we use

Equation 9 to compute SV from the fill time to the last

read operation. In this equation, SV (F : Rn−1) is the

SV of the target byte from the fill time to (n− 1)th read

operation.

SV (F : Rn) = tn.(1 − IOMcpu) + SV (F : Rn−1).IOMcpu (9)

• Case 2: Dirty Block with no Write Operation on the

Target Byte

Under this scenario the block is dirty but the byte is only

accessed by read operations. That is other bytes within

the block have been accessed by both read and write

operations but the target byte is only accessed by read

operations. This is shown as Case 2 in Fig. 3. Since the

block is dirty it will be written back to higher memory

levels. Therefore, all bytes within the block are vulnerable

from the filling time to the evict time. We use Equation 10

to calculate SV of the target byte.

SV (F : Rn) = tevict (10)

• Case 3: Dirty Block with Write Operation on the Target

Byte

Under this scenario the block is dirty and the target byte

is accessed by both read and write operations. This is

shown as Case 3 in Fig. 3. Here, we have assumed there

are n read and k write operations on the target byte. In

this figure, tri is the time of ith read operation and twj is

the time of jth write operation. In order to calculate SV of

the target byte, we first compute the SV of the time period

between twj−1 to twj according to Equation 9. We call

this vulnerability SV (twj). Then, we use Equation 11

to calculate SV. Since the block will be written back to

higher memory levels at the evict time, we use the last

term of these two equations (i.e., tevict− twk) to account

for the vulnerability of the target byte from the last write

operation time to the evict time.

SV = SV (tw1) + ...+ SV (twk) + (tevict − twk) (11)

We use conventional lifetime analysis proposed in [12], [9]

for computing vulnerability in other situations. The lifetime

model distinguishes among nine lifetime phases for each byte

according to the previous activity and the current status,

and further categorizes them into two groups, vulnerable and

non-vulnerable phases. Five lifetime phases, WRP, RR, WR,

WPL and WRPL are vulnerable and we will consider their

vulnerability time. The other lifetime phases, RPL, Invalid,

RW, and WW are non-vulnerable. Note that since we propose

fine grained (per byte) lifetime analysis on data items, RW

and WW are unconditionally non-vulnerable.

Once the SV of all bytes are calculated, we can compute

the SV and SVF of the data cache as follows:

SVCache =
N∑

i=1

SVi (12)

SV FCache =
SVCache

TT ×M
(13)

In this equation, TT is program runtime. M is cache size

in bytes, and N is the total number of bytes for which SV is

computed.

VI. ALGORITHM

We use Algorithm 1 to compute SV of all individual bytes.

In lines 9 through 11 and lines 16 through 20, we compute

SV of a dirty byte within a dirty block. SVbi,lw are used to

computed SV (twj) according to equation 11. In line 29, we

account for the vulnerability of the target byte from the last

write operation time to the evict time according to equation 11.

In lines 13 through 15, we compute SV of a clean byte

within a clean block according to equation 9. In line 32, we

compute SV of a clean byte within a dirty block according to

equation 10. Finally, in lines 40 through 44, the overall SV and

SVF are computed according to equation 12 and equation 13,

respectively.
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Algorithm: Compute SVF1

bi: Byte ith in a cache block2

Bj : Block jth in a set3

SVbi
: System-level Vulnerability of Byte bi4

SVbi,lw
: SVbi

from Last Write Operation to now5

TSC: Total Simulation Cycle6

NCB: Number of Bytes within Cache Memory7

begin8

if WRITE HIT then9

SVbi,lw
=010

end11

if READ HIT then12

if Bj not dirty then13

SVbi
= (now - FillTime) * (1− IOMcpu)14

+SVbi
*IOMcpu

end15

else if bi dirty then16

SVbi
= SVbi

− SVbi,lw
17

SVbi,lw
= (now - LastWriteTime)* (1 − IOMcpu) +18

SVbi,lw
× IOMcpu

SVbi
= SVbi

+ SVbi,lw
19

end20

else21

No action needed22

end23

end24

if Evict OR F lush Bj (WriteBack) then25

if Bj is dirty then26

for each bi in Bj do27

if bi is dirty then28

SVbi
= SVbi

+ now - LastWriteTime[bi]29

end30

else31

SVbi
= (now - FillTime[bi])32

end33

end34

end35

end36

if Evict OR F lush (WriteThru) then37

No action needed38

end39

if End of simulation then40

Start cool-down process41

SVcache = add all SVbi
’s42

SV Fcache = SVcache / (TSC ×NCB)43

end44

end45

Algorithm 1: SVF computation for both write-back and

write-through cache memories.

VII. EXPERIMENTAL SETUP

We used the sim-alpha processor simulator [28]. To evaluate

the reliability of DL1 caches, we have extended the sim-alpha

source code to integrate our reliability estimation method and

the write-through cache. We have also incorporated AVF esti-

mation algorithms from sim-soda [29]. To estimate how often

the CPU masks an error occurring in the cache (here referred

to as IOM) we modified sim-alpha. In our estimation method

we flipped one bit in a randomly selected load instruction

operand and investigated whether the modified data reaches

the CPU output. We follow this procedure 400 times per

applications and report the percentage of the time the error

does not propagate to the CPU output as an IOM estimation.

Our experimental results show that the computed SVF is not

sensitive to the total number of iterations used to extract IOMs.

TABLE II
DEFAULT CONFIGURATION PARAMETERS USED IN OUR SIMULATIONS.

Configuration Parameter Value

Processor

Functional Units 4 integer ALUs
4 integer multiplier/divider

1 FP ALUs
1 FP multiplier/divider

LSQ Size / RUU Size 32 Instructions / 32 Instructions

Fetch / Slot / Map Width 4 / 4 / 4 instructions/cycle

Issue / Commit Width 4 / 11 instructions/cycle

Integer/FP issue queue size 20 / 15 instructions

Reorder buffer size 80 instructions

Register file 40 FP / 40 Integer entry

Return address stack 32-entry

Victim buffer 8 entries, 1-cycle hit latency

MSHR entries 8/cache

Prefetch MSHR entries 2/cache

Cycle Time 1 ns

TLB and Cache Memory Hierarchy

TLB 128-entry ITLB/128-entry
DTLB, fully-associative

L1 Instruction Cache 64KB, 2-way, 64 byte lines
(IL1) 1 cycle latency

L1 Data Cache 64KB, 4-way, 64 byte lines
(DL1) 3 cycle latency

L2 2MB unified, direct-mapped
64 byte lines, 7 cycle latency

Memory 100 cycle latency

Branch Logic

Predictor Hybrid, 4K global
two-level 1KB local, 4K choice

BTB 512 entry, 4-way

Mis-prediction Penalty 7 cycles

Our results show that even with 100 iterations, the computed

IOM is as accurate as 400 times iterations.

Our evaluation uses the SPEC’2K benchmark suite [30]

compiled for the Alpha ISA [31]. We run our benchmarks for

100M instructions and 100M cool-down after skipping the first

100M instructions. The default system parameters (cache size,

associativity, etc.) are detailed in Table II, and were chosen to

be representative of modern state-of-the-art processors.

We report IOM for the applications studied here and for the

configuration presented earlier. We report SVF and AVF for

both write-back and write-through caches. Since most modern

processors utilize ECC protection on their L2 caches and main

memory, in this study we focus on L1 caches.

VIII. RESULTS

In this section we report results. In subsection VIII-A we

present experimental setup to measure IOMcpu and then

report the calculated IOM. In subsection VIII-B we report SVF

and AVF for the write-back cache. In subsection VIII-C we

report SVF and AVF for the write-through cache. Finally in

subsection VIII-D we report vulnerability estimation change

compared to AVF for our suggested model.
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Fig. 4. Estimating IOMCPU

A. IOM

In order to measure the IOMCPU , we inject a limited

number of faults using the model depicted in Fig. 4. In this

experimental setup, we perform fault injection only on load

instructions (i.e., when data is transferred from D-cache to

CPU) and observe fault propagation on store instructions (i.e.,

when data is transferred from CPU to D-cache). Comparing

to previous fault-injection experiments presented in [5], [6],

[7], [8], we compute IOM in a more timely fashion using the

functional model of simulator and with negligible impact on

accuracy.

In Fig. 5, we report IOM for the applications studied here.

Average IOM is 59%, i.e., 59% of single bit errors in the data

operands are masked by the CPU. Galgel shows maximum

IOM of 0.76 while applu shows a minimum IOM of 0.24.

In Fig. 5, we also report IOM sensitivity to the number of

iterations. As shown in this figure, the extracted IOMs with

100, 200, and 400 iterations are very close.

B. Write-back Cache Analysis

In Fig. 6, bars from left to right report SVF and AVF

respectively for the write-back cache configuration detailed

in Table II. Average SVF and AVF are 0.588 and 0.605,

respectively. As reported the difference between SVF and AVF

estimations is little for the write-back cache. The maximum

relative difference is reported for crafty where SVF and AVF

are 0.264 and 0.303, respectively. Note that in a write-back

cache dirty blocks often have to be written back to the higher

level memory. Therefore, errors could easily propagate if

occurring in dirty blocks. Consequently, our estimations would

be very close to AVF as the probability of an inverted bit

reaching the CPU resulting in a system failure is very high.

Our study shows that the higher the percentage of dirty blocks

the less the difference in these two estimations.

C. Write-Through Cache Analysis

In Fig. 7, bars from left to right report SVF and AVF

respectively for the write-through cache configuration detailed

in Table II. Average SVF and AVF are 0.084 and 0.103,

Fig. 5. IOM sensitivity to the total number of application runs.

Fig. 6. Comparison of SVF, and AVF in a data cache with write-back policy.

Fig. 7. Comparison of SVF, and AVF in a data cache with write-through
policy.

Fig. 8. Vulnerability estimation change of SVF model compared to AVF for
both write-back and write-through policies.

respectively. The maximum difference is reported for crafty

where SVF and AVF are 0.063 and 0.102, respectively. Note

that vulnerability estimations are lower for a write-through

cache compared to a write-back cache. In a write-through

cache data blocks have a shorter critical time making an

error propagating in system less likely. Also relative difference

between the estimations is higher for write-through caches as

there are no dirty blocks in a write-through cache.
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D. Vulnerability Estimation Change

In Fig. 8, we report relative difference for our suggested

model compared to AVF for write-back and write-through

caches. As reported while estimation change is about 4% for

the write-back cache it is about 40% for the write-through

cache. Maximum change is observed for applu for the write-

through cache. Meantime for some applications (e.g., galgel)

we see no change for the write-back cache. This change should

be viewed as an indication of accuracy improvement as it

results from taking into account important parameters ignored

by earlier studies.

IX. CONCLUSIONS

Accurate modeling of cache VF is essential to design a

cost-effective protection technique. In this paper, we extended

previous analytical techniques and proposed a new model

to compute system-level vulnerability of data caches to soft

errors. We demonstrated the inaccuracy existing in previous

VF modeling techniques. The proposed modeling technique

extends previous work by taking into account both read

frequency and error masking probability.
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