

A Cache-Assisted ScratchPad Memory for Multiple

Bit Error Correction
Hamed Farbeh, Student Member, IEEE, Nooshin Sadat Mirzadeh, Nahid Farhady Ghalaty, Seyed-Ghassem

Miremadi, Senior Member, IEEE, Mahdi Fazeli, Hossein Asadi, Senior Member, IEEE

Abstract— ScratchPad Memory (SPM) is widely used in modern

embedded processors to overcome the limitations of cache

memory. The high vulnerability of SPM to soft errors, however,

limits its usage in safety-critical applications. This paper proposes

an efficient fault-tolerant scheme, called Cache-Assisted

Duplicated SPM (CADS), to protect SPM against soft errors. The

main aim of CADS is to utilize cache memory to provide a replica

for SPM lines. Using cache memory, CADS is able to guarantee a

full-duplication of all SPM lines. We also further enhance the

proposed scheme by presenting Buffered-CADS (BCADS) that

significantly improves the CADS energy efficiency. BCADS is

compared with two well-known duplication schemes as well as

single error correction scheme. The comparison results reveal that

1) BCADS imposes 13.6% less Energy-Delay Product (EDP)

overhead than the duplication schemes and it does not require to

modify the SPM manager and target application; 2) in comparison

to the conventional Single Error Correction-Double Error

Detection (SEC-DED) scheme, BCADS provides significantly

higher error correction capability by correcting up to 4-bit burst

errors using low-cost 4-bit interleaved parity code. Moreover, the

area overhead for error correction and the performance overhead

of BCADS are negligible (less than 1%), whereas the area and

performance overheads are 21.9% and 6.1% for SEC-DED,

respectively. Furthermore, BCADS imposes about 10.7% lower

EDP overhead as compared to the SEC-DED scheme.

Index Terms—Cache Memory, Data Duplication, Multiple-Bit

Upset, ScratchPad Memory, Soft Error Correction.

I. INTRODUCTION

wide range of modern embedded processors includes both

ScratchPad Memory (SPM) and cache memory in their ar-

chitectures to fulfill the application requirements of predictabil-

ity, performance, and energy budget. Examples of such proces-

sors are ARM Cortex-R Series [1] and SH7785 [2] that are used

in automotive, industry, and medical applications. These appli-

cations are safety-critical requiring highly reliable processors.

One major source of system failures in such applications is

soft errors caused by radiation induced particles strike into

chips [3]. Single Event Upsets (SEUs) and Single Event Multi-

ple Upsets (SEMUs) are two types of soft errors in SPM and

cache as on-chip SRAM memories [3]. It has been reported that

more than 60% of the chip area is occupied by these memory

cells [3]-[5] which makes them the most probable component

to particles strike [3].

Correcting soft errors in on-chip memories (SPM or cache)

can be categorized into two approaches [7]. The first approach

is the use of Error Correcting Codes (ECCs), e.g., Single Error

Correction-Double Error Detection (SEC-DED) and SEC-

DED-Double Adjacent Error Correction (SEC-DED-DAEC),

to detect and correct errors. All of the on-chip memories can be

protected using this approach. However, this approach has two

serious problems: a) a limited error correction capability [8][9],

and b) a significantly higher overhead, when ECCs are em-

ployed to correct multiple bit errors such as SEMUs [8]-[10].

The second approach to detect and correct soft errors is a joint

use of parity code and a duplication of memory entries; we call

this approach as parity-duplication. The main advantage of this

approach is its capability to correct all detected errors. This ap-

proach has been commonly applied to structures such as in-

struction-cache, instruction-SPM, and write-through data-

cache. In these structures, a copy of all entries is inherently

available in lower memory levels and the overheads of memory

protection mechanism are as low as the parity code overheads.

However, the parity-duplication approach does not offer full

protection for data-SPM and write-back data cache since a frac-

tion of data blocks in these structures does not have any copy in

the lower memory levels for error correction.

Due to high error correction capability of parity-duplication

approach, several studies have tried to utilize this approach for

protecting the data-SPM and write-back data-

cache [3][5][12][13]. To this end, these studies have proposed

to provide the replica for non-duplicated data, i.e., dirty data.

The replica of dirty data has been provided in three different

ways: 1) an extra on-chip memory module is utilized to keep

the replica of cache lines [13]; 2) the cache lines that may not

be referred in a near future are utilized to keep the replica of

other cache lines [3]; and 3) the SPM lines are utilized to keep

a replica for other SPM lines [5][12]. The major drawback of

these schemes is that only a subset of memory lines is dupli-

cated meaning that a part of memory remains unprotected.

This paper proposes a duplication scheme, so called Cache-

Assisted Duplicated SPM (CADS), to correct SEUs and SEMUs

in data-SPM lines detected by low-cost error detecting code.

The key idea in CADS to provide a replica for software-man-

aged SPM is enforcing the hardware-managed cache to keep a

copy of non-cacheable SPM lines. In particular, CADS dupli-

cates all dirty SPM lines in cache memory considering the fact

that clean SPM lines have inherently a copy in lower memory

hierarchy. To this aim, we propose a cache controller circuitry

that is capable to store a copy of non-cacheable SPM lines in

cache memory. To reduce the energy consumption overhead of

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

A

H. Farbeh, N. S. Mirzadeh1, N. F. Ghalaty2, S. G. Miremadi and H. asadi

are with the Department of Computer Engineering, Sharif University of Tech-

nology, Tehran, Iran (Email: farbeh@mehr.sharif.edu, {miremadi,
asadi}@sharif.edu).

M. Fazeli is with the Department of Computer Engineering, Iran Univer-

sity of Science & Technology, Tehran, Iran (Email: m_fazeli@iust.ac.ir)
1 N. S. Mirzadeh is currently a PhD Student at Ecole Polytechnique Feder-

ale de Lausanne (EPFL), Switzerland (Email: nooshin.mirzadeh@epfl.ch).
2 N. F. Ghalaty is currently a PhD at the Virginia Polytechnic Institute and
State University (VT), Virginia, US (Email: farhady@vt.edu).

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, TVLSI-00596-2015

CADS, we furthure propose Buffered-CADS (BCADS) tech-

nique in which a mini buffer is inserted between SPM and cache

to minimize the extra cache accesses for updating the replicas.

By taking advantages of the proposed cache controller cir-

cuitry, BCADS provides the following features: 1) it keeps a

copy of all dirty SPM lines in the least recently-used cache

lines, 2) it prevents the early eviction of SPM replicas from the

cache due to cache replacement operation, 3) it releases the

cache lines that contain the replicas whenever the correspond-

ing replicas are no longer needed, 4) it overwrites the erroneous

SPM lines by the error-free copy available in the cache or main

memory, 5) using low-cost interleaved parity code to detect

SEMUs, BCADS is able to correct all errors that are detected,

and lastly 6) no modification in SPM management algorithm or

target application is required.

The rest of this paper is organized as follows. In Section II,

the related work is reviewed. Section III illustrates the motiva-

tion of this work. The proposed scheme is presented in Section

IV. Section V explains the simulation system setup and the re-

sults are demonstrated in Section VI. In Section VII, several as-

pects of the proposed scheme is discussed. Finally, Section VIII

concludes the paper.

II. RELATER WORK

Fault-tolerant schemes to protect SPM and cache memory can

be broadly categorized into ECC-based and duplication-based

schemes. The former schemes try to reduce the overheads of

conventional ECCs or improve the correction capability of ECC

codes [4][7][9]-[11][15][26][28][31]-[34]. The latter schemes

keep a replica of memory contents for error recovery once an

error is detected in a memory

line [3][5][12][13][16][17][21][35][36]. Most of the previous

studies on SPM protection are duplication-based while both du-

plication and ECCs have been used to protect cache memory. In

the following, we first discuss the reliability improvement

schemes in SPM and then explore duplication- and ECC-based

schemes in cache memory.

A. SPM Reliability Enhancement

A data duplication scheme [12] uses dead blocks of SPM to

keep a copy of live blocks. Dead blocks are identified at com-

piler level using an algorithm that analyses the patterns of ac-

cessing to SPM lines. At runtime, the redundant blocks are cre-

ated if a free block exists in SPM. This scheme suffers from two

major limitations. First, due to high utilization of SPM lines and

shortage of dead blocks, a large fraction of SPM blocks remain

unprotected. Second, updating the replica on every write oper-

ation to SPM will impose significant performance overhead.

Embedded RAIDs-on-Chip (E-RoC) scheme [5] protects on-

chip distributed SPM modules in Chip Multi-Processor (CMP)

systems. In this mechanism, SPM blocks are duplicated in the

other SPM modules under the control of an E-RoC manager

module. Significant energy overhead is imposed due to parallel

accesses to SPMs and managing the SPM contents. Aggressive

voltage downscaling is used to reduce this overhead, which its

consequence is the exponential increase in the susceptibility of

SPMs to soft errors. Considering distributed SPM in multicore

processors, In-Scrachpad Memory Replication (ISMR)

scheme [35] duplicates the active dirty SPM blocks into inac-

tive SPM space. In this scheme, an offline profiling is per-

formed to analyze the access patterns of SPM block. At runtime,

the status of SPM blocks is determined by a tag included to all

SPM lines and a dirty SPM blocks are replicated to inactive

SPM blocks with the aid of a Replica Management Unit

(RMU).

Memory-Mapped SPM (MM-SPM) scheme [21] has been in-

troduced to protect instruction-SPM and is not applicable to

data-SPM. Fault-Tolerant SPM (FTSPM) scheme [14] parti-

tions SPM into three regions with different levels of soft error

protection and maps data blocks to SPM regions according to

the vulnerability of data blocks. Data-recomputation algo-

rithm [22] recovers the erroneous dirty data block in SPM using

its primary data elements by re-executing the instructions pro-

ducing the data block.

B. Duplication Schemes in Cache

In-Cache-Replication (ICR) [3] replicates a fraction of dirty

lines of data cache into lines which have not been used for a

long time. Replication Cache [13] is based on keeping a redun-

dant copy of dirty cache lines in a small embedded cache. Multi-

Copy Cache (MC2) [36] keeps multiple copies for cache lines

to detect and correct process-variation induced faults in an ag-

gressively voltage scaled cache architecture. This scheme can

significantly reduce the energy consumption of the cache in em-

bedded applications that their working set is considerably

smaller than the cache size.

In Tag Replication Buffer (TRB) scheme [16] and SimTag

scheme [17], tag array in cache is protected using the duplica-

tion approach. TRB scheme [17] inserts a fully-associative

cache beside the main cache to keep a copy of recently-accessed

tags. SimTag scheme [16] exploits the inherent similarity in tags

of adjacent cache sets and considered the similar tags as the rep-

lica of each other.

C. ECC-based Schemes in Cache

Due to higher overheads of error correction in comparison to

error detection, decoupling these two operations is a well-

known approach to eliminate or minimize the overheads of

ECCs in error-free system operation [7][28][31][32]. To reduce

the latency and energy consumption of ECCs, Punctured ECC

Recovery Cache (PERC) [7] uses a separate error detection and

correction policies by using fast EDCs in cache and allocating

a separate memory module for ECCs. Memory-Mapped ECC

scheme [31] stores the ECC bits in memory hierarchy such as

data, instead of dedicating SRAM cells to them. Employing dif-

ferent error coding schemes for clean and dirty lines of cache

was introduced to protect cache lines [28]. ECC FIFO [32] pro-

posed to use light error detection codes for each last-level cache

line and to keep error correction codes in a FIFO structure lo-

cated in off-chip DRAM.

Several studies tried to improve the detection/correction

coverage of ECCs [4][9]-[11][15][26][33][34]. PSP-cache

scheme [9] exploits the parallel access of cache lines to apply

ECCs in larger data granularity. Using the same number of bits

as SEC-DED, a SEC-DED-DAEC code [15] provides a higher

error correction capability. The goal of the matrix-based ECC

scheme [26] is to provide the capability of correcting adjacent

multiple errors. The coding scheme proposed by Ma et al. [33]

FARBEH ET AL.: A CACHE-ASSISTED SCRATCHPAD MEMORY FOR MULTIPLE BIT ERROR PROTECTION

is able to correct double random errors as well as burst errors of

length three and four bits. The ECC scheme proposed by Neale

et al. [10] has the ability of DAEC as well as scalable Adjacent

Error Detection (xAED). The goal of the scheme presented

in [11] is to maximize the probability of detecting double adja-

cent bit errors in SEC and triple adjacent bit errors in SEC-

DED. A modified version of Hamming code [34] provides the

ability to detect 2- and 3-bit burst errors in addition to correcting

single bit errors. A two dimensional coding scheme [4] detects

errors by parity code in cache rows and corrects errors by keep-

ing the column XOR of data written to the cache as well as col-

umn XOR of all dirty data removed from the cache. In [8], a

two dimensional cache protection method has been proposed in

which multi-bit errors are corrected by interleaving data array

rows among vertical parity rows.

We conclude this section by highlighting the main differ-

ences between our proposed scheme and previous data-duplica-

tion schemes. All previous data SPM duplication schemes keep

the replicas in SPM, whereas we propose to keep the replicas in

the cache. Keeping the replica in SPM requires complex appli-

cation profiling and SPM management modification [12][35] or

requires a complicated hardware module to manage the repli-

cas [5][35]. Moreover, it imposes significant performance over-

head due to reducing the SPM usable space. On the other hand,

due to architectural difference between SPM and cache

memory, duplication schemes for cache protection either are not

applicable to SPM [3][16][17] or impose significant overheads

to provide replicas for all SPM lines [13][36]. By keeping the

SPM replicas in the cache, as proposed in this paper, neither

extra hardware module nor modification in SPM management

are required. In addition, the locality in accessing the cache and

SPM, as will be explained in Section III, minimizes the impact

of reducing the cache usable space on the performance of the

system.

III. MOTIVATION

Until recently, SEUs were regarded as a main effect of particles

strike in digital circuits. However, in today’s nanoscale technol-

ogy, SEMUs due to particles strike have become more probable

than previous technology generations. Fig. 1 depicts the per-

centage of SEMU and SEU caused by particles strike for differ-

ent technology feature sizes [6]. According to [6], the probabil-

ity of SEMU in 65nm technology is about 20%, whereas this

probability for 40nm technology has increased to 40%.

A. Shortcomings of Conventional Protection Schemes

Error correction codes, e.g., SEC-DED, are extensively used to

protect data against SEUs. However, the presence of SEMUs

makes these codes inefficient to be used in highly reliable sys-

tems [14]. Using more powerful error correction code, e.g.,

Double Error Correction-Triple Error Detection (DEC-TED),

Single Error Correction-Double Error Detection-Double Adja-

cent Error Correction (SEC-DED-DAEC), and interleaving

ECCs can effectively be used to protect the system against

SEMUs [15]. Interleaving ECCs, however, imposes severe en-

ergy, area, and/or performance overheads [8] and the system

still remains vulnerable to multiple errors greater than two bit-

flips for DEC-TED and SEC-DED-DAEC codes.

Rapid increase of SEMU rates has made the data duplication

approach as one of the most promising fault-tolerant ap-

proaches for on-chip memories. However, the huge overheads

in area and energy consumption of full memory module dupli-

cation limit its application in on-chip SPM and cache memory.

The main goal of previous duplication-based schemes is to min-

imize overheads while providing replica of high fraction of

data. The main drawback of all previous duplication-based ap-

proaches is that they cannot guarantee the full-duplication of

memory with an acceptable energy, area, or delay over-

head [3][5][12][13][17][35].

Using write-through policy instead of write-back policy can

improve the cache reliability. However, for software-managed

SPM, which is in the memory address space, simultaneous

writes to higher memory hierarchy is not straightforward. In ad-

dition to its huge energy and performance overheads, updating

the main memory upon each SPM data update also complicates

the SPM management mechanism.

To efficiently utilize the limited SPM space, this space is

shared between various data blocks of the application and these

blocks will be dynamically transferred to SPM on demand. As

proposed in previous work [5][12][35], SPM space can be used

to keep a replica of other SPM lines. However, exploiting a frac-

tion of SPM space to keep a replica of SPM blocks not only

complicates the SPM management, but also leads to significant

performance overhead; moreover, it does not provide a replica

for all SPM blocks if there is no enough free space in SPM.

B. A Key Observation

A wide range of the modern embedded processors such as Cor-

tex-R Series [1], SH7785 [2], and ColdFire MCF5 [18], have

employed both SPM and cache memory in their architecture.

The main aim of the inclusion of both cache memory and SPM

in these architectures is to enhance both predictability and per-

formance. Cache memory is used to enhance performance by

compensating the limitations of SPM software management due

to dynamic behavior of the program. On the other hand, by op-

timally mapping of program blocks to SPM, most of the

memory references would be complied with SPM; thus, the

number of references to the main memory and consequently the

number of cache accesses would significantly decrease com-

pared to non-SPM processors.

Several studies illustrated that the hybrid SPM-cache archi-

tecture outperforms both pure SPM and pure cache architec-

tures in several aspects. It was shown by Kang et al. [37] that

employing both cache and SPM together not only improves the

timing predictability of the system but also reduces the total

number of cache misses. In [38], it was illustrated that the hy-

brid cache-SPM architecture outperforms both pure cache and

pure SPM architectures in term of the execution time. By em-

ploying the hybrid SPM-cache [39][40], the total energy con-

sumption is reduced. As reported [41], the timing predictability

of hybrid SPM-cache architecture is better than that of pure

cache and the performance of this hybrid architecture is better

than that of pure SPM architecture. It was shown that compared

with pure cache architecture, hybrid architecture reduces not

only the number of cache misses, but also the total energy con-

sumption and execution time of the applications [42]. In [43],

the leakage energy of the cache is reduced by aggressively plac-

ing the cache lines into low power mode when the majority of

transactions are SPM accesses. The temperature of on-chip

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, TVLSI-00596-2015

memories is managed by Jia et al. [44] via dividing the loops

into several segments and alternately allocating data to the

cache and SPM.

According to the principle of locality, it can be expected that

there would be a locality when accessing on-chip memories. In

other words, it is expected that for a specific time slot, most of

the memory references are accesses to SPM (or cache) and there

are small number of cache (or SPM) accesses. To verify the ex-

istence of such locality, we have carried out a set of experiments

on ARM926EJ-S processor [1] to extract the number of ac-

cesses to cache and SPM in different cycles. Fig. 2 depicts the

number of cache and SPM accesses during the workload exe-

cution for Rijndael benchmark [20] in a sliding window of one

thousand accesses, i.e., one thousand most recent accesses sent

to the memory system. The gap between the two curves indi-

cates the locality in SPM and cache accesses; the wider gap, the

more access locality is experienced. According to Fig. 2, SPM

accesses contribute more than 85% of the total accesses in most

of time intervals. In the time intervals that cache is accessed

more frequently, SPM is less busy than the other time intervals.

Our observations for workloads in SPEC CPU2006 [19] and

MiBench [20] benchmark suites show that more than 80% of

memory references are access to either SPM or cache for about

87% of time intervals, on average. This observation is the con-

sequence of the software management of SPM. The SPM space

is mostly allocated to data arrays accessed in loops. This leads

to high utilization of SPM and low utilization of the cache in

the time interval between entering and exiting these loops. The

reverse utilization exists in other execution phases or inside

loops that their data arrays are not mapped to SPM. The obser-

vation of the locality in accessing the cache and SPM motivates

us to employ the least-frequently used lines in the cache to keep

a replica for SPM lines.

Availability of a cache memory along with SPM is a prom-

ising solution for exploiting cache memory to keep a replica of

dirty SPM lines. Such protection mechanism is expected to im-

pose low energy and performance overhead as the cache is re-

used to protect SPM. In hybrid SPM-cache processors, the static

power due to leakage current is wasted regardless the cache is

accessed or not. On the other hand, the static power contributes

a large fraction of the total power consumed in cache memory.

Therefore, by using already available cache lines as a replica

for SPM, only dynamic energy consumption overhead will be

imposed to the system due to extra cache accesses. Hence, by

adding no hardware to store the replicas, the static power con-

sumption remains the same as baseline system configuration.

IV. PROPOSED CADS SCHEME

The idea in proposed architecture, named Cache-Assisted Du-

plicated SPM (CADS), is to utilize existing cache and main

memory to keep a replica for all SPM data lines. To this aim,

CADS considers a copy of clean SPM data in the main memory

and enforces the cache to store the non-cacheable dirty SPM

data. Since SPM blocks are transferred between the main

memory and SPM at runtime, there is always an inherent copy

of clean SPM lines in the main memory. CADS uses the resi-

dent data lines in the main memory as a copy of clean SPM

lines. For dirty SPM lines, which have no valid copy in the main

memory and are the major reliability concern, we propose to

exploit the cache lines for replication. The SPM address space

is normally non-cacheable and the cache ignores the accesses

to SPM. To enforce the cache to store a copy of dirty SPM lines,

we modify the cacheable detection unit. The proposed cache

controller provides the ability to allocate and update the replica

in the cache for SPM write accesses, to ignore the SPM read

accesses, and to retrieve the replica for error recovery.

CADS employs parity code to detect errors in SPM. Error

detection mechanism is also independently employed from er-

ror recovery process. This can provide two main benefits: 1) the

overheads for error correction are not imposed in the normal

system operation; 2) according to the degree of reliability

needed for each application, an appropriate error detection

mechanism can be employed, which makes this architecture ap-

plicable to a wide range of applications. To detect both SEU and

SEMU, interleaved parity code is considered in this paper for

error detection which has significantly lower overhead as com-

pared to ECC codes.

The error recovery process in SPM needs to differentiate be-

tween dirty and clean data lines. Errors occurring in clean data

lines can be corrected by its original copy in the main memory

whereas the copy of dirty data lines is available in the cache

memory. The mechanism to distinguish between clean and dirty

data lines in SPM and the other aspects of the proposed archi-

tecture will be discussed in the next subsections.

50%

60%

70%

80%

90%

100%

180 130 90 65 40

S
o
ft

 E
rr

o
rs

 i
n

 S
R

A
M

 C
el

l

Technology Size

4-bit or more

3-bit

2-bit

1-bit

Fig. 1. Percentage of SEU and SEMU caused by particles strike in SRAM
cells [6]

Fig. 2. Number of SPM and cache accesses in 1000 sliding window accesses

N
u

m
b
er

 o
f

A
cc

es
se

s
N

u
m

b
er

 o
f

A
cc

es
se

s 1000

800

600

400

200

0

1000

800

600

400

200

0

Cache Access

SPM Access

SPM Access

Cache Access

 0 1 2 3 4 5

x105

 1.25 1.3 1.35 1. 4 1.45

x105
Access Sequence

Access Sequence

FARBEH ET AL.: A CACHE-ASSISTED SCRATCHPAD MEMORY FOR MULTIPLE BIT ERROR PROTECTION

A. Keeping a replica for all SPM lines

There are two approaches for allocating limited SPM space to

data blocks: static allocation and dynamic allocation [12]. In the

static approach, a subset of data blocks is placed in SPM at the

beginning and remains there for a while [23]. In the dynamic

approach, which is typically preferred for data allocation, data

blocks are placed in the main memory at the beginning and will

be transferred between SPM and main memory at runtime [23].

Based on the dynamic SPM allocation, to provide a full-du-

plication for SPM lines, we propose to store the original copy

of SPM lines in main memory as a replica for clean lines and to

exploit the existing cache memory to keep a replica for dirty

lines. However, in conventional processor architectures, SPM

and cache are located at the same level of memory hierarchy

and SPM address space is not in the cacheable address

space [23]; therefore, the cache controller ignores all SPM ref-

erences. In CADS, the cache controller is modified to be aware

of SPM accesses. To keep a replica for a dirty SPM line in the

cache, when a line is written to SPM, this data line must be

written in the cache, as well. This means that we propose two

different caching policies in the cache for writing to SPM and

reading from SPM.

Every write access to SPM is defined as a cacheable trans-

action in CADS; therefore, once a data line in SPM becomes

dirty, a cache line is allocated to keep a replica for this new dirty

SPM line. In the subsequent updates of this data line in SPM,

its replica in the cache is updated as well. On the other hand,

read operation does not modify the SPM contents and no cache

access is needed. Thus, the conventional caching policy is em-

ployed for SPM read transactions. Consequently, in the pro-

posed architecture, each dirty line in the SPM has a replica data

line in the cache while clean data lines in SPM have their replica

in the main memory.

B. Designing cacheable detection logic

To make the SPM write accesses as cacheable operations and to

keep SPM read accesses as non-cacheable operations, CADS

redesigns the cacheable detection unit of the cache controller.

Conventional cacheable detection unit decides whether the ad-

dress generated by the processor is cacheable or not. In CADS,

the read/write signal is also checked by the cacheable detection

unit. If the read/write signal indicates the write access and the

address generated by the processor is in the SPM region, the

cacheable detection unit activates the cacheable signal.

Fig. 3 depicts the proposed architecture and an abstract view

of the modified cacheable detection unit. To define SPM write

accesses as cacheable operations, a SPM Cacheable Unit (SCU)

is added to the conventional cacheable detection unit. SCU ac-

tivates its output if the address is within SPM region and the

write signal is active. The output of the conventional cacheable

detection unit and SCU are ORed to produce the final cacheable

signal. SCU has also an input signal, so called Error Recovery

signal, to make “SPM read” accesses as cacheable operation in

SPM error recovery phase. In the next subsection, the function-

ality of this signal will be discussed in detail.

Fig. 4 illustrates the detailed architecture of the modified

cacheable detection unit for addressing areas of a typical pro-

cessor [24] that its cacheable table is according to Table I. As

shown in Table I, PROM and RAM address areas are cacheable

whereas I/O and SPM address areas are non-cacheable ac-

cesses.

C. Challenges in Design and Implementation of CADS

Despite high degree of reliability provided by CADS, some

challenges in design and implementation of the proposed archi-

tecture need to be addressed. In particular, the following ques-

tions should be addressed.

 How to guarantee the full-duplication of dirty SPM lines?

 How to restore error-free replicas of dirty data from cache?

 How to distinguish between clean and dirty data in SPM?

In the following, we discuss these concerns in detail.

1) Guaranteeing full duplication of dirty SPM lines

One major threat to replicate the SPM data lines in the cache is

the probability of eviction of these replicas from the cache. This

can possibly occur upon a cache miss. Once a replica line is

evicted from the cache, SPM becomes vulnerable to soft errors

as the original dirty data line in SPM has no replica any longer.

To guarantee that there would be always a replica for all dirty

SPM lines, we can simply prevent the cache lines containing

the replicas to be evicted. Most of the cache memories in to-

day’s embedded processors provide the ability to lock a cache

line to prevent replacing a line in the cache memory [1]. By

locking the cache lines that store the replicas of SPM, no replica

may be evicted from the cache. It is assumed that the size of the

cache is at least equal to the SPM size to guarantee the full-

duplication of all SPM contents in the worst-case scenario, i.e.,

the situation in which all SPM lines are dirty.

Because of dynamic transferring of data lines between SPM

and main memory, a dirty line in SPM may be replaced by a

new line. In this case, the replica will be unlocked along with

the dirty line eviction. It is noteworthy that the locking/unlock-

ing operation is not required for every SPM transaction. The

locking operation is needed only when a new cache line is allo-

cated for SPM replica, which happens for small fraction of the

writes to SPM. The unlocking operation is needed only when a

Address

Is Cacheable?

CPU

Conventional

Cacheable

Detection

Unit

SPM

Cacheable

Unit

M
a

in
 M

e
m

o
ry

Read/Write

Error Recovery

Address

Address

SPM

Cache

CADS cacheable detection unit

Read/Write

Error Detection

Error Recovery

A subset of

 address bus

Three dirty words in

SPM and

their backup in a

cache line

Activated by writing data to

SPM or after reading an

erroneous SPM line

A Cache Set

Fig. 3. Proposed CADS architecture

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, TVLSI-00596-2015

replicated SPM block is evicted. No locking/unlocking opera-

tion is needed for read operations. For write operations into

SPM, only one out of the following three cases requires the

locking operation: 1) A write operation into an unreplicated

clean word: in this case, the clean word becomes dirty and a

cache line is allocated for replicating the word. The allocated

cache line needs to be locked; 2) A write operation into a dirty

word: in this case, a cache line has already been allocated to the

dirty word and it is enough to update the data word in SPM and

its replica in the cache. The cache line has already been locked

and no further locking operation is required; 3) A write opera-

tion into an already-replicated clean word: A cache line allo-

cated for replication contains the replica of eight adjacent SPM

words. A cache line has already been allocated and locked for a

clean SPM word that at least one of its eight adjacent words (8-

1) is dirty. Since the SPM space is mostly allocated to arrays

accessed in loops, the replica for the majority of clean SPM

words that become dirty have already been allocated and locked

(seven out of eight in the best case).

2) Restoring error-free replica of dirty data lines from cache

Upon error detection in a dirty line, the processor should read

the error-free copy of the dirty line from the cache and overwrite

the erroneous line of SPM by the error-free replica. Since read

accesses from SPM are not cacheable operations, conventional

read access cannot restore the backup copy available in the

cache. To read an error-free line from the cache during error

recovery, after activation of error detection signal from SPM,

the SPM is disabled by inactivating SPM chip select and error

recovery signal is activated in the next clock cycle. Activation

of the error recovery signal makes the read operation from SPM

address space as a cacheable operation in order to force the

cache to send out the replica data line to the processor. After

reading the error-free line from the cache by the processor, it is

then written into the erroneous line in the SPM. An abstract

view of corresponding signals has been shown in Fig. 3.

3) Distinguishing between clean and dirty data lines in SPM

A traditional way to identify the clean and dirty data is to em-

ploy a dirty flag bit for every SPM line which leads to about 3%

energy and area overheads in normal system operation. We pro-

pose a solution to overcome this problem without any overhead

in the normal system operation. In the proposed architecture, all

dirty SPM lines are stored in the cache and hence cache contains

no clean SPM line. When an error is detected, we first look up

the cache to find the replica. If a cache hit occurs, the erroneous

data is a dirty line and will be corrected using its replica in the

cache. Otherwise, a cache miss indicates that the erroneous line

is clean and the replica will be read from the main memory. Fig.

5 depicts the SPM error correction procedure.

The error correction routine is activated after detecting an

error on a read operation from SPM. The activation of Error

Detection signal is a hardware interrupt to the processor which

requires immediate attention. To respond this interrupt, the pro-

cessor suspends its current activities, saves its state, and exe-

cutes an interrupt handler operating according to ‘Error Correc-

tion Procedure’ depicted in Fig. 5. To properly activate and de-

activate the corresponding signals, negligible modification in

the processor control unit is required.

D. Design Optimization

To replicate all dirty SPM lines in the cache, every write access

to SPM needs an extra access to the cache. Extra cache accesses

are imposed due to update the replicas in the cache or to allocate

new cache lines for the replicas of SPM lines if they are not

currently available. This leads to significant dynamic energy

overhead in CADS. The energy overhead of extra accesses to

memory for allocating and updating the replicas exists for all

previous duplication schemes [3][5][12][13][17][35][36]. Our

evaluations show that the dynamic energy overhead for updat-

ing the replica in the most related work [12] and CADS is 52%

and 43%, respectively.

To overcome this overhead and reduce the number of cache

accesses due to SPM line duplication, we enhance the CADS

architecture by inserting a buffer between SPM and the cache.

This enhanced architecture is named Buffered-CADS

(BCADS). This buffer reduces the cache accesses by storing the

replica of the most-recently updated SPM line. The size of the

buffer is considered the same as the size of single cache line,

TABLE I
 CACHABLE TABLE FOR SYSTEM ADDRESSABLE AREA

Address range Area Cached

0x00000000 – 0x1FFFFFFF PROM Cacheable

0x20000000 – 0x3FFFFFFF I/O Non-Cacheable

0x40000000 – 0x7FFFFFFF RAM Cacheable

0x8E000000 – 0x8FFFFFFF SPM Non-Cacheable

a31

a30

a29

a31
a30

a29

a28

a30

a31

Read/Write

Error Recovery

Is cacheable?a27-a0

Conventional

Cacheable

Detection Unit

Activated by writing

data to SPM or after

reading an erroneous

SPM line

Address

Bus

(a31-a0)

SPM

Cacheable

Unit

Fig. 4. Proposed cacheable detection unit to support SPM write access caching

Fig. 5. Error correction procedure in CADS

Fig. 5. Error Correction Procedure

a

Normal

Operation

CSSPM = False;

Error_Recovery = True;

Error Detected

Repeat read

operation

1) Read cache data

 output

2) Overwrite the

 erroneous SPM data

1) Read replica from

 off-chip memory

2) Overwrite the

 erroneous SPM data

Disable SPM

Make SPM read

 as

 cacheable operation

Read from SPM

to find replica in cache

Cache Hit Cache Miss

Error in clean

SPM data

Error in dirty

SPM data

Error Corrected

Error Corrected

FARBEH ET AL.: A CACHE-ASSISTED SCRATCHPAD MEMORY FOR MULTIPLE BIT ERROR PROTECTION

e.g., 32-byte in our configuration. Using this buffer, we can

keep the replica of eight 32-bit SPM words residing in the same

cache line.

Fig. 6 depicts the control flow of a write access to SPM in

BCADS. For every write operation to SPM, the write address is

compared with the address of data line stored in the buffer. If

the replica is already in the buffer, which can be interpreted as

a buffer hit, the buffer entry will be updated. Otherwise, on a

buffer miss, after writing back the buffer entry to the cache, the

buffer will be allocated to the new data written to SPM. For the

write-back data line from buffer to the cache, if the replica line

is already allocated in the cache, the line will be rewritten. Oth-

erwise, a new cache line is selected for replication before writ-

ing back the buffer entry.

BCADS can significantly reduce the extra cache accesses by

utilizing the locality of references in SPM access. The SPM

lines are mainly allocated to data arrays accessed in loops,

which have a highly localized access pattern. Therefore, it is

highly probable that consecutive requests for updating the rep-

licas refer to the same cache line. By taking advantage of such

locality, the buffer will be able to catch the majority of replica

update requests.

V. SIMULATION SYSTEM SETUP

The proposed architecture has been evaluated by a cycle-accu-

rate simulator called FaCSim [25], which models the

ARM926EJ-S processor core and its memory subsystem [1].

The on-chip memory configuration used in our simulation con-

sists of a D-SPM, a D-cache, and an I-cache. A 4-way set asso-

ciative write-back cache with 32-byte lines is considered as D-

cache. The evaluations are performed for three different cache

and SPM size, i.e., 4-Kbyte, 8-Kbyte, and 16-Kbyte. We have

modified the cacheable detection unit to support CADS and

BCADS requirements.

Program blocks are mapped to SPM by modifying the appli-

cation source code. For this purpose, the instructions required

for transferring data blocks between the main memory keeping

the original SPM contents and SPM are inserted in the source

code. Application profiling is used to analyze the patterns of ac-

cessing data blocks and determine the blocks that are worthy to

be transferred to SPM, i.e., data blocks with high temporal lo-

cality are the best candidates to be mapped to SPM. A subset of

SPEC CPU2006 [19] and MiBench [20] benchmark suite are

used as the target workloads.

 To evaluate the proposed architecture, it has been compared

with the data duplication schemes presented in [12] and [35].

As described in Section II, there are three duplication-based

schemes in the literature to protect data SPM, i.e., [12], [5],

and [35]. It is noteworthy that [5] and [35] targeted distributed

SPMs in multicore processors, whereas [12] and BCADS pro-

vide the duplications in local memories of a core and are inde-

pendent of the number of cores. In this regard, [12] is the most

comparable scheme to BCADS and [35] is the most state-of-

the-art scheme to protect SPM. Hereafter, the schemes in [12]

and [35] are referred as Li et al. and ISMR, respectively.

The results for CADS are also included to quantitatively

show why the optimization proposed in BCADS is required and

how much the energy efficiency is improved. In addition, we

have included the results for the well-known SEC-DED

scheme, in which 32-bit data words are protected by 7-bit check

bits, i.e., SEC-DED(39,32). It should be noted that comparison

between data duplication schemes and ECCs may not be

straightforward and fair. Because, SEC-DED and duplication

are two different error correction approaches with different cor-

rection capabilities and correction mechanisms. SEC-DED is

capable of correcting only single errors, whereas duplication is

capable of correcting any detectable errors, regardless of the

number of erroneous bits. SEC-DED is a forward error correc-

tion scheme, whereas duplication is based on a backward cor-

rection. The main reason that we discussed SEC-DED is to pro-

vide an insight about the overheads of BCADS, Li et al., and

ISMR by comparing them with a non-protected SPM and a pro-

tected-SPM by a conventional ECC scheme.

For error detection in BCADS, 1-bit parity, 3-bit interleaved

parity, and 4-bit interleaved parity [26] have been considered as

case studies. Hereafter, these configurations are referred as

BCADS-p1, BCADS-p3, and BCADS-p4, respectively. For er-

ror detection in Li et al., ISMR, and CADS, single bit parity

code is considered and referred as Li et al.-p1, ISMR-p1, and

CADS-p1, respectively.

To estimate the energy consumption of the SPM and cache,

we use CACTI 6.5 [27] and Synopsis Design Compiler® [29]

for 65nm feature size. The dynamic energy per access and static

power of the cache, SPM, and the buffer are extracted from

CACTI 6.5 [27]. The dynamic and static power of parity and

SEC-DED codecs are extracted from Synopsis Design Com-

piler® [29] using Nangate 65nm Open Cell Library and added

to the energy of SPM. The values reported by CACTI 6.5 [27]

and Synopsis Design Compiler® [29] for 4-Kbyte cache, 4-

Kbyte SPM, and the buffer are shown in Table II.

The access time of SPM, cache, and main memory is pre-

sented in Table III. It is assumed that parity code does not in-

crease the access time of the cache and SPM while the latency

of SED-DED read path is assumed to be one clock cycle. It is

noteworthy that the impact of BCADS controlling logic on the

latency of the cache and SPM has been taken into account. As

explained in Section IV, there is no modification in the SPM

logic. Meanwhile, according to Fig. 4, there is a minor modifi-

cation in the cacheable detection unit of the cache controller. As

illustrated in Fig. 4, the “SPM Cacheable Unit” has the same

logic depth and so the same delay as “Conventional Cacheable

Detection Unit”. The only overhead to the logical critical path

is a 2-input OR gate. The cacheable detection unit has a small

contribution in the total critical path of the cache controller. We

have synthesized the cache controller logic by Synopsis Design

Compiler® [29] using Nangate 65nm Open Cell Library and the

results show that there is no increase in the critical path of the

cache access for BCADS. The main memory configuration is

the default configuration used for SDRAM in FaCSim [25]. The

Update the Buffer

Write-back the Buffer to the

Cache

Allocate the Buffer to New

Write Address

Overwrite the

Replica in the Cache

Allocate New Cache

Line to Replica
Cache Hit

Buffer Hit?
Yes

No

YesNo

Fig. 6. Control flow of a write access to SPM in BCADS

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, TVLSI-00596-2015

size of SDRAM is 128-Mbyte consisting of 4 banks. Each bank

consists of 8096 rows and the size of each row is 4-Kbyte.

VI. SIMULATION RESULTS

A. Performance

The performance overhead imposed by the SEC-DED scheme

is due to adding an extra cycle for SPM read operations.

Whereas, the increase in execution time of Li et al. and ISMR

is due to reducing the usable SPM space as well as the extra

operations required for allocating and updating the replicas in

SPM. BCADS imposes performance overhead due to reducing

the useable cache space.

Fig. 7 reports the execution time for BCADS as well as Li et

al. and ISMR normalized to the non-protected SPM for three

different SPM and cache sizes. According to the results reported

in Fig. 7(a), for a 4-Kbyte memory size, SEC-DED, Li et al.,

and ISMR schemes increase the average execution time by

6.1%, 5.1%, and 6.6%, respectively. The performance overhead

imposed by BCADS is 0.7%, which is significantly lower than

that in the other schemes. As expected, occupying cache lines

for SPM replicas in BCADS resulting in reduced useable cache

space has a negligible impact on the overall system perfor-

mance. Whereas, the performance overhead in the scheme pre-

sented by Li et al. [12] and ISMR caused by occupying the SPM

useable space is comparable to SEC-DED overhead.

For workloads that the majority of memory references are

accessing to SPM, e.g., String-Search and FFT, the effect of the

SEC-DED latency penalty is considerably higher than the other

workloads. The high performance overhead of Rijndael, String-

Search, and Sjeng workloads in Li et al. scheme can be due to

high fraction of dirty data in SPM space and/or long residence

time of dirty data; this overhead also is observed for BCADS in

Mcf workload.

Increasing the memory size to 8-Kbyte and 16-Kbyte in Fig.

7(b) and Fig. 7(c), respectively, has negligible effect on the per-

formance overhead of SEC-DED. This is because the overhead

of SEC-DED is proportional to the memory access latency and

the same latency is assumed for three memory sizes used in the

evaluations. On the other hand, increasing the memory size

leads to the availability of more free SPM lines for the scheme

presented by Li et al. [12] as well as ISMR and more unutilized

cachelines for BCADS. As a result, the performance overhead

of Li et al. reduces from 5.1% in 4-Kbyte to 3.9% and 3.3% in

8-Kbyte and 16-Kbyte memories, respectively. The same trend

is observed in ISMR. These reductions for BCADS are from

0.7% in 4-Kbyte to 0.5% and 0.4% in 8-K and 16-Kbyte mem-

ories, respectively.

The performance overhead of the replication schemes is

mainly due to increase in the number of off-chip memory ac-

cesses. SPM-SPM replication schemes increase the number of

off-chip memory accesses by reducing the usable SPM space,

whereas this increase is due to increase in cache miss rate for

BCADS. Fig. 8 depicts the total number of off-chip memory

accesses caused by cache misses as well as transferring data

blocks between SPM and the off-chip memory. On average,

BCADS increases the number of off-chip memory accesses by

about 5%, whereas this value for Li et al. is about 28%. Li et al.

scheme increases the off-chip memory accesses by reducing the

SPM usable space, which results in increasing the traffic be-

tween SPM and off-chip memory. The results for ISMR is al-

most the same as Li et al. due to the similarity in their policy for

replication. On the other hand, BCADS has no effect on the

traffic between SPM and off-chip memory but slightly increases

the cache miss rate.

This observation illustrates an interesting feature of

BCADS, as the only SPM-cache replication scheme, in com-

parison to the SPM-SPM replication schemes. The usable SPM

space in SPM-SPM replication schemes as well as the usable

cache space in BCADS decrease when the locality of transac-

tions on SPM increases. This is the consequence of increase in

the number of dirty SPM lines. In other words, the higher need

for usable SPM space due to increase in the locality of transac-

tions on SPM, the lower usable SPM space is available in SPM-

SPM schemes, i.e., ISMR and Li et al. This leads to higher per-

formance overhead when the dirty SPM lines increase. On the

other hand, the higher need for usable SPM space, the lower

usable cache space is needed and available in SPM-cache

scheme, i.e., BCADS. Therefore, there is a balance between the

usable cache lines and the fraction of transactions referred to

the cache in BCADS for most of the program execution phases.

 B. Energy Consumption

There are two sources of energy overhead in the SEC-DED

code: 1) the energy consumed by the SEC-DED combinational

circuit for error detection and correction, and 2) the energy con-

sumed by the redundant SEC-DED bits. Li et al. scheme im-

poses three sources of energy overhead: 1) parity combinational

circuit for error detection, 2) redundant parity bits, and 3) extra

operations for each SPM write operation. Finally, for BCADS

there are also three sources for increasing the energy consump-

tion: 1) parity combinational circuit for error detection, 2) re-

dundant parity bits, and 3) extra accesses to the buffer and cache

for SPM write operations.

 Energy consumption can be divided into static energy and

dynamic energy. The static energy overheads of SEC-DED, Li

et al., ISMR, CADS, and BCADS are only proportional to the

extra hardware components added by these three protection

TABLE III
 MEMORY ACCESS LATENCY (CLOCK)

SPM Latency

Non-protected BCADS Li et al. ISMR SEC-DED Wr SEC-DED Rd

1 1 1 1 1 2

Main Memory

Sequential

Main Memory

Non-sequential

Cache

Latency

30 33 1

TABLE II

POWER AND ENERGY PARAMETERS for 4-Kbyte SPM and Cache

 Static power

(mW)

Dynamic energy

per access (pJ)

 Cache 6.72 42.31

 Buffer 0.05 7.75

S
P

M

on-protected 6.15 5.48

SEC-DED 7.27 6.73

Li et al.-p1 6.31 5.63

ISMR-p1 6.98 5.86

BCADS-p1 6.31 5.63

BCADS-p3 6.63 5.94

BCADS-p4 6.79 6.09

FARBEH ET AL.: A CACHE-ASSISTED SCRATCHPAD MEMORY FOR MULTIPLE BIT ERROR PROTECTION

schemes. The calculation of the dynamic energy consumption

requires the dynamic energy per access of each component and

the total number of accesses to each component. We use Equa-

tion (1) to compute static energy in BCADS.

Static Energy = [(Cache)Static Power + (SPM)Static Power

+(Buffer)Static_Power]×(Execution Time)
(1)

The term ‘(Buffer)Static Power’ is removed from Equation (1) when

calculating the static energy consumption in the baseline, SEC-

DED, Li et al.-p1, ISMR-p1, and CADS-p1 schemes.

The dynamic energy consumption in BCADS is calculated

according to Equation (2):

Dynamic Energy = (Cache)Energy per Access ×Total Number of cache Accesses

 +(SPM)Energy per Access ×Total Number of SPM Accesses
 +(Buffer)Energy per Access ×Total Number of buffer Accesses

(2)

The term ‘(Buffer)Energy per Access’ is removed from Equation (2)

for calculating the dynamic energy consumption in the baseline,

SEC-DED, Li et al., ISMR, and CADS schemes.

The total energy consumption in each scheme is the sum of

the static energy and dynamic energy calculated in Equation (1)

and Equation (2). Fig. 9 depicts the energy consumption of the

evaluated schemes for 4-Kbyte, 8-Kbyte, and 16-Kbyte

memory size, normalized to a non-protected SPM. The energy

consumption of CADS-p1 is also presented to illustrate how the

buffer in BCADS can reduce energy overhead of the proposed

method. Considering 4-Kbyte memories, the energy consump-

tion overhead of the SEC-DED, Li et al.-p1, and ISMR-p1 are

12.8%, 16.5%, and 23.8%, respectively. The energy consump-

tion overhead for CADS-p1 is 19.4% and it significantly re-

(a) Normailized execution time for 4-Kbyte SPM and cache

(b) Normailized execution time for 8-Kbyte SPM and cache

(c) Normailized execution time for 16-Kbyte SPM and cache

Fig. 7. Normailized execution time for SEC-DED, Li et al, ISMR, and BCADS for three different memory sizes of cache and SPM (4-Kbyte, 8-Kbyte, and 16-
Kbyte)

Fig. 8. Total number of off-chip memory accesses for Li et al. and BCADS normalized to non-protected SPM

106.1
105.1

106.6

100.7

99

103

107

111
E

x
ec

u
ti

o
n

T
im

e
(%

)

Non-Protected SEC-DED Li et al. ISMR BCADS

106.0
103.9

105.0

100.5

99

103

107

111

E
x
ec

u
ti

o
n

T
im

e
(%

)

106.1
103.3

103.8

100.4

99

103

107

111

R
ij

n
d
ae

l

S
h
a

C
R

C
3

2

S
tr

in
g
_
S

ea
rc

h

F
F

T

D
ij

k
st

ra

G
o
b

m
k

B
zi

p
2

M
cf

N
am

d

S
p
ec

ra
n

d

S
je

n
g

A
v
er

ag
e

MiBench SPEC CPU2006

E
x
ec

u
ti

o
n

T
im

e
(%

)

Workloads

0

30

60

90

120

150

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

N
o
n

-P
ro

te
ct

ed
L

i
et

 a
l.

B
C

A
D

S

Rijndael Sha CRC32 Str_Search FFT Dijkstra gobmk bzip2 mcf namd specrand sjeng Average

MiBench SPEC CPU2006

O
ff

-C
h

ip
 M

em
o
ry

 A
cc

es
s

C
o
n

tr
ib

u
ti

o
n

 (
%

)

Workloads

Accesses due to Cache Miss Accesses due to Block Transfer to/from SPM

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, TVLSI-00596-2015

duces to 5.0% after enhancing the scheme to BCADS-p1. Con-

sidering higher error protection capability, this overhead in

BCADS-p3 and BCADS-p4 is 7.2%, 8.3%, respectively. Ac-

cording to Fig. 9, BCADS-p1 imposes significantly lower en-

ergy overhead than ISMR-p1, Li et al.-p1, and SEC-DED with

the same error correction capability. On the other hand,

BCADS-p4 consumes 4.5% less energy than the SEC-DED

code, meanwhile it provides much higher error correction capa-

bility than SEC-DED.

 As observed in the experiments, BCADS significantly re-

duces the energy consumption overhead of CADS by decreas-

ing the number of accesses to the cache for SPM replication.

The evaluations show that about 79% of requests for SPM data

replication are responded by the buffer without the cache inter-

action in 4-Kbyte memories. Considering the total dynamic en-

ergy consumption in BCADS, the contribution of SPM writes

and reads are 10.2% and 26.7%, whereas the contribution of

cache writes and reads are 14.7% and 31.9%, respectively. The

buffer consumes 1.9% of the total dynamic energy and the re-

maining 14.6% is mainly due to accessing the cache for data

replications.

 Considering 8-Kbyte memories, the average of energy con-

sumption overhead in BCADS-p4 is 8.9%, whereas this value

for SEC-DED, Li et al., ISMR, and CADS are 11.2%, 19.3%,

18.3%, and 17.9%, respectively. The energy consumption over-

heads in 16-Kbyte memories for SEC-DED, Li et al., ISMR,

and CADS are 12.5%, 15.5%, 19.3%, and 14.5%, respectively.

This value for BCADS is 8.7%.

As another comnparison metric, Energy-Delay Product

(EDP) overhead in 4-Kbyte SPM and cache for SEC-DED, Li

et al.-p1, and ISMR-p1 is 19.7%, 22.6%, and 32.2%, respec-

tively. EDP overhead for CADS-p1, BCADS-p1, BCADS-p3,

and BCADS-p4 is 11.3%, 5.8%, 7.9%, and 9.0%, respectively.

Considering 8-Kbyte memories, EDP overhead in BCADS-p4

is 9.5% on average, whereas the EDP overheads in SEC-DED,

Li et al.-p1, ISMR-p1, and CADS-p1 are 17.9%, 25.4%, 24.5%,

and 11.3%, respectively. The EDP overhead in SEC-DED, Li et

al.-p1, ISMR-p1, and CADS-p1 in 16-Kbyte memories are

19.4%, 19.4%, 24.0%, and 11.3%, respectively. Whereas, the

EDP overhead in BCADS-p4 is 9.1% which is significantly

lower than that in the other schemes.

D. Area Overhead

BCADS does not impose a considerable area overhead because

it is mainly based on hardware reuse in the system. There are

three sources of area overhead in BCADS: 1) Cacheable Detec-

tion Unit: modification of cacheable detection unit is limited to

addition of a few numbers of logic gates and it is negligible. 2)

Parity Bits and Parity Generator/Checker Circuit: the main

source of area overhead in BCADS is the area overhead of its

error detection mechanism. 3) The inserted buffer to reduce the

cache accesses: This overhead is less than 1%.

The area overhead of Li et al.-p1, ISMR-p1, BCADS-p1,

BCADS-p3, BCADS-p4, and SEC-DED is about 3%, 8.1%,

3.4%, 9.4%, 12.9%, and 22%, respectively. This means that the

area overhead of BCADS-p1 with the same error correction ca-

pability to SEC-DED is about 19% less than that of SEC-DED.

E. Reliability Analysis

Two reliability threats in data duplication schemes are: 1) the

replica is not available; 2) the replica is erroneous once it is

needed for error correction. The unavailability of replica is a

severe reliability threat for partial-duplication schemes, as men-

tioned in Section III. Whereas, the main feature of BCADS is

to guarantee the full-duplication, which resolves the first threat.

Therefore, we need to focus on the second reliability threat in

BCADS, i.e., the probability of occurring the error in both orig-

inal data and its replica.

112.8
116.5 123.8

119.4
108.3

90

110

130

150
N

o
rm

al
iz

ed

E
n

er
g
y
 (

%
)

4-Kbyte

Non-Protected SEC-DED Li et al.-p1 ISMR-p1 CADS-p1 BCADS-p1 BCADS-p3 BCADS-p4

111.2
119.3

118.3 117.9

108.9

90

110

130

150

N
o

r
m

a
li

z
e
d

E
n

e
r
g

y
 (

%
) 8-Kbyte

112.5
115.5

119.3 114.5

108.7

90

110

130

150

R
ij

n
d
ae

l

S
h
a

C
R

C
3

2

S
tr

in
g
_
S

ea
rc

h

F
F

T

D
ij

k
st

ra

G
o
b

m
k

B
zi

p
2

M
cf

N
am

d

S
p
ec

ra
n

d

S
je

n
g

A
v
er

ag
e

MiBench SPEC CPU 2006

N
o

r
m

a
li

z
e
d

E
n

e
r
g

y
 (

%
)

Workloads

16-Kbyte

Fig. 9. Normalized energy consumption of SEC-DED, Li et al-p1, ISMR-p1, CADS-p1, and three configurations of BCADS (BCADS-p1, BCADS-p3, and
BCADS-p4) for 4-Kbyte, 8-Kbyte, and 16-Kbyte SPM and cache

FARBEH ET AL.: A CACHE-ASSISTED SCRATCHPAD MEMORY FOR MULTIPLE BIT ERROR PROTECTION

We use the Markov chain model to analyze the reliability of

SPM in BCADS. It is assumed that the failure of the system in

BCADS is when both replica in cache and the original line in

SPM are erroneous. In addition, the failure of non-protected

baseline SPM is when an error occurs in a SPM line, which can

only be detected and not corrected. Therefore, the system is op-

erational in BCADS as long as the original data in SPM or its

replica in cache is error-free; and, it is operational in the base-

line SPM as long as the original data in SPM is error-free. Ac-

cordingly, the Markov chain of a SPM line in the baseline SPM

and BCADS are as shown in Fig. 10 (a) and Fig. 10(b), respec-

tively. Table IV shows the description of the notations used in

Fig. 10. The failure state are (D’) and (D’, R’) in Fig. 10(a) and

Fig. 10(b), respectively.

In Fig. 10(b), there is a transition from (D, R’) to (D, R). This

transition occurs when the original data in SPM is updated due

to a write access or replacement. In this case, the replica will be

updated to new error-free version. The transition from (D’, R)

to (D, R) occurs in both read and write accesses to the data. On

a write access, the data and its replica will be updated to new

error-free version, regardless of their current status. In a read

access, on the other hand, the error in the erroneous data will be

detected by the error detection mechanism and it will be cor-

rected using the replica according to the procedure illustrated in

Fig. 5. The system fails when it enters to (D’, R’) from one of

the states (D, R’) or (D’, R).

For reliability analysis, we use the Mean Time To Failure

(MTTF) parameter. To calculate MTTF of BCADS and the

baseline SPM, we need to assign values to λ, µ1, and µ2 param-
eters. The value of λ is proportional to the intrinsic SEU rate in

SRAM cells, which is 1,150 SEUs per 109 hours for 1Mbit

memory [30]. For a 32-bit SPM word, λ is about 3.68x10-11 per

hour. For µ1 we assume a wide range from 10-6 accesses per

hour, which is extremely pessimistic, to 106 accesses per hour,
which is not far from reality. We typically assume µ2, i.e., rate

of read from a SPM line, is 2x larger than µ1, i.e., rate of

write/replacement in SPM.

Fig. 11 illustrates MTTF of both BCADS and baseline SPM.

For µ1 values around 106, MTTF of a SPM line in BCADS is

about 16 orders of magnitude higher than that of normal SPM. This

improvement in MTTF for extremely pessimistic value of 10-6 for

µ1 is more than 4 orders of magnitude.

The Markov chain models in Fig. 11 and the reported MTTFs

are for one SPM line. The SPM is reliable as long as all of its

lines are error-free. Therefore, to extend the reliability analysis

from one SPM line to all SPM lines, it is enough to consider

SPM as a system with N units arranges in series configuration.

In this series system, a failure of any unit results in the failure

of the system.

It is worth noting that in the reliability analysis as well as the

evaluations, no error correction scheme is assumed in the cache.

This assumption is necessary when evaluating the overheads of

SPM protection schemes in the hybrid SPM-cache architecture.

Considering a protection mechanism for the cache affects the

performance and energy consumption overheads of all schemes

and biases the results. However, the reliability analysis and the

Markov model are still valid when considering some protection

mechanism for the cache.

VII. DISCUSSIONS

In this section, we provide a comparative discussion on the

proposed hybrid SPM-to-cache duplication scheme and the

available SPM-to-SPM duplication schemes. We further dis-

cuss several aspects of the proposed scheme.

A. SPM-to-SPM vs. SPM-to-Cache replication

Considering SPM-to-SPM duplication schemes, exploiting

the already available SPM to keep the replica of SPM contents

complicates the replication process and imposes significant

overheads due to several challenges. First, when the replication

is managed by the software, as in Li et al [12], complex profil-

ing, analysis, and algorithms are required to identify and allo-

cate free spaces to replicas of new data and finding the replica

of already replicated data. When the replication is managed by

the hardware, as in E-RoC [5] and ISMR [35], a complex man-

ager unit is required to monitor the SPM contents and perform

the replication process. Second, updating the replica is per-

formed sequentially after the operation of allocating free space

to the replica or finding the replica location. This imposes per-

formance overhead. Third, SPM-to-SPM schemes cannot guar-

antee the full-replication when more than half of the SPM space

is dirty. Forth, the locality of accesses to SPM and cache, which

is the motivation of this work, has not been reported for SPM-

SPM accesses.

Fig. 11. MTTF of a SPM line in BCADS and baseline non-protected SPM

D D’

λ

D, R D’, R’

λ
D, R’

D’, R

λ

λλ

µ1

µ2

(a) Baseline (b) BCADS

Fig. 10. Markov chain model of a SPM line in (a) baseline and (b) BCADS

TABLE IV

DESCRIPTION OF NOTATIONS USED IN MARKOV CHAIN MODELS OF FIG. 10

Notation Description

D Original data is error-free

R Replica is error-free

D’ Original data is erroneous

R’ Replica is erroneous

λ Soft error rate in a 32-bit word

µ1 Rate of write or replacement access to a data word in SPM

µ2 Rate of read access to a data word in SPM

1.0E+09

1.0E+13

1.0E+17

1.0E+21

1.0E+25

1
.E

-0
6

1
.E

-0
5

1
.E

-0
4

1
.E

-0
3

1
.E

-0
2

1
.E

-0
1

1
.E

+
0

0

1
.E

+
0

1

1
.E

+
0

2

1
.E

+
0

3

1
.E

+
0

4

1
.E

+
0

5

1
.E

+
0

6

M
T

T
F

 (
H

o
u

r)

The rate of write/replacement in SPM per hour (µ1)

BCADS

Non-Protected SPM

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, TVLSI-00596-2015

When replicating in the cache, as proposed in BCADS, all

operations needed for replication, including the allocation of

free space to the replicas, finding the replicas, and updating the

replicas, are performed inherently by one normal cache access.

From another point of view, the main source of performance

overhead in data duplication schemes is the reduction in the us-

able memory space. The usable memory space decreases when

the number of dirty lines increases. In the best case, there is no

dirty data and no replication is required. In this case, the repli-

cation schemes impose no performance overhead. In the worst

case, SPM is fully utilized and all data lines are dirty, which

may happen in write intensive phases of the workloads.

To guarantee the full duplication of dirty SPM lines, BCADS

allocate all cache lines to replicas in the worst case and no usa-

ble cache space remains until the eviction of some dirty lines

from SPM. Due to the locality in accessing the cache and SPM,

the utilization of the cache is expected to be extremely low and

the unavailability of usable cache lines in these phases has not

significant effect on the performance of the system. On the

other hand, the full duplication of SPM dirty lines in SPM-to-

SPM schemes requires to keep the number of SPM dirty lines

lower than 50% of total SPM space. In other words, the usable

SPM space is not more than 50% in a scenario that 100% utili-

zation of SPM is required. This underutilization of SPM when

high utilization is required leads to diverting a large fraction of

SPM transactions to the off-chip memory in SPM-to-SPM

schemes resulting in extra latency and energy consumption.

B. Scability of BCADS in Multicore and Multi-Threaded Pro-

grams

The proposed BCADS architecture is extendable to multi-

core processors. In a multicore processor each core has a local

cache as well as a local SPM and the replication in each core is

performed independently without any interference with the

other cores. The replicas of SPM in each core are stored in its

corresponding cache. The cache coherence protocols, however,

need to be adapted to support the replication process in

BCADS. When a new cache line is allocated to replica, this rep-

lication should be interpreted as a cache line invalidation and

the corresponding operations should be performed across the

CPU cores. The cache coherence protocol treats the replica lines

in the cache as invalid lines and ignores the write accesses to

these lines triggered by updating the SPM contents.

BCADS is also applicable to multi-threaded programs and

concurrent applications. In a multi-threaded program, each

thread has its own view of the SPM space. Since each thread

requires its own data set to be transferred to SPM, the conflicts

among the threads to use the limited SPM space is managed by

the SPM mapping algorithm. This is not the concern of

BCADS. For a thread running concurrently with other threads,

four scenarios can happen. 1) The thread has no data in SPM

and the majority of SPM space is filled with data blocks of other

threads. In this case, the usable space of the cache is decreased.

2) The thread has no data in SPM and there is no data block

from other concurrent threads in SPM. In this case, no replica-

tion is required and BCADS has no effect on the thread. 3) A

part of the SPM space is allocated to the thread and there is no

data block from other concurrent threads in SPM. In this case,

the replicas of this thread reduce the usable cache space for

other threads. 4) A part of the SPM space is allocated to the

thread and the remaining SPM space is allocated to other

threads. In this case, each thread that has dirty data blocks in

SPM occupies a fraction of cache lines for replication.

It is noteworthy that all of the abovementioned scenarios can

happen in different phases of the programs execution. The over-

heads of the replication depend on the frequency and duration

of each scenario. In general, the overheads of replication mostly

depend on the fraction of dirty data in the total SPM space and

the utilization of the cache.

C. Efficiency of BCADS in Multi-Tasking Systems

On a context switch, two situations may occur based on the

SPM mapping algorithm. 1) The data blocks of the first process

are transferred back to main memory on the context switch. In

this situation, the corresponding cache lines containing the rep-

licas are unlocked and the replication of the first process has no

effect on the second process. 2) The data blocks of the first pro-

cess remain in SPM during the execution of the second process.

In this situation, the replicas of the first process reduce the usa-

ble cache lines for the next process. This situation happens only

when the SPM is allocated to the first process and the other pro-

cesses have no data block to be transferred to SPM. Since all

processes try to exploit the limited SPM space on their own

turn, the first situation is more probable in reality.

D. Comparision of BCADS with Other Schemes

We conclude this section by providing a comparison of du-

plication schemes to have an insight about the capabilities and

overheads of various data duplication schemes. This compari-

son is presented in Table V. Duplication schemes have been

classified into cache duplication and SPM duplication schemes.

All previous schemes in SPM duplication keep the replica in

SPM or main memory, while all previous schemes in cache du-

plication keep the replica in the cache, an extra cache, and/or

main memory. The major feature of CADS/BCADS that makes

it distinguished is to open a way to utilize the cache to keep the

replica of SPM. According to our evaluations and Table V, it

can be concluded that utilizing the cache is a better choice in

comparison to previous solutions for SPM replication.

VIII. CONCLUSIONS

SPM is one of the most vulnerable parts in embedded proces-

sors to soft errors. Conventional error correction codes have se-

vere limitations to be employed in embedded processors due to

their overheads on energy consumption, performance, and area.

Moreover, increasing the contribution of SEMUs in system fail-

ure caused by soft errors has resulted in more restriction on

ECCs applicability. The main aim of the proposed architecture,

called BCADS, is to protect SPM against SEUs and SEMUs

and to provide high error correction capability with negligible

performance loss. The simulation results show that BCADS

provides significant reliability improvement with negligible

area overhead (less than 1%) for error correction and 10% less

area overhead for error detection as compared to the SEC-DED

scheme. The performance loss and EDP overhead of BCADS

are 0.7% and 5.8%, respectively; while the performance loss

and EDP overhead of previous SPM protection scheme are

5.1% and 22.6%, respectively. Ability to correct all detectable

errors, the independence of error detection from error correction

FARBEH ET AL.: A CACHE-ASSISTED SCRATCHPAD MEMORY FOR MULTIPLE BIT ERROR PROTECTION

scheme, and no requirement for software modification makes

the proposed architecture an efficient and scalable fault-tolerant

mechanism for a wide range of SPM-based embedded applica-

tions from handheld devices to safety-critical systems.

REFERENCES

[1] (2012) The ARM website. [Online]. Available: http://www.arm.com/ prod-

ucts/processors/classic/arm11/index.php
[2] (2012) The Renesas Website. [Online]. Available: http://www. renesas.com/prod-

ucts/mpumcu/superh/sh7780/sh7785/index.jsp.

[3] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Siavasubramaniam, “ICR: In-

Cache Replication for Enhancing Data Cache Reliability,” International Conference
on Dependable Systems and Networks (DSN), Jun. 2003, pp. 291-300.

[4] M. Manoochehri, M. Annavaram, and M. Dubois, “CPPC: Correctable Parity Pro-

tected Cache,” International Symposium on Computer Architecture (ISCA), Jun.
2011, pp. 223-234.

[5] L. A. D. Bathen and N. D. Dutt, “Embedded RAIDs-on-Chip for Bus-based Chip-

Multiprocessors,” ACM TECS, vol. 13, no. 4, pp. 83:1-83:36, 2014.
[6] A. Dixit and A. Wood, “The Impact of New Technology on Soft Error Rates,” In-

ternational Reliability Physics Symposium (IRPS), Apr. 2011, pp. 486-492.

[7] N. N. Sadler and D. J. Sorin, “Choosing an Error Protection Scheme for a Micro-
processor's L1 Data Cache,” International Conference on Computer Design

(ICCD), Oct. 2006, pp. 499-505.

[8] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit Error Tolerant
Caches Using Two-Dimensional Error Coding,” International Symposium on Mi-

croarchitecture (Micro), Dec. 2007, pp.197-209.

[9] H. Farbeh and S. G. Miremadi, “PSP-Cache: A Low-Cost Fault-Tolerant Cache
Memory Architecture,” Design, Automation & Test in Europe (DATE), Mar. 2014.

[10] A. Neale and M. Sachdev, “A New SEC-DED Error Correction Code Subclass for

Adjacent MBU Tolerance in Embedded Memory,” IEEE TDMR, vol. 13, no. 1, pp.
223-230, 2013.

[11] A. Sanchez-Macian, P. Reviriego, and J. A. Maestro, “Enhanced Detection of Dou-

ble and Triple Adjacent Errors in Hamming Codes through Selective Bit Place-
ment,” IEEE TDMR, vol. 12, no. 2, pp. 357-362, 2012.

[12] F. Li, G. Chen, and M. Kandimer, “Improving Scratch-Pad Memory Reliability

through Compiler-Guided Data Block Duplication,” International Conference on
Computer-Aided Design (ICCAD), Nov. 2005, pp. 1002-1005.

[13] W. Zhang, “Replication Cache: A Small Fully Associative Cache to Improve Data

Cache Reliability,” IEEE TC, vol. 54, no. 12, pp. 1547-1555, 2005.
[14] A. M. H. Monazzah, H. Farbeh, S. G. Miremadi, M. Fazeli, and H. Asadi, “FTSPM:

A Fault-Tolerant ScratchPad Memory,” International Conference on Dependable

Systems and Networks (DSN), Jun. 2013, pp. 1-10.
[15] A. Dutta and N. A. Touba, “Multiple Bit Upset Tolerant Memory using a Selective

Cycle Avoidance based SEC-DED-DAEC Code,” VLSI Test Symposium (VTS),

May 2007, pp. 349-354.
[16] J. Hong, J. Kim, and S. Kim, “Exploiting Same Tag Bits to Improve the Reliability

of the Cache Memories,” IEEE TVLSI, vol. 23, no. 2, pp. 254-265, 2015.

[17] S. Wang, J. Hu, and S. G. Ziavras, “Replicating Tag Entries for Reliability Enhance-
ment in Cache Tag Arrays,” IEEE TVLSI, vol. 20, no. 4, pp. 643-654, 2012.

[18] (2012) The Freescale Website. [Online]. Available: http://www.free-

scale.com/webapp/sps/site/homepage.jsp?code=PC68KCF/
[19] SPEC CPU2006, Standard Performance Evaluation Corporation,

http://www.spec.org

[20] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,

“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,”

Annual Workshop on Workload Characterization, Dec. 2001, pp. 3-14

[21] H. Farbeh, M. Fazeli, F. Khosravi, and S. G. Miremadi, “Memory Mapped SPM:

Protecting Instruction Scratchpad Memory in Embedded Systems against Soft Er-
rors,” European Dependable Computing Conference (EDCC), May 2012, pp. 218-

226.

[22] H. Sayyadi, H. Farbeh, A. M. H. Monazzah, and S. G. Miremadi, “A Data Recom-
putation Approach for Reliability Improvement of Scratchpad Memory in Embed-

ded Systems,” International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), Oct. 2014, pp. 228-233.
[23] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient Utilization of Scratch-pad

Memory in Embedded Processor Applications,” European Design and Test Confer-

ence (ED&TC), Mar. 1997, pp. 7-11.
[24] Gaisler Res., Leon2 Processor User’s Manual, Ver. 1.0.30, XST ed., Goteborg, Swe-

den, Jul.2005.

[25] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S. Han, “FaCSim: A Fast and
Cycle-Accurate Architecture Simulator for Embedded Systems,” Conference on

Languages, Compilers, and Tools for Embedded Systems (LCTES), Jun. 2008, pp.

89-100.
[26] C. A. Argyrides, P. Reviriego, D. K. Pradhan, and J. A. Maestro, “Matrix-based

Codes for Adjacent Error Correction,” IEEE TNS, vol. 57, no. 4, pp. 2106-2111,

2010.
[27] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Hp labs cacti v5.3,”

CACTI 5.1, HP Laboratories, Tech. Rep. HPL-2008-20, 2008.

[28] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “Soft Error
and Energy Consumption Interactions: A Data Cache Perspective,” International

Symposium on Low Power Electronics and Design (ISLPED), Aug. 2004, pp. 132-
137.

[29] Synopsys Design Compiler, Synopsys Inc.

[30] Semiconductor Industries Association, International Technology Roadmap for
Semiconductors (ITRS), 2007.

[31] D. H. Yoon and M. Erez, “Memory Mapped ECC: Low-cost Error Protection for

Last Level Caches,” International Symposium on Computer Architecture (ISCA),
2009, pp. 116-127.

[32] D. H. Yoon and M. Erez, “Flexible Cache Error Protection using an ECC FIFO,”

Conference on High Performance Computing Networking, Storage and Analysis
(SC), Nov. 2009, pp 1-12.

[33] W. Ma, X. Cui, and C. L. Lee, “Enhanced Error Correction against Multiple-bit-

upset based on BCH Code for SRAM,” International Conference on ASIC

(ASICON), Oct. 2013, pp. 1-4.

[34] L. J. Saiz-Adalid, P. Gil, J. Baraza-Calvo, J. C. Ruiz, D. Gil-Tomás, and J. Gracia-

Morán, “Modified Hamming Codes to Enhance Short Burst Error Detection in
Semiconductor Memories,” European Dependable Computing Conference

(EDCC), May 2014, pp. 62-65.

[35] L. Delshadtehrani, H. Farbeh, and S.G. Miremadi, “In-Scratchpad Memory Repli-
cation: Protecting Scratchpad Memories in Multicore Embedded Systems against

Soft Errors,” ACM TODAES, vol. 20, no. 4, pp. 61:1-61:28, 2015.

[36] A. Chakraborty, H. Homayoun, A. Khajeh, N. Dutt, A. Eltawil, and F. Kurdahi, “E<
MC2: Less Energy through Multi-copy Cache,” International Conference on Com-

pilers, Architectures and Synthesis for Embedded Systems (CASES), Oct. 2010, pp.

237-246.
[37] S. Kang and A.G. Dean, “Leveraging both Data Cache and Scratchpad Memory

through Synergetic Data Allocation,” Real-Time and Embedded Technology and

Applications Symposium (RTAS), Apr. 2012, pp. 119-128.

TABLE V

 COMPARISON OF DUPLICATION SCHEMES IN CACHE AND SPM

 Duplication

Schemes
Replica

location

Replication

capability

Performance

overhead

Energy

overhead

Area

overhead

Hardware

modification

Software

modification

S
P

M

re
p

li
ca

ti
o
n

Li et al. [12] SPM Partial 5.1% 16.5% 0.0% No Yes

ISMR [35] SPM Full 6.6% 23.8% 8.1% Yes Yes

MM-SPM [21]* Main Memory Full 0.5% <1% 0.0% No Yes

E-RoC [5]** SPM Full 39% 184% 15% Yes No

Proposed CADS Cache Full 0.7% 19.4% <1% Yes No

Proposed BCADS Cache Full 0.7% 5.0% <1% Yes No

C
ac

h
e

 r
ep

li
ca

ti
o

n
 R-Cache [13] Extra Cache Partial 0.0% 5.6% 1.5% Yes No

TRB [17] Extra Cache Partial 0.0% 19.9% 16.3% Yes No

ICR [3] Cache Partial 21.0% 26.9% <1% Yes No

SimTag [16] Cache Partial 0.0% 2.9% <1% Yes No

MC2[36]*** Cache Full 3.5% -59.5% 0% Yes No

*: Only instruction-SPM (not applicable to data-SPM) **: Without aggressive voltage scaling ***: With aggressive voltage scaling

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, TVLSI-00596-2015

[38] G. Wang, L. Ju, Z. Jia, and X. Li, “Data Allocation for Embedded Systems with

Hybrid On-Chip Scratchpad and Caches,” International Conference on High Per-
formance Computing and Communications (HPCC), Nov. 2013, pp. 366-373.

[39] L. Wu, Y. Ding, W. Zhang, “Characterizing Energy Consumption of Real-Time and

Media Benchmarks on Hybrid SPM-Caches,” International Conference on High
Performance Computing and Communications (HPCC), Aug. 2014, pp. 526-533.

[40] W. Zhang and L. Wu, “Exploiting Hybrid SPM-Cache Architectures to Reduce En-

ergy Consumption for Embedded Computing,” International Conference on High
Performance Computing and Communications (HPCC), Aug. 2014, pp. 340-347.

[41] W. Zhang and Y. Ding, “Hybrid SPM-Cache Architectures to Achieve High Time

Predictability and Performance,” International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), Jun. 2013, pp. 297-304.

[42] Z. Zhou, J. Lei, J. Zhiping, and L. Xin, “Fast and Accurate Code Placement of Em-

bedded Software for Hybrid On-Chip Memory Architecture,” International Confer-
ence on High Performance Computing and Communications (HPCC), Aug. 2014,

pp. 1008-1015.

[43] H. Wen and W. Zhang, “Reducing Cache Leakage Energy for Hybrid SPM-Cache
Architectures,” International Conference on Compilers, Architectures and Synthesis

for Embedded Systems (CASES), Oct. 2014, pp. 1-9.

[44] Z. Jia, Y. Li, Y. Wang, M. Wang, and Z. Shao, “Temperature-aware Data Allocation
for Embedded Systems with Cache and Scratchpad Memory,” ACM TECS, vol 14,

no. 2, pp. 30:1-30:24, 2015.

Hamed Farbeh (S12) received the B.S. and M.S degrees in

computer engineering from Sharif University of Technology

(SUT), Tehran, Iran, in 2009 and 2011, respectively. He is cur-

rently pursuing the Ph.D. degree in computer engineering at

SUT. He is the member of Dependable Systems Laboratory

from 2007. He was with Embedded Computing Laboratory at

KAIST University, Korea, as a visiting researcher from October

2014 to May 2015. His research interests include fault-tolerant

embedded system design, reliable memory hierarchy, and reli-

ability challenges in emerging memory technologies.

Nooshin Sadat Mirzadeh received the B.S. degree in computer

engineering from SUT, Tehran, Iran, in 2013. She is currently

pursuing the Ph.D. degree in Computer and Communication

Sciences at École Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland. Her research interests include high per-

formance energy-efficient computer architecture, memory sys-

tems including 3D integration, and near-memory processing.

Nahid Farhady Ghalaty received the M.S degree in computer

engineering from SUT, Tehran, Iran, in 2011. She is currently

pursuing the Ph.D. degree in electrical and computer engineer-

ing at Virginia Tech, Blacksubrg, VA, USA. Her research in-

terests include security, reliability & performance issues in em-

bedded systems and hardware software codesign.

Seyed Ghassem Miremadi (SM07) is a Professor of Computer

Engineering at Sharif University of Technology. As fault-

tolerant computing is his specialty, he initiated the "Dependable

Systems Laboratory" at Sharif University in 1996 and has

chaired the Laboratory since then. The research laboratory has

participated in several research projects which have led to

several scientific articles and conference papers. Dr. Miremadi

and his group have done research in Physical, Simulation-Based

and Software-Implemented Fault Injection, Dependability

Evaluation Using HDL Models, Fault-Tolerant Embedded

Systems, Fault-Tolerant NoCs, Fault-Tolerant Real-Time

Systems, and Fault-Tolerant Storage Systems. He was the

Education Director (1997-1998), the Head (1998-2002), the

Research Director (2002-2006), and the Director of the

Hardware Group (2009-2010) of Computer Engineering

Department at Sharif University. During 2003 to 2010, he was

the Director of the Information Technology Program at Sharif

International Campus in Kish Island. From 2010 to 2012, Dr.

Miremadi was the Vice-President of Academic Affairs (VPAA)

of Sharif University. Since 2014, he is VPAA of Sharif

University. He served as the general co-chair of the 13th Int'l

CSI Computer Conference (CSICC 2008), the executive chair

of the 2013 Int'l Conference on Engineering Education, and the

general co-chair of the 2015 Int'l CSI Symposium on Real-Time

and Embedded Systems and Technologies (RTEST 2015). He

is currently the Editor of the Scientia Transactions on Computer

Science and Engineering. Dr. Miremadi got his M.Sc. in

Applied Physics and Electrical Engineering from Linköping

Institute of Technology and his Ph.D. in Computer Engineering

from Chalmers University of Technology, Sweden. He is a

senior member of the IEEE Computer Society and IEEE

Reliability Society.

Mahdi Fazeli received the M.Sc and Ph.D. degrees in

computer engineering both from the Sharif University of

Technology, Tehran, Iran, in 2005 and 2011, respectively. He

has been with the department of computer engineering, Iran

University of science and technology (IUST), since 2011,

where he is currently an Assistant Professor. He has established

and chaired two research laboratories at IUST since 2012,

namely Dependable Systems and Architectures Laboratory

(DSA) and Networked and Embedded System Laboratory

(NESL). He has authored and co-authored more than 50 papers

in reputable journals and conference proceedings. His research

interests include reliable issues in VLSI circuits and emerging

technologies, dependable embedded systems, Low power

circuits and systems, fault-tolerant computer architectures,

Fault injection and reliability modeling and evaluation..

Hossein Asadi (M08, SM14) received the B.S. and M.S. de-

grees in computer engineering from SUT, Tehran, Iran, in 2000

and 2002, respectively, and the Ph.D. degree in electrical and

computer engineering from Northeastern University, Boston,

MA, USA, in 2007. He was with EMC Corporation, Hopkinton,

MA, USA, as a Research Scientist and Senior Hardware Engi-

neer, from 2006 to 2009. From 2002 to 2003, he was a member

of the Dependable Systems Laboratory, SUT, where he re-

searched hardware verification techniques. He has been with the

Department of Computer Engineering, SUT, since 2009, where

he is currently a tenured Associate Professor. He is the Founder

and Director of the Data Storage Systems Laboratory at SUT.

He has authored and co-authored more than sixty technical pa-

pers in reputed journals and conference proceedings. His cur-

rent research interests include data storage systems and net-

works, solid-state drives, operating system support for I/O and

memory management, and reconfigurable and dependable com-

puting.

