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Abstract— With continuous technology downscaling, the rate
of radiation induced soft errors is rapidly increasing. Fast and
accurate soft error vulnerability analysis in early design stages
plays an important role in cost-effective reliability improvement.
However, existing solutions are suitable for either regular (a.k.a
address-based such as memory hierarchy) or irregular (random
logic such as functional units and control logic) structures, failing
to provide an accurate system level analysis. In this paper,
we propose a hybrid approach integrating architecture-level and
logic-level techniques to accurately estimate the vulnerability of
all regular and irregular structures within a microprocessor.
It carefully handles error propagation and masking scenarios
among these structures. We have evaluated the vulnerability of
the OR1200 processor using the proposed approach. Comparison
with statistical fault injection shows an average inaccuracy of less
than 7% with five orders of magnitude improvement in runtime.

I. INTRODUCTION

Feature size shrinking in nanoscale VLSI circuits results in
a reduction of capacitance per transistor, and as a consequence
particles with lower energy can generate sufficient charge to
cause soft errors [1, 2]. In the absence of protection techniques,
the soft error rate of the system will grow in direct proportion
to the number of transistors in the design which increases
exponentially according to Moore’s law. Due to various
masking factors such as electrical, timing, logic, architecture,
and application, the vulnerability of different components of
the system are quite non-uniform. Therefore, a fast and
accurate soft error vulnerability analysis is essential to identify
the most vulnerable components and apply selective protection
techniques [3, 4].

Soft Error Rate (SER) estimation techniques can be
generally categorized as fault injection [5–7] and analytical
techniques [8–14]. Fault injection techniques are based on
Monte-Carlo simulations and their accuracy can be improved
by increasing the number of iterations [15, 16] at the expense
of huge runtime. In contrast, fast analytical techniques can
provide limited accuracy as they use simplified models of error
propagation to expedite SER estimation.

Analytical techniques compute SER of a system at either
architecture- or circuit- level. Most of the architecture-level
techniques rely on the Architecturally Correct Execution
(ACE) analysis [8] to compute the vulnerability of a structure.
In the ACE analysis, the lifetime of a bit is divided into ACE
and un-ACE intervals. A bit is un-ACE for an interval if a
transient error at its value does not affect the final output of the

program otherwise it is ACE. The Architectural Vulnerability
Factor (AVF) of a structure is the fraction of time that this
structure is in an ACE state. Since time intervals not proven as
un-ACE are assumed to be ACE, the vulnerability of the target
structure can be significantly overestimated. Rigorous fault
injection experiment revealed that ACE analysis overestimates
the vulnerability of some structures up to 7x [17]. The ACE
analysis cannot consider error masking within complex logic
structures, and therefore, this technique is mostly suitable
for regular structures (a.k.a address-based structures) such as
cache, register file, reorder buffer, and translation lookaside
buffer (TLB) in microprocessors [9]. Moreover, the ACE
analysis neglects circuit-level masking factors such as electrical
and timing masking.

Most analytical techniques at circuit level are based on
either Boolean/Algebraic Decision Diagram (BDD/ADD)
[10–12] or Error Propagation Probability (EPP) [13, 14].
BDD/ADD-based techniques employ decision diagrams in
order to find the failure rate of each output node. The accuracy
of these techniques is very high, however, they are not scalable
[18]. EPP techniques propagate the error from each error site to
the primary outputs using a path based analysis and calculate
the failure rate of each node. These techniques are very fast
and offer reasonable accuracy for identification of vulnerable
parts of the design. However, circuit level techniques are
only applicable to irregular structures such as controllers and
functional units. Such techniques are used to measure the
error effect at a limited timing window consisting of few clock
cycles. Moreover, they cannot consider application and system
level masking factors.

Since microprocessors contain both types of regular
and irregular structures, using either an architecture
or a circuit level technique leads to an unacceptable
inaccuracy. Additionally, independent analysis of these
two types of structures using separated techniques results in
significant inaccuracy as interactions among them causing
error propagation and/or masking are completely ignored.
Therefore, a unified approach which carefully considers the
error propagation and masking due to interaction of different
types of structures is crucial to obtain the accurate soft error
vulnerability of the entire system.

In this paper, we propose an approach called Combined
Logic and Architectural Soft error Sensitivity analysis
(CLASS) to compute the soft error vulnerability of the entire
microprocessor system consisting of regular and irregular
structures. This hybrid approach uses an EPP analysis to model
the propagation of errors in logic structures (i.e. combinational
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Fig. 1. Conceptional Block Diagram of CLASS

and sequential elements) and an ACE analysis to compute
the vulnerability of memories. By considering the error rate
of the interconnecting signals between regular and irregular
structures, a Discrete Time Markov Chain (DTMC) is used to
estimate the contribution of each structure to the overall system
SER. Evaluation of the OR1200 processor using the CLASS
approach is five orders of magnitude faster than Statistical
Fault Injection (SFI) while its inaccuracy is less than 7%.

The rest of this paper is organized as follows: The CLASS
approach is explained in Section II. The experimental results
are presented in Section III. Finally, Section IV concludes the
paper.

II. THE PROPOSED APPROACH (CLASS)

All of the previously proposed analytical techniques for
SER estimation [8–14] are only suitable for either regular
or irregular structures. In microprocessors, there are
intensive interactions between these two types of structures.
Consequently, an error in an irregular structure may propagate
to a regular structure and contaminates it or the other way
around. Additionally, some of the errors propagating from
irregular structures to regular structures and vice versa are
masked in the secondary structure. Considering these two
effects, separate and independent treatment of regular and
irregular structures in SER estimation results in significant
inaccuracy (underestimation or overestimation) of system SER.
To address this issue, we propose the CLASS approach that
integrates an EPP analysis (for irregular structures typically
represented at gate-level) and an ACE analysis (for regular
structures, represented at micro-architecture level) in order to
estimate the vulnerability of the entire system.

The key idea of the CLASS approach is the propagation
of errors from regular to irregular structures and vice versa
in a unified framework. The conceptional block diagram
of this approach is shown in Figure 1. In the first phase,
the system is decomposed into memories and logic blocks
(i.e. combinational and sequential), representing regular and
irregular structures, respectively. In the second phase, the
proposed Memory ACE (MACE) analysis is used to calculate
the propagation probability of an error in a memory cell to
the memory output, the so called Memory Vulnerability Factor
(MVF). On the other hand, an enhanced EPP analysis provides
the probability of error propagation from combinational or
sequential logic elements to the primary outputs of the system
and inputs of each memory unit. Errors at the input ports of the
memory may immediately propagated to its output (short-term
effect) and/or affect its content (long-term effect (a.k.a latent
error)), which may reside there for several cycles before

getting masked or propagated to system outputs. Different
error propagation scenarios between memory and logic are
illustrated in Figure 2.

In CLASS, short-term effects are modelled by EPP analysis
and in this case, similar to combinational and sequential
elements, the error is propagated through memories. Modelling
of long-term effect is more challenging. Since in most cases,
latent errors in a memory unit are activated much later, they
cannot be considered by EPP analysis. In this case, the
latent error with probability of MVF is propagated to the
memory output and then using an EPP analysis these errors are
propagated through the logic. Note that it is quite possible that
an error in a memory output results in another long-term effect
in memories of the system. To address this issue, we have used
a Discrete Time Markov Chain (DTMC) model to accurately
consider such scenarios (see Figure 1).

A. Analysis of Short-term and Long-term Effects

According to our investigation, an error at an input port of a
memory unit may have short-term and/or long-term effects. If
it affects the memory outputs in the next clock cycle, it has a
short-term effect. For example, an error at the address port of a
memory causes a wrong data (from another address) to be sent
to the memory outputs. In contrast, if an error at an input port
changes the contents of the memory, it has a long-term effect.
For instance, an error at input data of a memory during write
access contaminates the contents of the memory and the effect
of this error remains in the memory unit until the next write
access in the same address. The error in the memory contents
will be propagated to the memory outputs during the following
read accesses from the erroneous address.

Short-term and long-term effects of errors at input ports of
a memory have been evaluated using an analytical approach
which will be explained in the following. In this analysis,
we assume that only one of the input ports of the memory
is erroneous. For the sake of simplicity, consider a simple
memory block as depicted in Figure 3.a which has four input
ports named clock, address, write enable (WEn), and Data-in,
and one output port named Data-out. As shown in the Verilog
HDL description of the memory (see Figure 3.b), when the
WEn signal is active, new data from the Data-in port is written
into the memory at the rising edge of the clock signal.

Since the effect of errors at input ports are different during
write and read accesses, the effect of errors at each input
port when the write enable (WEn) signal is active or inactive
should be analyzed separately. Let’s assume that there is an
error at the address port of the memory. When the write
enable signal is inactive, data is read from a wrong address
and consequently the output of the memory becomes erroneous
(only short-term effect). However, when the write enable signal
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assign Data_out = mem[addr_reg];

always @(posedge clk)
       addr_reg <=  Address;

always @(posedge clk)
     if (WEn)
             mem[Address] <=  Data_in;

a) Schematic b) HDL Discritpion

Fig. 3. a) Schematic and b) HDL Description of the Memory

is active, data is written to a wrong address and still the valid
(correct) data appears at the output, meaning there is no error
at the output while the memory contents is erroneous (only
long-term effect). Briefly, an error at the address port with
probabilities of 1 − SP (WEn) and SP (WEn) has short-term
and long-term effect, respectively, where SP (WEn) is WEn
signal probability. This analysis is summarized in Table I.

Now let us consider that there is an error at the data-in
port. While the write enable signal is inactive, this error will
be masked and it has no effect neither on contents nor on
the output of the memory. If write enable signal is active,
at the rising edge of clock, erroneous data is written into the
memory and then this erroneous data appears at the output
of the memory, meaning both memory contents and memory
outputs are affected by the error. So, an error at the data-in
port with probability of SP (WEn) has both short-term and
long-term effects and with probability of 1 − SP (WEn) has
no effect.

If the write enable signal is inactive and due to an error
it becomes active, data is written on the current address of
the memory (write instead of read) and then erroneous data is
propagated to the output. So, both memory contents and output
are affected. On the other hand, if write enable signal becomes
erroneous while it is active, a write operation is ignored. In
the error-free case, this write operation changes the contents
and the output of memory. In case of an error, these effects are
ignored and both contents and output of the memory is different
from the error-free case. Briefly, an error at the write enable
signal has both short-term and long-term effects. According to
Table I, if we assume that the error probability of input port
i is Pe(i), the probabilities of having short-term (PST ) and
long-term (PLT ) effects are extracted using Equations (1) and
(2), respectively.

PST = [1− SP (WEn)]× Pe(Address)
+ SP (WEn)× Pe(Data-in) + Pe(WEn)

(1)

PLT = SP (WEn)× Pe(Address)
+ SP (WEn)× Pe(Data-in) + Pe(WEn)

(2)

B. Memory ACE (MACE) Analysis

Although ACE analysis techniques for memory consider the
masking effect of other parts of the processor [9, 19, 20], as

Error
at Port

Probability of Error

None
Output

(Short-term)
Contents

(Long-term) Both

Address 0 1− SP(WEn) SP(WEn) 0
Data-in 1− SP(WEn) 0 0 SP(WEn)
WEn 0 0 0 1

TABLE I
EFFECT OF ERROR AT THE INPUT PORTS OF THE MEMORY

we discussed in Section I, these techniques cannot completely
model this effect and in some cases there are significant
differences between fault injection and ACE analysis results
[17]. In CLASS, we use a life time analysis called Memory
ACE (MACE) analysis to estimate the probability of error
propagation from memory contents to its output (instead of
program output which is used in conventional ACE analysis).
The MACE analysis looks at the memory boundaries for the
entire runtime of the program and profiles all accesses to
the memory and according to access types detects ACE and
un-ACE states. In CLASS, MACE is just used to propagate the
error from memory contents to its outputs while propagation of
the error from memory outputs to the other parts of the system
will be considered by the EPP analysis.

Now, we show how MACE analysis can be done for the
simple memory depicted in Figure 3. This method can be
extended for other memory structures as it is much simpler
than the conventional ACE analysis techniques which consider
the masking effect of other components. In MACE, it is
assumed that there is an error in the contents of the memory
and the propagation probability of this error to memory output
is calculated. This error is due to either an error occurred in
the memory unit or propagation of an error from other parts
of the system to the memory. Figure 4 shows an example
of some serial accesses to a specific address of the memory
during program runtime. In case that the next access to the
specific address is a read, the error will be propagated to the
memory output, while a write access overwrites the error. This
means that all intervals leading to a read and a write access are
ACE and un-ACE, respectively. Vulnerability of each address
of the memory is the fraction of time that it is in the ACE state.
The average vulnerability of all addresses is called Memory
Vulnerability Factor (MVF). In CLASS, given a long-term
effect due to an error at the input ports of the memory, the error
will be propagated from memory contents to its output with its
MVF probability.

C. EPP Analysis

Our CLASS approach requires an EPP analysis for
propagation of errors in combinational and sequential
structures of the design. It should be able to calculate
the probability of error propagation from each error site to
all primary outputs as well as inputs of each memory unit.
Additionally, this analysis should consider the short-term effect
of errors at the input ports of the memory (Equation (1)).

We use the 4-Value EPP technique presented in [13, 21] in
our framework. In this work, only logic masking has been
considered as we want to compare the results of CLASS with
logic-level SFI. Otherwise, an EPP technique with all three
masking (i.e. logic, timing and electrical) factors can be
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employed.
4-value EPP has the capability of propagating error

probabilities in combinational and sequential elements during
multi-cycle operation. For a given error site, in the first
cycle, it propagates the error through combinational logic
until it reaches to the flip-flops and primary outputs. In the
next cycle, error probabilities are propagated from flip-flops
through combinational logic. This operation is repeated for
several cycles until error probabilities become very small. The
experimental results in [21] revealed that most of the errors are
propagated to the output within 10 cycles. More details about
4-value EPP can be found in [13, 21].

Since the original 4-value EPP technique does not include
memories, a model for the memory is employed to consider
the short-term effect of the errors (Equation (1)) at the input
ports of the memory during multi-cycle error propagation.
Additionally, using this model, the occurrence probability of
long-term effects at each memory unit is calculated. Note that
only the probability of having long-term effects is calculated
in the EPP analysis while its effect will be considered in
the DTMC, as we will explain later. In this regard, during
each cycle of the multi-cycle analysis, probability of error
propagation to each input port of the memory is calculated. As
there might be a correlation between the errors propagated to
the primary outputs (PPO) and those propagated to memory
inputs (PMem), we have used a simple method to calculate
the joint probability of error propagation to memory inputs
when it is not propagated to the primary output (PMem∩P̄O):
(PMem∩P̄O = PMem∪PO − PPO).

After computation of uncorrelated error probabilities at the
memory input ports, the probabilities of having short- and
long-term effects are estimated using Equation (1) and (2).
In case of short-term effect, there is an error at the memory
output in the next cycle and it should be propagated through
combinational logic. Summation of long-term effects for all
cycles is reported as long-term effect of error after multi-cycle
analysis. By this enhancement, 4-value EPP provides the
probability of error propagation to primary outputs as well as
the probability of having long-term effects in each memory
unit.

D. Combining EPP and ACE Analysis using DTMC

For each possible error site (combinational logic cell,
sequential element, or memory cell), our CLASS approach can
calculate the probability of error propagation to the primary
outputs. In this work, if an error propagates to any one
of the primary outputs of the system, it is assumed to be a
failure. In CLASS, the propagation probability of an error
from memory contents to its output is calculated using the
MACE analysis while all the other probabilities (propagation
to primary outputs, becoming long-term effect in each memory,
etc) are estimated using the EPP analysis. The EPP analysis is
applied to the entire design while MACE considers only the
memory boundaries. Finally, a DTMC is employed to combine
the results of MACE and EPP analysis and calculate the failure
probability of each error site.

Generally, if a system has m memory units, its DTMC has
2m+ 3 states. These states are as follows:

• Error at error site: Error just occurs at the error site.
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Fig. 5. A System with One Memory Unit and Its Error Propagation DTMC
Diagram

Computed
by Variable Description

EPP

PEO Probability of propagation of error to primary outputs
PELT Probability of having long-term effect in the memory

unit while it does not propagate to the primary outputs
PMO Probability of propagation of error from memory

outputs to primary outputs
PMLT Probability of having long-term effect in the memory

due to error propagation back from memory output
MACE MV F Memory vulnerability factor

TABLE II
DESCRIPTION OF VARIABLES IN DTMC DIAGRAM

• Masked: Error is masked.
• Failure: Error propagates to at least one of the primary

outputs of the system.

Additionally, this DTMC has two states for each memory unit
including:

• Latent error in the memory: Due to either the long-term
effect or occurrence of an error in memory, memory
contents are erroneous.

• Error at the memory outputs: There are errors at the
memory outputs. This is due to the propagation of errors
from memory contents to its outputs.

For the sake of clarity, we explain the propagation scenarios
for a simple design with one memory unit and an arbitrary
number of sequential and combination elements (depicted in
Figure 5.a). Figure 5.b shows the error propagation DTMC
diagram for this system. All variables used in this diagram,
their meanings and how each variable is obtained are listed in
Table II. As shown in Figure 5, in the first step an error occurs
at the error site. In the next step, this error with probability
of PEO is propagated to the primary outputs of the system
and results in a failure. Also, an error at the error site may
propagate to input ports of a memory and lead to a latent error
in contents of the memory. These probabilities are extracted
using the EPP analysis. In case the error is propagated to
neither system outputs nor the memory inputs, it is masked
(with probability of 1−PEO −PELT ). In case of a latent error
in a memory unit, this error propagates to the output of the
memory with probability of MV F . Next, the error propagates
through logic circuit to system output or memory inputs with
probabilities of PMO and PMLT , respectively. In CLASS, it is



quite possible that an error propagates several times between
different memory units and then it propagates to the system
outputs.

This DTMC diagram can be easily solved as it has two dead
states. Equation (3) shows the steady state solution of this
diagram:

Pf = PEO +
PELT ×MV F × PMO

1−MV F × PMLT
(3)

Using this equation, we can estimate the vulnerability of
each error site of the design against soft errors. Note, most of
the variables used in the DTMC diagram have the same value
for all error sites with fixed system structure and application.
For example in Figure 5.b, probabilities inside the dotted
region (MVF, PMLT, PMO) are independent of the error sites
and are calculated only once in advance. In this regard,
we run an application on the system and extract the MVF
for each memory unit using MACE analysis. Additionally,
for each memory unit, by considering its output as error
site in the EPP analysis, the probability of error propagation
from there to primary outputs and other memory units is
calculated. After computation of these fix variables, for each
error site the propagation probabilities from the error site to
primary outputs and all memory units are calculated using EPP
analysis. Briefly, for vulnerability estimation of individual
cell in the system, with m memory units and l combinational
and sequential elements, MACE analysis runs just once for
calculation of all MVFs, while multi-cycle EPP analysis is
used m + l times (m times in advance for propagation of error
from each memory outputs to other parts and l times for each
individual error sites).

In this work, we focus on single bit flip error model.
However, CLASS can easily be extended to handle multiple
bit flips. For this purpose, the multiple bit upset (MBU)
implementation of the 4-value EPP [22] should be exploited.
Moreover, the DTMC should be modified to consider more
general cases in which multiple errors are present (latent) in
the system, in various memory and logic blocks.

III. EXPERIMENTAL RESULTS

In order to show the efficiency and accuracy of CLASS
compared to various alternative techniques, we have evaluated
the vulnerability of the OpenRISC 1200 (OR1200) processor
using this approach.

A. OR1200 Processor and Benchmarks

OR1200 [23] is an open source 32-bit embedded processor
with a five stage pipeline and single precision floating point
unit. It implements Harvard memory architecture with separate
data and instruction buses connected to data and instruction
caches, respectively, and controlled by two independent cache
controllers. Synthesis results using Design Compiler [24]
and SAED 90nm library reveal that OR1200 has 44480
combinational gates, 4960 flip-flops and four single-port
memory units and a three-port register-file. So, there are 49,444
possible error sites including all combinational logic cells,
flip-flops, and single-port memory units in OR1200. Memory
units are instruction cache (IC), data cache (DC) and their tags
(ICTAG, DCTAG) which has the same implementation as the
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memory shown in Figure 3. Register-file is excluded form
the memory as we do not have a model for propagation of
errors through register-file. In this work, all errors propagated
to register file and output pins of the processor are assumed
to be a failure. Six programs from the Mibench [25]
benchmark suite named Basicmath, Bitcount, CRC32, FFT,
QSort, and Stringsearch are running on the processor during
our experiments.

B. Work Flow

The work flow of CLASS is shown in Figure 6. This
approach takes the gate-level netlist of the microprocessor and
a Value Change Dump (VCD) file as inputs, and calculates the
soft error sensitivity of each error site in the design regarding
the application running on it (see Figure 6). The gate-level
netlist is extracted by synthesizing HDL description of the
design. The netlist is simulated on a logic simulator (e.g.
Modelsim) while an application is running on it and a VCD
file is generated. VCD is an ASCII-based format dump file
generated by logic simulation tools and includes the values of
all system signals during simulation time.

First, signal probabilities of all signals in the system are
extracted from the VCD file. Next, by analyzing the values
of the signals connected to address and write enable pins of
each memory in the VCD file, MVF of all memory units are
calculated. Then, the probability of error propagation from
each node of the design (i.e. error site) to primary outputs
and memories inputs is calculated using 4-value EPP. Finally,
for each error site, by combining EPP and MVF results, the
DTMC Matrix is constructed. By solving the Markov model,
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the vulnerability of each node is extracted.
Figure 7 shows the results of the vulnerability analysis

extracted by CLASS. In this figure, the average vulnerability of
all memories, flip-flops and combinational gates are reported
separately. Note that if electrical and timing masking factors
are considered in CLASS, vulnerability of combinational gates
become lower than the numbers reported in this figure.

C. Accuracy Analysis

In order to evaluate the accuracy of CLASS, we have
compared it with SFI. Fault injection experiments are done
using the Modelsim simulator [26]. Also, in order to verify
that independent analysis is less accurate than CLASS, we have
evaluated the OR1200 memories using ACE analysis presented
in [9] and other logic elements using 4-value EPP presented in
[21]. The fault model in fault injection experiments is bit-flip
for duration of one cycle, so the results become comparable
with those of CLASS. The results of evaluation using different
approaches for three benchmarks are reported in Figure 8. All
SFI results reported in this figure have at least confidence
level of 97%. As it can be seen from this figure, results of
CLASS in memory units (IC, ICTAG, DC, and DCTAG) are
much closer to SFI results than those of ACE analysis. ALU
and instruction cache FSM (ICFSM) and Fetch unit of the
pipeline are selected as representative of irregular structures.
ALU does not have direct interaction with memory units while
ICFSM controls the IC and ICTAG memories and most of the
errors in this component are propagated to these memories.
Also fetch unit regularly accesses to the ICFSM during its
operation meaning it has indirect access to the memory units.
The results of vulnerability analysis for EPP and CLASS are
very close in case of ALU, while there is a huge difference
in the vulnerability results of ICFSM. Actually, the original
EPP technique cannot handle the memories and all errors
propagated to memory inputs are assumed to be a failure while
CLASS has the capability of error propagation in memories,
so it gives more realistic results. On average, CLASS has less
than 3.4% inaccuracy for memories while for ACE analysis it
is about 11.7%. With respect to maximum inaccuracy, CLASS
is also better than ACE analysis as its maximum inaccuracy
in case of memories is 9.2% while for ACE it is 23.3%.

For ALU, ICFSM, CLASS has about 2% inaccuracy (max.
inaccuracy 4.7%) in evaluation of logic elements while for
EPP it is more than 7% (max. 26.3%). Although CLASS has
2% inaccuracy in evaluation of these components, analysis of
results for individual error sites reveals that it has inaccuracy of
less than 7% for each error site. However, as it overestimates
or underestimates the vulnerability of different error sites, the
overall inaccuracy is less than the inaccuracy of individual error
sites.

There are three important sources of inaccuracy in CLASS.
The most important one is the inaccuracy of 4-value EPP. Our
experiments on OR1200 show that it has average inaccuracy
of 2-3% for each error site and it may under- or overestimate
the failure rate of different error sites. The second source is
the simultaneous propagation of one error to several memory
units or several input ports of the same memory. In this work,
for such cases the most vulnerable memory unit/input port is
considered and the effects on other memory units/input ports
are ignored. Actually, considering such scenarios need more
complicated DTMC which requires more runtime. The third
source of inaccuracy is the multiple propagations of an error
from a memory unit to its output. Basically, MACE only
considers the probability of each address being in an ACE state.
The read frequency between two write accesses for a specific
address is also another factor which may affect the failure rate
of the memory. Actually, it results in multiple propagations
of an error to the memory outputs. These errors cannot be
considered as independent errors as all of them propagate
through the same path in the logic. So these errors should
have similar behavior (propagation or masked) after being
propagated to the memory output. However our experiments
show that in some cases this assumption of similar behavior
is not true and vulnerability of memory is a little bit higher
than the case that the error propagates only once to the memory
output. Resolving these sources of inaccuracy is in our future
work.

D. Runtime Analysis

All simulations are done on a workstation with Intel Xeon
E5540 2.53GHz and 16GB RAM. On average, using CLASS
approach, the evaluation of the entire OR1200 with all possible
error sites for each benchmark takes less than one hour and
it occupies less than 50MB memory (0.3%). The runtime
of CLASS, ACE, EPP, and simulation-based SFI for three
benchmarks are compared in Table III. The ACE analysis is
done online while benchmark is running (being simulated) on
the processor. So, its runtime is just a little higher than the
runtime of the benchmarks on the processor. Although ACE
analysis is very fast, it suffers from high inaccuracy. For EPP
and CLASS, as shown in Table III, VCD file extraction and
analysis is the most time consuming part. Since EPP does not
include MVF and DTMC calculations, its overall runtime is
slightly less than that of CLASS. Note most of the EPP and
CLASS runtime is used for extraction and analysis of VCD
files and less than 7 minutes is used for error propagations
and solving DTMCs. In the SFI technique, fault injection into
the OR1200 processor and simulating system (using Modelsim
[26]) per each fault takes on average about 87 seconds. To
achieve inaccuracy below 7% for each error site, according to



Benchmark Length
(Cycles) ACE [9]

EPP [21] CLASS Simulation-based
SFIVCD Extraction

and Analysis
Error

Propagation
VCD Extraction

and Analysis
Error Propagation

and DTMC
CRC32 671,455 69 1,827 261 2,031 379 49, 444× 196× 59
QSort 2,251,482 198 4,643 270 5,047 390 49, 444× 196× 182

Stringsearch 194,179 24 437 260 470 385 49, 444× 196× 21
Average

(Seconds) 97 2303 264 2518 385 49, 444× 196× 87
2,567 2,903 843,119,088

TABLE III
COMPARISON OF RUNTIME OF ACE, EPP, SFI. AND CLASS (IN SECONDS)

[27], at least 196 faults should be randomly injected into each
error site . This means evaluating all 49,444 error sites using
SFI takes 49, 444 × 196 × 87 seconds > 27 years. Hence, we
have evaluated only some representative components. While
our CLASS approach can provide the same level of accuracy
in only 2903 seconds, it is five order of magnitudes faster than
simulation-based SFI.

IV. CONCLUSIONS

In this paper, we proposed a fast soft error vulnerability
estimation approach, called CLASS, that has the capability of
handling both regular and irregular structures. Experimental
results revealed that the inaccuracy of CLASS is less than 7%
for individual cells while it is five order of magnitudes faster
than simulation-based statistical fault injection. Moreover,
our results show that the existing approaches that can only
handle regular (ACE) or irregular (EPP) structures have huge
inaccuracies at system level. As CLASS can calculate the
vulnerability of different cells, it provides the capability of
identifying the most vulnerable cells of the processor and can
be used along with selective protection techniques in order to
increase the reliability of the system with minimum overhead.
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