Using Input-to-Output Masking for System-Level
Vulnerability Estimation in High-Performance Processors

Alireza Haghdoost!

Hossein Asadi!

Amirali Baniasadi?

Y Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
2 Department of Electrical and Computer Engineering, University of Victoria, Canada

haghdoost@ ce.sharif.edu

Abstract—In this paper, we enhance previously suggested
vulnerability estimation techniques by presenting a detailed
modeling technique based on Input-to-Output Masking (IOM).
Moreover we use our model to compute the System-level Vul-
nerability Factor (SVF) for data-path components in a high-
performance processor. As we show, recent suggested estimation
techniques overlook the issue of error masking, mainly focusing
on time periods in which an error could potentially propagate
in the system. In this work we show that this is incomplete as it
ignores the masking impact. Our results show that including the
IOM factor can significantly affect the system-level vulnerability
for data-path components. As a case study, we analyze the IOM
factor for CPUs with different configurations. Our results show
that the average variation of the IOM factor is less than 5%.
Meantime, the IOM factor varies between 24% to 76% for the
applications studied here. Accordingly we find the IOM factor to
be less configuration dependent and mainly workload dependent.

Index Terms—System Level-Vulnerability, Architectural Vul-
nerabulity Factor, High-Performance Processors, Fault Masking
Factor.

I. INTRODUCTION

The data integrity of high-end and mainstream processors is
threatened by cosmic and terresial energetic particles such as
neutrons and alpha particles from packaging materials. These
energetic particles can change the state of storage elements
such as flip-flops and SRAM cells within processors and cause
a transient error. The radiation-induced transient errors, also
called soft errors, occur more often than hard errors in the
current VLSI technology [1], [2]. Recent research study has
shown that soft errors could have significant impact on the
data integrity of the current microprocessor technology [3].

As technology continues to scale down and the number of
transistors per chip continues to move up, the soft error rate
per chip is expected to increase for the next several years [1].
Accordingly, designers would need to incorporate aggressive
protection techniques in future microprocessor designs. An
important aspect of designing cost-effective protection tech-
niques is developing accurate soft error vulnerability models
for individual components. This will help understanding the
extend of vulnerability for data-path components such as
cache, register files, and load/store queues before developing
protection techniques. Having an accurate model for such
components would facilitate making informed decisions about
the level of protection needed across data-path components
and target workloads. The right protection level for data-path

asadi@sharif.edu

amirali@ece.uvic.ca

structures reduces data loss probability and therefore would
increase system reliability.

Recent field study over several thousands of systems indi-
cates that in the current processor technology, a majority of
system reboots are initiated by single event upsets (or SEUs)
occurring in data-path components such as cache and register
files [3]. Errors in such structures can easily propagate to
the system outputs and can significantly reduce the system
reliability. In particular, cache reliability comes with high
importance as errors occurring in the data cache can propagate
to higher memory levels, and can easily lead to data integrity
issues [4], [5]. While designing caches with low access time
and miss rate is an important goal, maintaining low power dis-
sipation and high reliability have also become necessary. This
is particularly true for high-end and mainstream processors
where reliability has always been a vital concern.

Previous studies have introduced analytical models to com-
pute vulnerability of data-path components such as cache and
register file to SEUs [6], [7], [8], [9]. Such models often
provide fast estimation but suffer from inaccuracies as the
system-level impact of soft errors are not taken into account in
these models. More accurate measurements, i.e., fault injection
(FI) strategies [10], [11], [12], [13], are both time-consuming,
due to the large number of runs, and still prone to inaccuracy,
due to the limited number of addresses targeted.

The goal of this study is to introduce a new vulnerability es-
timation technique to improve accuracy of previous estimation
methods and maintain low estimation time. We do so by taking
into account an important parameter ignored by earlier studies.
Previous studies mainly rely on measuring the time period in
which an error occurring in a data block could potentially
propagate in the system, also referred to as the critical time,
to estimate vulnerability. While critical time is an important
factor, it is not the only one.

In this work, we present a modeling technique based on
the Input-to-Output Masking (IOM) factor. We define the IOM
factor of a component as the percentage of errors masked when
propagating erroneous values from the inputs to the outputs
of the component. We present a technique to compute the
IOM factor of components for a high-performance processor.
Using the IOM factor, we also present a modeling technique
to estimate the Component-level Vulnerability Factor (CVF)
and the System-level Vulnerability Factor (SVF) of the data-
path components of a high-performance processor. We define

CVF as the portion of errors occurring within a component and
propagating to other components of the system. We also define
SVF as the percentage of errors occurring within a component
and propagating to the system outputs causing system failure.

We report our VF estimations for SPEC’2K benchmarks
and compare to previously suggested models. In particular, our
results show that our proposed modeling technique improves
the accuracy of the previously suggested models for write-
through cache by more than 40%. We also analyze the IOM
factor for CPUs with different configurations.

Our results show that the IOM factor of the processor
core shows significant variation for different applications.
Meantime average IOM variation is less than 5% for different
processor configurations including speculative load execution,
double sized load and store queue, and reorder buffer. The
results confirm that the IOM factor of the CPU is less
configuration dependent and is mainly workload dependent.

The rest of the paper is organized as follows. In Section II
we review traditional error protection and previously suggested
vulnerability modeling techniques and their limitations. In
Section III we elaborate the inaccuracies existing in previous
analytical techniques and describe our motivating observa-
tions. In Section IV we present our vulnerability modeling
technique. In Section V we investigate our solution for cache
as a case study. In Section VI we present the experimental
setup. In Section VII we discuss our methodology and report
results. Finally, in Section VIII we offer concluding remarks.

II. RELATED WORK AND THEIR LIMITATIONS

In this section, we first review the limitations of traditional
protection techniques. Then, we discuss previous vulnerability
factor modeling techniques and their drawbacks.

A. Limitations of Traditional Protection Techniques

Spatial redundancy techniques such as byte or block-
based parity or Single-bit Error Correction, Double-bit Error
Detection (SEC-DED) ECC, are commonly used to protect
data in cache [4]. Such solutions, however, are rarely used
for tag addresses as they impose several limitations. First,
redundancy incurs area and power overhead, which increases
proportionately with the cache size. Second, maintaining high
throughput limits the redundancy checking hardware as it
should not increase cache access time latency considerably.
Unfortunately, techniques like SEC-DED codes could poten-
tially add an extra clock cycle to the cache access time, which
can severely degrade performance. Error detection techniques
such as parity can be used to detect errors in tag arrays.
However, the recovery of an erroneous tag array would be
either impossible or very difficult [6] under such techniques.

Scrubbing is an alternative technique that could be used
to improve cache reliability in conjunction with SEC-
DED ECC [14]. Scrubbing involves reading values from
cache/memory, correcting any single-bit errors, and writing
the bits back to cache/memory. While scrubbing has proven
to be effective for very large memory systems, it is not
typically used for L1 and L2 caches as it could interfere with

processor accesses and reduce the effective L1/L.2 bandwidth.
Moreover, scrubbing requires dedicated hardware, which could
significantly increase design complexity and system cost [4].

As it is difficult to provide guaranteed reliability for caches,
an alternative approach is disabling the cache in safety-critical
applications [10]. By disabling the cache, the area susceptible
to SEUs is drastically reduced hence increasing processors
dependability dramatically. This, however, can come with
significant performance loss which may not be tolerable for
many applications.

It is due to limitations listed above that designing a reliable
cache memory continues to serve as a serious challenge for
microprocessor designers.

B. Previous Vulnerability Factor Modeling Techniques

Many previously proposed cache reliability estimation
methods rely on fault injection strategies [10], [11], [12], [13],
[15], [16]. When using an FI strategy, a limited number of
memory addresses are targeted. Several workloads are then
run to measure the number of detected failures. Consequently,
FI studies are both time-consuming (due to the large number
of runs), and prone to inaccuracy (due to the limited number
of addresses targeted).

Li et al. introduced SoftArch as a model (and a tool)
to enable soft error analysis at the architecture level [17].
SoftArch uses a probabilistic error generation and propagation
process model in the processor. This tool, however, does not
consider device or circuit level details and does not support
application level masking

Somani et al. presented a cache error propagation model-
ing technique [18]. The proposed model uses software fault
injection to determine the cache vulnerability to soft errors.
Kim et al. used the same model to measure data cache
access reliability [4]. They also studied tag array soft error
susceptibility [4].

Mukherjee et al. [7], [19] introduced Architectural Vulner-
ability Factor (AVF) to analyze and quantify the architectural
masking of soft errors in different processor structures using
the processor performance model. The AVF of a structure is
the likelihood of a failure occurring as a result of a raw error
event in the structure [7], [19]. To measure the AVF of a
structure, the bits that affect the final program outcome are
identified on a cycle-by-cycle basis. These bits are referred
to as Architecturally Correct Execution (or simply ACE) bits.
All other bits are termed un-ACE. Examples of un-ACE bits
are the operand bits of an NOP instruction or opcode bits in
a killed instruction. All bits are assumed as ACE bits unless
proven un-ACE.

Biswas et al. extended the AVF model to cover caches
and other address-based structures [8]. The proposed model
extends AVF measurement to data and tag arrays but does
not cover status bits. The model determines the vulnerability
factor of a cache based on the ACE lifetime of cache words.
Several experiments are performed on various data cache
configurations. Accordingly, a flushing technique is proposed
to enhance reliability.

Asadi et al. introduced a critical time model to estimate the
reliability of an unprotected or partially protected cache [6].
The proposed model computes cache vulnerability using the
residency time of Critical Words (CW) in the cache. A CW is
defined as a word in the cache that is guaranteed to propagate
to other locations in the memory system or to the CPU. Using
the proposed model, Asadi et al. developed a simulation model
and measured the reliability of L1 caches.

S. Wang et al. introduced Temporal Vulnerability Factor or
TVF as a soft error characterization model [20] to capture the
upper bound of the cache vulnerability factor. The proposed
model extends the work presented in [6] by calculating the
critical times at various granularity levels, e.g. a cache line, a
word, or a byte [20].

Li et al. studied the limitations of the AVF modeling [21]
and showed that the AVF estimations can result in large dis-
crepancies where the raw error rates of individual components
are very large. As an example, they showed that in space
applications the calculated vulnerability factor using the AVF
technique is twice bigger than the actual vulnerability factor.

N.J. Wang et al. reported that statistical fault injection (SFI)
at register transfer level (RTL) can generate more accurate
AVFs compared to ACE analysis [22]. In response, Biswas et
al. demonstrated that ACE analysis accuracy can be improved
up to 40% by adding more detail to the processor performance
model [23].

III. MOTIVATION AND LIMITATIONS OF PREVIOUS
ANALYTICAL MODELS

Previous vulnerability analytical models mainly focus on
computing vulnerability at the component-level. This means
the vulnerability factor is defined as the percentage of errors
occurring within a component that propagate to the outputs of
the component. Such studies [6], [24], [7], [20], assume that
any error occurring within the component and propagating to
the component outputs leads to a system failure. As we show in
this work many errors could potentially be masked by different
processor components.

Here we present an example on a general purpose register
file (GPRF) , shown in Fig. 1, to provide better understanding
regarding the impact of masking. Assume that the target byte
within the GPRF is struck by an SEU changing one of its
eight bits. The target byte is then sent to the ALU unit. Let’s
also assume that the byte is used as an operand in a Logical
AND arithmetic operation. Although the incorrect value of the
byte is transferred from the GPRF to the inputs of the ALU
unit, it does not necessarily propagate from the ALU inputs
to the outputs of the ALU unit.

To further investigate the masking factor in this example,
assume that the target byte’s initial value is 0x05 (denoted
in hexadecimal format). Let’s also assume that an SEU event
inverts the most significant bit of this byte, changing the byte
from 0x05 to 0x85. If this byte is used as an operand of a
logical AND operation with a second operand equal to 0x36
the incorrect value of the byte would not propagate to the
outputs of the ALU unit. This is because the logical AND

GPRF

0x36
0x05
AND
Fig. 1. Error masking example in the CPU

will mask the error bit when producing the final outcome, i.e.,
(0x05 AN D 0x36) = (0x85 AN D 0x36) = 0x04.

Error masking can occur in both data-path components and
the control logic. In this work, we investigate the impact of
error masking in data-path components on the overall system-
level vulnerability. Analysis of error masking in the control
logic is beyond this work.

IV. COMPUTING SVF USING INPUT-TO-OUTPUT
MASKING FACTOR

In order to analyze the impact of error masking, we define
the IOM factor of a component as the percentage of errors
being masked when propagating erroneous values from the
inputs to the outputs of the component. Previous work has
introduced the Derating Factor (DF) to quantify the masking
behavior at the circuit level [25]. DF is defined as the proba-
bility of propagating an incorrect value along logical paths of
a combinational logic. In particular, DF [25], [26] is expressed
as the probability of propagating an erroneous value from
a logic gate to the circuit outputs. In this paper, we extend
this concept from circuit-level to component-level in order to
compute the error propagation probability from inputs to the
outputs of a component. We refer to this probability as the
Input-to-Output Derating of a component or 1ODcomponent-
As an example, IOD,y, is defined as the probability of an
erroneous value propagating from the inputs of the CPU to
the outputs of the CPU. We refer to JOD’s complement as
IOM ,ie. IOM =1-10D.

In our proposed modeling technique, we use the IOM
factor to accurately compute the System-level Vulnerability
Factor (SVF) of data-path components of a high-performance
processor. We define CVF as the portion of errors occurring
within a component and propagating to other components of
the system. We also define SVF as the percentage of errors
occurring within a component that propagate to the system
outputs and cause a system failure.

To illustrate how IOM is used to compute system-level vul-
nerability factor of different components, consider the block
digram of a typical high-performance processor (e.g., Xeon)
shown in Fig. 2. Here we compute SVF for the Instruction

L

Integer
Unit
e/

Fig. 2. Components in typical high-performance processor

Scheduler (IS), i.e., SVF;s. CVFrg can be obtained by
computing the percentage of errors occurring within IS and
propagating to the inputs of either the Integer Unit (IU) or
the FP Unit. For the sake of simplicity, we assume that
the processor is running integer benchmarks and ignore the
FP unit. An error propagating to the inputs of the integer
unit propagates to the L1 data cache if it is not masked
by the integer unit. Therefore, SV Frg can be computed as
CVF]S X (1 — IOM]U)

Now consider computing the SVF of the Instruction Front-
End (IFE) for integer benchmarks. First, we need to com-
pute CV Frrpp by taking into account the portion of errors
occurring within the instruction front-end and propagating to
the inputs of the instruction scheduler. An error propagating
to the inputs of the instruction scheduler can propagate to
the L1 data cache. Therefore, SV Fyrpp can be computed as
CVF[FE X (l — IOM[_S') X (l — IOAf[U)

In the above analysis, we assume that errors propagating to
the L1 data cache cause a data integrity issue and will result
in a system failure. We can further increase the accuracy of
the computed SVFs by including the input-to-output masking
factor of the L1 data cache (DL1). For example, the SVF of
the IFE unit can be rewritten as CV Frpp x (1 — IOMjg) X
(1 = IOMy) x (1 = IOMpr1). In this study, we ignore
IOMpr, as we expect this number to be very close to zero.
That is errors propagating to L1 data cache is very unlikely
to be masked by the DL cache.

V. CASE STUDY: SVF AND CVF OF WRITE-THROUGH
CACHE MEMORY

In this section, we use our proposed model to accurately
compute the CVF and the SVF of a write-through cache. Here,
we use 1O M,p,, to model CPUs masking behavior. A previous
study has defined a Critical Word (CW) or Critical Byte (CB)
as a word or a byte guaranteed to propagate from the cache
to other locations in the memory system or to the CPU [6].
The residence time of the CB (or CW) in the cache is referred
to as the Critical Time (CT). Here, we extend this concept to
better estimate the impact of cache vulnerability factor on the

overall system reliability.

We define System-level Vulnerability (SV) of a byte within
a cache memory as the sum of the time periods where an
incorrect value in those time periods will lead to system
failure. The following formula calculates SV for the access
pattern to a byte within a write-through cache presented in
Fig. 3.

SV = (t1 —t0).(1 = IOMpy) + (t2 — t1).(1 — IOM_py,)
+ (tz —t2).(1 — IOMepy)
+ (t1 — t0)-IOM_py.(1 — IOM_py,)
+ (t2 —11).JOMepy.(1 — IOMcpy,)
+ (t1 —to) JOMZ,, (1 — IOM_p,) (1

In the above equations, the first three terms, (t1 — o) X
(1 — IOMcpu), (tg — tl) X (1 — IOMcpu) and (t3 — tg) X
(1 — IOM_py,), represent the likelihood of an error occurring
in t1 — to, to — t1 and t3 — to being propagated to the
system outputs by the read accesses immediately following
(here R;, Ro, and R3 respectively). The next two terms
model errors being masked by the CPU after the earlier read
but propagated by a subsequent read access. For example,
(t1—t0) X IOMpy X (1—IOM,p,) represents the likelihood of
an error masked by the CPU after being read by R;, impacting
the CPU output later by being read (and not being masked)
by Ry. The last term, (t1 —to) x IOM2,, x (1 — IOM_p,),
represents an error occurring during ¢; — to, masked by the
CPU after both R; and Ry, but propagated by to the system
output after R3. Note we can also represent SV according to
Equation 2.

SV = (1—=I0M.y,).CV)

We refer to the second section of SV in the Equation 2 ,
i.e. CV, as Component-level Vulnerability. In the example of
Fig. 3, C'V is computed according to Equation 3.

CV = (t1 —to)+ (ta —t1) + (t3 — t2)
+ (t1 —t0) IOMcpy + (t2 — t1).JOMcpy,
+ (t1 —to).JOMZ,, 3)

SV analysis formulation could vary based on different cache
access patterns. In general, write-through cache has only three
types of valid DL1 cache accesses on a byte (fill, read and
evict). This is shown as a general example in Fig. 4

F: Fill, R: Read, Ev: Evict

Access Type .F R 1 R2 R3 Ev
v 1 L}] >
Time t t; t t; tey

Fig. 3. An example of an access pattern to write-through cache to demonstate
how SVF and CVF can be computed using the IOM factor

We use Equation 4 to calculate SVF and CVF of the byte
in a write-through cache. We assume that the byte is accessed
n times before eviction. In this equation, CV(F : R;)
computes CV from the fill time to the first read operation (Ry).
CV(F : Rs) computes CV from the fill time to the second
read operation (R2), and finally, CV(F : R3) computes CV
from the fill time to the third read operation (R3). Note that in
Equation 4 through Equation 6 we assume that tp;; = t0 = 0.

CV(F:R) = t

CV(F : Ry) t1+ (t2 —t1) 4+ t1.JOMepy,

to + t1. 10 Mepy,

ty+ CV(F : Ry).IOMgp,

t1 4 (t2 —t1) + (t3 — t2) + t1.70 My,
t1.IOM2,, + (t2 — t1) JOMepy

ts + t1.IOMepy + t1.IOMZ,,
(ta —t1).I0M_p,

— t3+CV(F : Ry).I0M.,p, 4)

CV(F : Rg) =

+

+

In general, for n successive read operations, we use Equa-
tion 5 to compute CV from the fill time to the last read
operation.

CV(F:Rp,) = tn+CV(F:Ry_1)IOMcp, (5)

Once we have computed CV (F : R;,), SV can be computed
according to Equation 6.

SV(F:R,) = (1—I0M,,).CV(F:R,) (6)

Once the CV and SV of all bytes are calculated, we can
compute the CV, SV, CVF and SVF for the cache as follows:

N
CVCache = ZC% (7)
i=1
N
SVCache = Z Sw (8)
=1
- CVCache
CVFOache — TT x M (9)
_ SVoache
SVFCache - TT x M (10)

In these equations, 77" is the total execution time of the
program, M is cache size in bytes, and IV is the total number
of bytes for which CV and SV are computed.

F: Fill, R: Read, Ev: Evict

Access Type f R; R; R; R, Ev

s 1 1 1 1 1
Time ¢, t t tt -, tey

Fig. 4. General access patterns to compute vulnerability

DL1 Cache IL1 Cache

-7

Fig. 5.

Estimating JOM of the CPU core

VI. EXPERIMENTAL SETUP

For these experiments, we used sim-alpha, which is a cycle
accurate alpha 21264 processor simulator [27]. To evaluate the
reliability of DL1 caches, we have extended the source code of
sim-alpha to implement our vulnerability estimation method.
We have also implemented the write-through cache policy in
this toolset. We have incorporated AVF estimation algorithms
from sim-soda [28] in our simulation framework.

Our evaluation uses the SPEC’2K benchmark suite [29]
compiled for the Alpha ISA [30]. We run our benchmarks
for 100M instructions and 100M cool-down after skipping the
first 100M instructions for SVE, CVE, and AVF estimation.

The default system parameters (cache size, associativity,
etc.) are detailed in Table I, and were chosen to be repre-
sentative of modern state-of-the-art processors.

A. IOM Experimental Setup

To estimate how often the CPU masks an error occurring
in the cache (here referred to as IOM) we modified sim-alpha
for fault injection experiment. In our IOM estimation method
we flipped one bit in a randomly selected load instruction
operand and investigated whether the modified data reaches
the CPU output. We inject a limited number of faults using
a model depicted in Fig. 5. In this experimental setup, we
perform fault injection only on load instructions (i.e., when
data is transferred from the D-cache to the CPU core) and
observe fault propagation on store instructions (i.e., when
data is transferred from the CPU to the D-cache). We follow
this procedure for 400 times per application and report the
percentage of the time an error not being propagated to the
CPU output (i.e., store instructions). As an example, when
running gzip, if 100 times out of 400 number of fault injection
experiments do not propagate to the CPU output, IOMgp,
when running gzip would be equal to % = 0.25.

We run all instructions of benchmarks in simulator using
functional simulation mode for IOM fault injection estima-
tion. Compared to previous fault-injection methods presented
in [10], [11], [12], [13], since IOM is computed in functional
simulation mode it is accomplished in a more timely fashion

with very negligible impact on accuracy. The simulation
time to estimate /OMy,, for some programs of SPEC’2K
benchmark suite is reported in Fig. 6. We report IOM for the
applications studied here and for the configuration presented
in Table 1.

VII. RESULTS

In this section we report our estimation results. In sub-
section VII-A we report our estimated IOM and the IOM
sensitivity to the number of runs and different processor
configurations. In subsection VII-B we report SVF, CVF and
AVF for the write-through cache. Finally in subsection VII-C
we report accuracy improvement for our suggested model.

A. IOM Experiments

In Fig. 7, we report IOM¢py for the applications studied
here. Average IOM¢py is 0.59. This means 59% of single
bit errors in the data operands are masked by the CPU.
Galgel shows maximum IOM of 0.76 while applu shows a
minimum IOM of 0.24. In Fig. 7, we also report the IOM
sensitivity to the number of iterations. The results confirm that
relatively accurate IOMs can be obtained by using a small
number of fault-injection experiments on load instructions.
Our results show that even with 100 fault injection iterations,
the computed IOM is as accurate as 400 times iterations.

In Fig. 8 we report IOM sensitivity for the CPU to
executing Speculative Load instructions (SL) and disabling
Speculative Update of Branch and Line Predictor (SUBLP).
Among programs, bzip shows maximum IOM change of 8.9%
while galgel shows a minimum IOM change of 0.67% when
executing speculative load instructions. The average IOM
sensitivity to executing speculative load instructions is 2.2%.
When disabling SUBLP applu shows maximum IOM change
of 19.6% while galgel shows a minimum IOM change of
0.22%. The average IOM sensitivity to SUBLP is 2.3%

In Fig. 9 we report IOM sensitivity to doubling the size
of Load and Store Queue (LSQ) and Re-Order Buffer (ROB)
compared to the base processor configuration reported in Table
I. Average IOM sensitivity to doubling LSQ and ROB size is
0.43% and 4.5%, respectively.

The results shown in Fig. 8 and Fig. 9 confirm that IOM
shows little sensitivity to processor configuration changes

Simulation Time (h)

Fig. 6. Fault injection simulation time to estimate the IOM factor of the cpu
core

0200 runs

100 runs

oM

® & &8 PNIIPE S RVC J
A &8 é‘c'» &Q,gf’ TR E %,3&0 & 0&&\@'»@?}%

Fig. 7. 1OM Sensitivity to the total number of fault injections applied to
load operations

while showing significant variations from one application to
another one. We conclude that IOM¢ pys is less configuration
dependent and is mainly workload dependent.

B. Write-Through Cache Memory Vulnerability Analysis

In Fig. 10, bars from left to right report SVF, CVF, and AVF,
respectively for the write-through cache configuration detailed
in Table I. Average SVF, CVF, and AVF are 8.4%, 18.4%
and 10.3%, respectively. The maximum difference is reported
for crafty where SVE, CVE, and AVF are 6.3%, 21.8% and
10%, respectively. In a write-through cache data blocks have
a shorter critical time making an error propagating in system
less likely.

C. Accuracy Improvement

In Fig. 11, we report accuracy improvement for our sug-
gested model compared to AVF for the write-through cache.
As reported accuracy improvement is about 40% for the write-
through cache. The maximum accuracy improvement using our
proposed modeling technique is about 100% which is achieved
when running applu.

VIII. CONCLUSIONS

In this paper, we presented the Input-to-Output Masking
(IOM) factor that can be used to accurately compute the
System-level Vulnerability Factor (SVF) for data-path com-
ponents of a high-performance processor. As a case study, we
analyzed the IOM factor of cache with possible configurations

oM

Fig. 8.

IOM sensitivity to speculative load and speculative update of branch
and line predictor

TABLE I
DEFAULT CONFIGURATION PARAMETERS USED IN OUR SIMULATIONS

Configuration Parameter

|

Value

Processor

Functional Units

4 integer ALUs, 4 integer multiplier/divider
1 FP ALUs, 1 FP multiplier/divider

LSQ Size / RUU Size

32 Instructions / 32 Instructions

Fetch / Slot / Map / Issue / Commit Width

4747474/ 11 instructions/cycle

Integer/FP issue queue size

20 / 15 instructions

Reorder buffer size

80 instructions

Register file

40 FP / 40 Integer entry

Return address stack 32-entry
Victim buffer 8 entries, 1-cycle hit latency
MSHR entries 8/cache
Prefetch MSHR entries 2/cache
Cycle Time 1 ns

TLB and Cache Memory Hierarchy

TLB

128-entry ITLB/128-entry
DTLB, fully-associative

L1 Instruction Cache

64KB, 2-way, 64 byte lines

(IL1) 1 cycle latency
L1 Data Cache 64KB, 4-way, 64 byte lines
(DL1) 3 cycle latency
L2 2MB unified, direct-mapped
64 byte lines, 7 cycle latency
Memory 100 cycle latency
Branch Logic
Predictor Hybrid, 4K global

two-level 1KB local, 4K choice

Branch miss-prediction penalty 7 cycles
BTB 512 entry, 4-way
Mis-prediction Penalty 7 cycles

VF (%)

Fig. 10. Comparison of SVF, CVF, and AVF in a DLI1 cache with write-
through policy

g 100

£ 80 A

E

3 60 1=

o

E 40 -

g

g 20 A

; 0

@ Q © o & R » 2 2 Q
PARR (’5&& o5 = QQ > 6\6‘ "(@v @‘«

Fig. 11. Accuracy improvement of SVF model compared to AVF modeling

technique for the write-through cache

IoM

Fig. 9.

IOM Sensitivity to double size of LSQ and ROB

for a high-performance processor. Our results showed that
the IOM factor is less configuration dependent and is mainly
workload dependent. We also reported our vulnerability esti-
mations using the IOM factor for a write-through data cache
and compared to previously suggested models. Our experi-
mental results showed that the proposed modeling technique
improves the accuracy of the previously suggested models by
more than 40%.

ACKNOWLEDGMENT

This work is supported by the Natural Sciences and Engineering
Research Council of Canada, Discovery Grants Program and by the
Institute for Research in Fundamental Sciences (IPM) in Iran.

(1

(2]

3]

(4]

(3]

[l

(7

(8]

91

[10]

[11]

[12]

[13]

REFERENCES

R.C. Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. [EEE Transactions on Device and Materials Reliability,
5(3):305-316, September 2005.

M.J. Gadlage, J.R. Ahlbin, B. Narasimham, V. Ramachandran, C. A.
Dinkins, N.D. Pate, B.L. Bhuva, R.D. Schrimpf, L.W. Massengill, R.L.
Shuler, and D. McMorrow. Increased single-event transient pulsewidths
in a 90-nm bulk cmos technology operating at elevated temperatures.
IEEE Transactions on Device and Materials Reliability, 10(1):157-163,
2010.

S.Z. Shazli, M. Abdul-Aziz, M.B. Tahoori, and D.R. Kaeli. A field anal-
ysis of system-level effects of soft errors occurring in microprocessors
used in information systems. In [EEE International Test Conference,
pages 1-10, October 2008.

S. Kim and A. K. Somani. Area efficient architectures for information
integrity in cache memories. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 246-255, May
1999.

W. Zhang, S. Gurumurthi, M. Kandemir, and A. Siavasubramaniam. Icr:
In-cache replication for enhancing data cache reliability. In Proceedings
of the International Conference on Dependable Systems and Networks
(DSN), pages 291-300, June 2003.

H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli. Balancing
performance and reliability in the memory hierarchy. In Proceedings of
the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASSO05), pages 269-279, March 2005.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin.
A Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor. In Proceedings of the
36th Annual IEEE/ACM International Symposium on Micro-architecture
(MICRO-36), pages 29-40, 2003.

A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and
R. Rangan. Computing architectural vulnerability factors for address-
based structures. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA’05), pages 532-543, 2005.
Pablo Montesinos, Wei Liu, and Josep Torrellas. Using register lifetime
predictions to protect register files against soft errors. Dependable
Systems and Networks, International Conference on, 0:286-296, 2007.
F. Faure, R. Velazco, M. Violante, M. Rebaudengo, and M. Sonza
Reorda. Impact of data cache memory on the single event upset-induced
error rate of microprocessors. [EEE Transactions on Nuclear Science,
50(6):2101-2106, 2003.

S. H. Hwang and G. S. Choi. On-chip cache memory resilience. In
Proceedings of the International Symposium on High-Assurance Systems
Engineering, pages 240-247, November 1998.

S. Kim and A.K. Somani. Soft Error Sensitivity Characterization for
Microprocessor Dependability Enhancement Strategy. In Proceedings
of the International Conference on Dependable Systems and Networks
(DSN), 2002.

M. Rebaudengo, M. S. Reorda, and M. Violante. An accurate analysis of
the effects of soft errors in the instruction and date caches of a pipelined
microprocessor. In Proceedings of the IEEE/ACM International Confer-
ence on Design, Automation and Test in Europe (DATE), pages 602-607,
2003.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. M. Saleh, J. J. Serrano, and J. H. Patel. Reliability of scrubbing
recovery-techniques for memory systems. /EEE Transactions on Relia-
bility, 39(1):114-122, April 1990.

Man-Lap Li, Pradeep Ramachandran, Ulya R. Karpuzcu, Siva Ku-
mar Sastry Hari, and Sarita V. Adve. Accurate microarchitecture-level
fault modeling for studying hardware faults. In International Symposium
on High-Performance Computer Architecture (HPCA), pages 105-116,
February 2009.

P. Ramachandran and P. Kudva. Statistical fault injection. In Proceedings
of the International Conference on Dependable Systems and Networks
(DSN), 2008.

X. Li, S.V. Adve, B. Pradip, and J.A. Rivers. Softarch: an architecture-
level tool for modeling and analyzing soft errors. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN),
pages 496505, June-July 2005.

A. K. Somani and K. S. Trivedi. A cache error propagation model.
In Proceedings of the Pacific Rim International Symposium on Fault-

Tolerant Systems (PRDC), pages 15-21, 1997.
C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Techniques

to reduce the soft error rate of a high-performance microprocessor. In
Proceedings of the International Symposium on Computer Architecture
(ISCA’04), pages 264-275, June 2004.

Shuai Wang, Jie Hu, and Ziavras S. G. On the characterization and
optimization of on-chip cache reliability against soft errors. IEEE
Transactions on Computers, 58(9), September 2009.

X. Li and S.V. Adve. Architecture-level soft error analysis: Examining
the limits of common assumptions. In International Conference on
Dependable Systems and Networks (DSN), June 2007.

Nicholas J. Wang, Aqeel Mahesri, and Sanjay J. Patel. Examining
ace analysis reliability estimates using fault-injection. In ISCA '07:
Proceedings of the 34th annual international symposium on Computer
architecture, pages 460-469, New York, NY, USA, 2007. ACM.

Joel Emer Shubhendu Mukherjee Arijit Biswas, Paul Racunas. Comput-
ing accurate avfs using ace analysis on performance models: A rebuttal.
IEEE Computer Architecture Letters, 7(2):21-24, 2007.

A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and
R. Rangan. Computing architectural vulnerability factors for address-
based structures. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA’05), pages 532-543, 2005.
H.T. Nguyen and Y. Yagil. A systematic approach to ser estimation and
solutions. In Proceedings of the 41st Annual International Reliability
Physical Symposium (IRPS), pages 60-70, 2003.

H. Asadi and M. B. Tahoori. Soft error derating computation in
sequential circuits. In Proceedings of the IEEE International Conference
on Computer Aided Design (ICCAD), November 2006.

R. Desikan, D. Burger, S. W. Keckler, and T. Austin. Sim-alpha: A
Validated, Execution-Driven Alpha 21264 Simulator, 2001.

X Fu, T Li, and J Fortes. Sim-soda: A unified framework for archi-
tectural level software reliability analysis. In Workshop on Modeling,
Benchmarking and Simulation, 2006.

Standard Performance Evaluation Corporation. SPEC CPU2000 Bench-
marks, http://www.specbench.org/cpu2000, 2000.

R. Kessler. The alpha 21264 microprocessor. IEEE Micro, 19(2):24-36,
March 1999.

