
ScTMR: A Scan Chain-Based Error Recovery Technique for TMR
Systems in Safety-Critical Applications

Mojtaba Ebrahimi Seyed Ghassem Miremadi Hossein Asadi
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Email: mojtaba_ebrahimi@ce.sharif.edu, {miremadi,asadi}@sharif.edu

Abstract—We propose a roll-forward error recovery technique
based on multiple scan chains for TMR systems, called Scan
chained TMR (ScTMR). ScTMR reuses the scan chain flip-flops
employed for testability purposes to restore the correct state
of a TMR system in the presence of transient or permanent
errors. In the proposed ScTMR technique, we present a voter
circuitry to locate the faulty module and a controller circuitry to
restore the system to the fault-free state. As a case study, we have
implemented the proposed ScTMR technique on an embedded
processor, suited for safety-critical applications. Exhaustive fault
injection experiments reveal that the proposed architecture has
the error detection and recovery coverage of 100% with respect to
Single Event Upset (SEU) while imposing a negligible area and
performance overhead as compared to traditional TMR-based
techniques.

I. INTRODUCTION

The reliance of today’s embedded processors on deep sub-
micron technologies has brought serious reliability challenges
due to soft errors in the safety-critical applications. Soft errors
are caused by high energy particle strikes in sensitive regions
of an electronic device. Traditionally, soft errors were regarded
as the main reliability threat only for space applications,
but due to technology down scaling toward nanometer era,
these errors have become a crucial concern in ground-level
applications as well [1].

To meet the reliability requirement of safety-critical ap-
plications, embedded processors should be equipped with
error detection and correction mechanisms. In addition to
the reliability requirement, performance is another important
issue in these applications as most of them have real-time
constraints. Thus, providing fault-tolerant techniques with
minimum performance overhead in embedded processors is
of decisive importance.

TMR is a well-known and widely used fault-tolerant tech-
nique. However, the traditional TMR is unable to recover
the system state when one of its modules becomes faulty. A
TMR fails if it does not properly obtain a majority decision
among its modules outputs due to multiple faulty modules
or a faulty voter [2]. Although the TMR failure rate due
to coincident faults is usually small enough to be ignored
in a well-manufactured system, independent fault arrivals in
different modules is no longer negligible. Independent fault
arrivals in two different modules may lead to a TMR failure
if neither of the faults is overwritten by the system.

Without an appropriate recovery mechanism, there is a high
probability of having TMR failures, when running an applica-

tion for a long period of time [3], [4]. To address this issue,
a transient error recovery technique can be employed along
with TMR technique. Normally, an error recovery technique
restores the state of the system to a fault-free state once
an error is detected. A majority of previous error recovery
techniques in TMR systems exploit retry mechanism [2], [4],
[5], [6]. In a retry mechanism, once an error is detected,
the faulty module will re-execute the entire process. Retry
techniques are not suitable for tight deadline applications as
they impose significant performance overhead to the system.

Rollback recovery is an alternate approach to recover from
multiple fault arrivals. In rollback recovery techniques [7], the
system state is backed up in some points during a program
execution, which are called checkpoints. Whenever an error
is detected, the system is restored to the previous fault-free
checkpoint. Checkpointing and re-computation impose signif-
icant performance overhead which may violate the real-time
requirements of safety-critical applications. In contrast, roll-
forward recovery mechanisms are efficient to be used in tight
deadline applications as they do not rely on re-computation.
A roll-forward recovery technique has been presented in [3].
The proposed technique, however, would require detailed
information about the module function and cannot be applied
to general purpose circuits such as processors.

In this paper, we present a general purpose technique to
provide recovery for both transient and permanent errors in
TMR systems. Our recovery scheme, called ScTMR, uses a
roll-forward approach to avoid re-computation and to meet
tight deadlines in real-time systems. The proposed technique
reuses the scan chain implemented in the processors for
testability purposes to recover the system fault-free state.
Compared to other TMR-based error detection and recovery
techniques [2], [3], [4], [5], [6], ScTMR imposes a negligible
area overhead to the system as it reuses the available resources
within the chipset. Once a transient error is detected, the
state of one of the fault-free modules is copied to the faulty
module using the scan chains. As no re-computation is needed,
ScTMR has lower performance overhead compared to roll-
back recovery techniques. In case of permanent faults, the
faulty module is disregarded and the system will be degraded
to the master/checker (M/C) configuration.

The remaining of this paper is organized as follows. Sec. II
introduces the ScTMR technique. Sec. III presents a case study
in which the proposed ScTMR technique is implemented on
an embedded processor. Sec. IV gives the experimental setup
and the simulation results. Finally, Sec. V concludes the paper.978-3-9810801-7-9/DATE11/ c©2011 EDAA



II. THE PROPOSED TECHNIQUE (SCTMR)

The ScTMR technique reuses scan chains for recovering the
state of the faulty module. Scan chain [8] is a cost-effective
technique used in Design for Testability (DFT) to provide a
simple way for testing combinational and sequential circuits.
In this technique, flip-flops are chained together through a long
shift register circuit and a multiplexer is used in front of each
flip-flop to switch between the normal and testing operations.
In order to reduce the observation and loading time in large
designs multiple scan chains are used. Multiple scan chains
include parallel chains, which consist of approximately the
same number of flip-flops. The number of flip-flops in each
scan chain is called scan chain length (Lsc) and the number
of scan chains in parallel is named scan chain width (Wsc).

Figure 1 shows the ScTMR block diagram. As shown in
this figure, the ScTMR architecture consists of three redundant
modules, a voter and a ScTMR controller. The proposed voter
detects errors and reports them to the ScTMR controller.
The ScTMR controller detects the error type and exploits
an appropriate mechanism to remove the error effects from
the system. The ScTMR controller then uses scan chains to
copy the state of a fault-free module into the faulty module.
The scan chain signals including Scan Chain Input (SCI),
Scan Chain Output (SCO), and Scan Chain Enable (SCE) are
controlled by the ScTMR controller.

ScTMR

Controller

TMR

Inputs

TMR

Outputs

External

Test

Bus
Unrecoverable

Condition

Module I

SCI
Outputs

Inputs

SCE

SCO

Module II

Outputs

Inputs

Module III

Outputs

Inputs

SCI
SCE

SCO

SCI
SCE

SCO

Permanent Error Announcement Line

Voter Errors

V

o

t

e

r

Fig. 1. ScTMR Technique Block Diagram

A. ScTMR Voter

The first concern in a highly reliable TMR system is finding
the faulty module. To address this issue, we present a novel
voter that has the capability of locating the faulty module. The
proposed voter has the capability of detecting and locating
faults within the comparators, too. Figure 2 shows the pro-
posed voter architecture. In this voter, three comparators (C12,
C13, and C23) are used to compare the outputs of the TMR
modules. Three error signals showing mismatch between TMR
modules are generated accordingly (TE12, TE13, and TE23).
If one of the TMR modules becomes faulty and the fault
is not overwritten within the module, an error is manifested
to the output of the faulty module and the corresponding
output becomes erroneous. Since the output of each module

Output I

Output II

Output III
Ultimate

Output

E13

E23

E12

=== C13C12C23

Pr13

Pr23

Pr12

Output

Selector

Circuit

TE23 TE12 TE13

Mux

Sel1

0

Fig. 2. ScTMR Voter

is compared by the outputs of the other modules, the error
is detected by two comparators. As an example, if output I
becomes erroneous, the error is detected by C12 and C13 and
consequently both TE12 and TE13 are activated accordingly.
On the other hand, if one of the comparators becomes faulty,
only the corresponding error signal is activated.

The proposed voter takes three other input signals denoted
with Pr12, Pr13, and Pr23. These input signals are used
to recover from permanent faults. These signals, which are
derived by the ScTMR controller, are set to zero before a
fault is identified as a permanent fault. In this case, E13, E12,
and E23 are equal to TE13, TE12, and TE23, respectively.

The error signals (E13, E12, and E23) are connected to
both the output selector circuit and the ScTMR controller. The
output selector circuit, shown in Figure 2, selects the error-free
output. The faulty module and the voter output are identified
using different values of error signals according to Table I. As
shown in this table, if either one of the comparators (C13, C12,
and C23), module II, or module III becomes faulty, output I
is selected as the error-free output of the system. Otherwise,
if module I becomes faulty, output II will be selected as the
error-free output of the system. Therefore, the output selector
circuit can be simply implemented by a 2-to-1 multiplexer
whose selector signal can be designed as depicted in Figure 2.
Note since we assume a single faulty module throughout this
analysis, simultaneous activation of all error signals is illegal
and is not supported by the proposed voter scheme. This has
been shown as Unrecoverable Condition in the last row of
Table I.

TABLE I
IDENTIFYING FAULTY MODULE AND SELECTING CORRECT VOTER OUTPUT

USING ERROR SIGNALS

E12E13E23 Faulty Module Output
0 0 0 —- Output I
0 0 1 C23 Output I
0 1 0 C13 Output I
0 1 1 Module III Output I
1 0 0 C12 Output I
1 0 1 Module II Output I
1 1 0 Module I Output II
1 1 1 Unrecoverable X





parity and SEC-DED coding techniques to protect the caches
and the register file, respectively. Then we synthesize the
Leon2 CPU logic using Synopsys Design Compiler R© [12],
which has the capability of adding DFT components in digital
circuits. Multiple scan chains are also added to the CPU
logic flip-flops using this toolset. Each module of the ScTMR
processor includes 2096 flip-flops. We use multiple scan chains
with a width equal to 16 (Wsc=16) and a length equal to 131
(Lsc=131). The ScTMR technique is then implemented using
three redundant CPU logic cores with multiple scan chains, a
ScTMR controller unit, and a voter.

To extract the area overhead, we used Synopsys Design
compiler R© [12] and UMC Memory Maker R© [13] toolsets.
The results of area overheads for Leon2 and the ScTMR pro-
cessor are reported in Table II. Experemental results show that
the area used by the CPU logic, voter, and the ScTMR con-
troller in the SCTMR processor is increased from (1.785+0.02)
mm2 in the traditional TMR to (1.785 + 0.036) mm2 in
the ScTMR processor. Hence, the proposed ScTMR technique
has less than 2% area overhead compared to the traditional
TMR system. The total area overhead of the ScTMR processor
compared to the unprotected Leon2 processor is about 71.7%,
which is significantly less than the area overhead of the TMR
implementation. The smaller area overhead of the ScTMR
processor is also an indicative of lower power consumption of
the ScTMR processor compared to the TMR implementation.

TABLE II
AREA OVERHEAD (mm2)

Architecture Leon2 TMR ScTMR
Cache & Register File 1.197 3.591 1.256

CPU Logic 0.595 1.785 1.785
Voter, Controller — 0.002 0.036

Total Area 1.792 5.378 3.077
Total Area Overhead — 200.0% 71.7%

In our simulation-based fault injection experiments, we use
SEU as our major fault model. Some programs of MiBench
automotive benchmarks [14] including Bitcount, Basicmath
and Qsort, were used as our benchmark programs during
fault injection experiments. Since fault injection experiments
are very time-consuming, we have limited the benchmark
programs execution to approximately 1M clock cycles to have
tractable experiments in this case study. A total of 12,000 fault
injection iterations have been performed on each architecture
(Leon2 and the ScTMR Processor). Our results indicate that all
injected faults into the CPU logic of the ScTMR processor are
either overwritten or successfully corrected using the proposed
ScTMR technique. The results also show that 45.9% of faults
are latent in the TMR implementation. In other words, 45.9%
of injected faults are masked by the TMR voter but could not
be corrected. The latent faults may lead to a TMR failure if
another fault occurs within the TMR modules during program
execution. Lastly, the fault injection experiments indicate that
9.5% of faults injected into the Leon2 CPU logic result in the
system failure while no failure has been observed in the TMR
and the ScTMR processor.

The performance overhead of the proposed technique has
been measured in the ScTMR processor. Two important factors
that influence the performance of an ScTMR-based system
are clock cycle increase due to critical path delay and time
required for error recovery. Our simulation results show that
the ScTMR processor critical path delay is increased by 0.89%
compared to the critical path delay of Leon2. Therefore, the
minimum clock cycle is only increased by 0.89%. Recovery
time (TR) in the ScTMR technique depends on the number of
flip-flops in each scan chain (Lsc) and the clock period (Tp)
and it can be calculated as: TR = LSC×Tp. In our simulations
LSC is equal to 131. So, it takes 131 clock cycles to recover
from a transient error.

V. CONCLUSIONS

In this paper, we proposed a roll-forward error recovery
technique based on multiple scan chains for TMR systems.
The proposed technique, called ScTMR, reuses the scan chain
flip-flops employed for testability purposes to restore the
correct state of a TMR system in the presence of soft errors.
The fault injection experiment results revealed that the ScTMR
technique has the error detection and recovery coverage of
100% with respect to the SEU fault model while offering the
benefits of low area (less than 2%) and performance (less than
1%) overheads compared to the traditional TMR systems.

REFERENCES

[1] F. Wrobel, F. Saigne, M. Gedion, J. Gasiot, and R. Schrimpf, “Radioac-
tive nuclei induced soft errors at ground level,” IEEE Transactions on
Nuclear Science, vol. 56, no. 6, pp. 3437–3441, dec. 2009.

[2] H. Kim and K. Shin, “Design and analysis of an optimal instruction-
retry policy for TMR controller computers,” IEEE Transactions on
Computers, vol. 45, no. 11, pp. 1217–1225, nov. 1996.

[3] S. Yu and E. McCluskey, “On-line testing and recovery in TMR
systems for real-time applications,” in Proceedings of International Test
Conference, 2001, pp. 240–249.

[4] K. Shin and H. Kim, “A time redundancy approach to TMR failures
using fault-state likelihoods,” IEEE Transactions on Computers, vol. 43,
no. 10, pp. 1151–1162, oct. 1994.

[5] A. Hopkins, T. Smith, and J. Lala, “FTMP: A highly reliable fault-
tolerant multiprocess for aircraft,” Proceedings of the IEEE, vol. 66,
no. 10, pp. 1221–1239, oct. 1978.

[6] S. D’Angelo, C. Metra, and G. Sechi, “Transient and permanent fault
diagnosis for FPGA-based TMR systems,” in Proceedings of Interna-
tional Symposium on Defect and Fault Tolerance in VLSI Systems, nov.
1999, pp. 330–338.

[7] D. Pradhan and N. Vaidya, “Roll-forward and rollback recovery:
performance-reliability trade-off,” in Proceedings of 24th International
Symposium on Fault-Tolerant Computing, jun. 1994, pp. 186–195.

[8] L. Wang, C. Wu, and X. Wen, VLSI Test Principles and Architectures:
Design for Testability. Morgan Kaufmann Publishers Inc., 2006.

[9] “The Leon2 Processor User Manual, http://www.gaisler.com,” 2007.
[10] H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli, “Balancing

performance and reliability in the memory hierarchy,” in Proceedings
of IEEE International Symposium on Performance Analysis of Systems
and Software, mar. 2005, pp. 269–279.

[11] J. Gaisler, “A portable and fault-tolerant microprocessor based on the
SPARC v8 architecture,” in Proceedings of International Conference on
Dependable Systems and Networks, 2002, pp. 409–415.

[12] “Synopsys Design Compiler, www.synopsys.com,” 2010.
[13] “UMC Memory Maker, www.umc.com,” 2010.
[14] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and

R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of IEEE International Workshop on
Workload Characterization, dec. 2001, pp. 3–14.


