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Abstract—Recently, superior characteristics of Resistive Random Access
Memory (RRAM) have made it more promising than other Non-Volatile
Memories (NVMs) to be employed in both stand-alone memories and config-
uration bits of Field-Programmable Gate Arrays (FPGAs). However, despite
the considerable effort has been put on application of NVMs in FPGAs,
previously suggested designs are not mature enough to substitute the state-
of-the-art SRAM-based counterparts. In particular, their limitations mainly
arise from inefficient building blocks and/or overhead of programming
structure of NVM-based configuration memories which can impair the
potential benefits of employing NVM-based blocks.

In this paper, we present an RRAM-based FPGA architecture employing
efficient Switch Box (SB) and Look-Up Table (LUT) designs. In the proposed
architecture, we present an efficient programming circuitry and integrate
it in both SB and LUT designs. The main aim of this integration is to
create area and power efficient programmable components while precluding
performance overhead to these blocks. In addition, we present an efficient
scheme to load the configuration bitstream into the memory elements, which
surpasses the previous work by order of magnitudes in term of configuration
time, which makes it comparable to that of SRAM-based FPGAs. Besides,
we take into consideration the correct functionality and reliability of the
programming structure as well as fluctuations in attributes of RRAM cells
in the proposed designs to further investigate applicability of the proposed
architecture in industrial FPGAs.

We have examined the efficiency of the proposed architecture in terms of
delay and power consumption by carrying out detailed HSPICE simulations.
The results show that while the proposed SB and LUT designs occupy
67.2% and 41.1% less area in terms of minimum width transistor area,
they improve the static power by 27.1% and 2.2% compared with their
SRAM counterparts, respectively. The LUT delay is remained intact and
the proposed SB reduces delay by 24.2%. We have also utilized VPR tool
with the obtained information to investigate effectiveness of the proposed
architecture within FPGA-mapped designs. Experimental results over a set
of largest MCNC benchmarks demonstrate that the average area and delay
of an FPGA using the proposed architecture are 59.4% and 20.1% less
than conventional SRAM-based FPGAs. Compared to a recent RRAM-based
architecture, the proposed architecture improves the area and power by
49.7% and 33.8% while keeps the delay intact.

Index Terms—Emerging Non-Volatile Memory, Resistive Random Access
Memory, Field-Programmable Gate Arrays, Programming Circuitry, Resis-
tive Fluctuation.

I. INTRODUCTION

The use of Field-Programmable Gate Arrays (FPGAs) has become
popular in digital system design because of their appealing features such
as flexibility to modify the whole or part of the implemented circuit and
reducing the time-to-market by eliminating the design fabrication pro-
cess. FPGAs, however, still suffer from significant power consumption
and area overhead which obstructs widespread use of these devices. The
overhead arises mainly from the configuration memory bits [1]–[4], as
previous studies show that configuration memory bits contribute to more
than 40% of the total area of FPGAs [5], [6]. In addition to power and
area overhead, in which the latter also leads to performance degradation
by elongating the wires, the configuration memories of FPGAs also make
it inherently susceptible to soft errors [7], [8] and voltage fluctuations [9].
Such threats consequently endanger the design reliability, particularly in
the deep nano-CMOS era.

To address the area and power issues of FPGAs, several studies
have attempted to employ emerging Non-Volatile Memories (NVMs),
particularly Resistive Random Access Memory (RRAM), as a replace-
ment candidate for SRAM-based configuration memory. RRAM is one
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of the most promising NVM technologies that has attracted intense
attention due to its unique advantages [10]. Structurally, RRAM is
a two-terminal device comprised of an oxide layer placed between
two metal electrodes, composing a metal-insulator-metal structure. By
taking advantage of intensified (i.e., detectable) resistance switching of
oxide materials, RRAM establishes resistive switching between a High
Resistance State (HRS) and a Low Resistance State (LRS) through
applying an appropriate programming voltage. Switching from HRS to
LRS is called as set process and switching from LRS to HRS is named
as reset process. There are two switching modes of RRAMs which can
be distinguished as unipolar and bipolar modes. In unipolar switching
RRAM, the switching direction (from HRS to LRS or vice versa)
depends only on magnitude of the applied voltage. Conversely, bipolar
switching indicates that the polarity (direction) of the applied voltage
determines the switching direction [11]. Using materials compatible with
CMOS Back-End-Of-Line (BEOL) fabrication process allows RRAM to
be stacked on between top metal layers of device. For instance, ZrO2

materials are used in CMOS devices as high-k dielectric which can also
be employed to devise RRAM devices [12]. Such integration provides
excellent CMOS compatibility and high density along with zero-leakage
nature of these devices.

Integration of RRAM atop CMOS can help reduce the area taken by
configuration cells in FPGAs, resulting in power-efficient, smaller, and
thereby faster FPGAs [5], [13]. In addition, RRAM provides superior
features such as fast write operation, small cell area, and higher density
as compared to other NVM counterparts such as Phase Change Memory
(PCM) or Spin-Transfer Torque Magnetic RAM (STT-MRAM) [10]. On
the other hand, compared with Static RAM (SRAM) and Dynamic RAM
(DRAM), the relatively higher write duration and write energy of RRAM
is much less problematic for FPGAs as compared to cache memory in
microprocessors. This is due to the fact that updating the configuration
bits of FPGAs is done quite less frequent than memory bits in the cache
of microprocessors.

Beside the aforementioned advantages, in contrary to SRAM cells
which directly provide the required logical zero or one, exploiting
RRAM within FPGAs needs additional peripheral circuitry due to its
resistive nature. The resistance state of RRAM cannot be directly utilized
in all parts of the FPGA and requires additional circuitry to convert the
resistance state to the corresponding voltage level. Particularly, unlike
the memory array that can share a sensing circuitry per each column, all
of the FPGA configuration cells are continuously being read, demanding
efficient sensing peripheral per each cell. In addition, further circuitry is
required to enable the write operation for each individual RRAM cell,
resulting in larger and less efficient FPGA blocks.

Previous studies on employing RRAM and similar emerging resistive
memory technologies in FPGAs range from detailed circuit level to ab-
stract architecture level designs. Several works have designed functional
memory elements using RRAM and other emergin technologies that can
directly replace SRAM cells in FPGAs [2], [13]–[16]. There are also
other works that have proposed various NVM-embedded blocks to come
up with more efficient FPGAs [6], [18]–[24]. These studies suffer from
one of the following shortcomings: a) they only focus on architectural
representation of integrating the non-volatile memories in FPGA and
neglect either functionality and/or efficiency of the programming and
read circuitries [21], [25], as well as an efficient scheme to load and
control the bitstream at the system-level [2], [6], [14], [15], [18]–[20],
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or b) they propose area and power inefficient SRAM-like configuration
cell which also comprises additional programming transistors [2], [14],
[26] or Look-Up Table (LUT) and Switch Box (SB) designs [6], [20].
Moreover, exploiting conventional 2-NMOS/1-Resistor programming
structure in these studies, in addition to imposing considerable area
overhead, has several major drawbacks as will be detailed in Section
II.

In this paper, we present an efficient FPGA architecture employing
SB and LUT designs. In the proposed architecture, we design a power-
efficient RRAM-based LUT and SB which conforms with conventional
FPGA architectures, providing a promising substitute for SRAM-based
equivalents. The proposed architecture is equipped with additional cir-
cuitry to allow efficient programmability of RRAM cells with minimum
area and performance overhead. In the proposed architecture, we add
programming paths to the SBs so that all of its internal configuration
RRAM cells can be effectively programmed through shared transistors.
We have also designed the programming path for a RRAM-based LUT
such that the programming takes place with minimum overhead. Finally,
we investigate how these two blocks are integrated into the FPGA so that
the state-of-the-art FPGA programming circuitries become compatible
with the proposed designs. Similar to state-of-the-art flash-based FPGAs,
in the proposed architecture we employ conventional CMOS-based flip-
flops.

We have exploited HSPICE [27] with physical RRAM model [28]
and Versatile Place and Route (VPR) tool [29] to examine the proposed
designs individually and within an FPGA built upon these designs.
HSPICE circuit-level simulations demonstrate that the proposed SB
and LUT consume 27.1% and 2.2% less static power compared with
their SRAM counterparts. In addition, replacing the SRAM cells with
RRAM equivalent reduces the SB and LUT area by 67.2% and 41.1%,
respectively. Experimental results over a set of largest Microelectronics
Center of North Carolina (MCNC) benchmarks [30] show that the
overall area and delay of an FPGA using the proposed components
are 59.4% and 20.1% less than conventional SRAM-based FPGAs,
respectively.

Our novel contributions in this paper are as follows:
(1) We propose an RRAM-based SB design, by leveraging conventional
pass-gate based SB, which is equipped with efficient configuration
circuitry by sharing programming transistors.
(2) Programmability of the proposed SB is verified by conducting
circuit-level SPICE simulations exploiting physical RRAM model,
which is neglected in previous studies.
(3) An efficient LUT design using RRAM-based low-leakage voltage-
divider configuration cells is proposed. Unlike previous studies [6],
[31], the proposed LUT uses only two small programming transistors
and is augmented with introduced bypass transistors which allow using
intermediate boosting buffers, making it scalable for large inputs.
(4) We demonstrate the integration of proposed designs and associated
programming circuitries within the whole FPGA programming scheme.
The controlling circuitry as well as the pulse generation scenarios and
corresponding timing control are well elaborated.
(5) Detailed evaluation and comparison with the state-of-the-art
techniques [2], [6], [14], [23] considering different figure of merits and
using realistic RRAM model and parameters are conducted.
(6) The impact of RRAM parameter variation on efficacy of the
proposed architecture has been investigated.

The rest of the paper is organized as follows. Section II details
previous studies on NVM-based FPGAs. Section III details the proposed
SB and LUT architectures. The experimental setup and simulation results
have been reported in Section IV. Section V investigates the reliability
challenges of the proposed architecture such as impact of parameter
variations on its efficiency of the proposed architecture. Finally, Section
VI concludes the paper.

II. RELATED WORK

Several studies have been conducted to employ NVMs within FPGAs.
While most of the early works have focused on STT-MRAMs [14], [20],
[23], [24], most recent studies have focused on employing PCM [2],
[6], [15], [31], [32] and RRAM [13], [18], [21], [22], [26], [33]–[35]
in reconfigurable devices. These studies either introduce NVM-based
configuration cells as a direct substitute for conventional SRAM cells,
or propose customized logic and/or routing blocks composed of NVMs.
Here we also review the related work that has employed other NVM
technologies such as STT-MRAM or PCM, as well, since in majority of
these works different NVM cells could be analogously utilized. In other
words, the design structure has the same importance as the employed
NVM technology. In the following, we review the related work by
categorizing them into (a) NVM-based configuration cell in which a
substitute for SRAM-based configuration cell has been proposed and
can be directly employed in conventional logic blocks and routing of
SRAM-based FPGAs, and (b) NVM-based LUT/SB in which the typical
LUT/SB structure has been modified in order to efficiently embed the
NVMs, i.e., no specific SRAM equivalent cell is proposed.

A. NVM-Based Configuration Cell

A configuration cell comprising two NVM cells embedded in an
SRAM-like sensing structure has been proposed in [2], [14], [26].
While [14] utilizes STT-MRAM cells, [2] and [26] exploit PCM and
RRAM cells, respectively. In the proposed cells, NVM cells which
are programmed to complementary resistive states, are placed between
ground and driver (NMOS) transistors of an SRAM. A so-called sense
transistor is also added which connects the Q and Q̄ nodes in the
case of enabling, i.e., during the device power-on. Releasing the sense
transistor causes a race between the nodes and sets them to 0 or 1
based on their relative resistance (NVM) to ground. These cells provide
temporal power-down and instantaneous power-on since reconfiguring
the same design can be done instantly with enabling the sense signal.
However, in addition to an extra (sense) transistor that increases the
leakage power of the cell, at least two additional (large) transistors
are required to provide programmability, which leads to further area
overhead. The overhead becomes worse considering the fact that each
RRAM and PCM cell occupies larger area than an SRAM. For instance,
the PCM cells used in [2] and [34] occupy 8.75µm2 footprint which is
30× larger than a typical 140F 2 SRAM in 45nm technology. Therefore,
there is a high chance that the NVM cells to become area bottleneck.
Moreover, such NVM-based cells still suffer from the positive-feedback
structure of SRAM which is susceptible to soft errors. Functionality
of programming structure for the aforementioned cells has not been
examined. For instance, [26] uses SRAM internal node to provide the
ground voltage. Therefore, the associated transistors should be upsized
to tolerate the required current which is neglected in [26].

A non-volatile FPGA employing typical voltage-divider based config-
uration cells composed of two PCMs as a replacement for SRAM cell
has been proposed in [32]. While the cell is reported to improve area
and power consumption of LUT and SB, peripheral circuitries and the
corresponding scheme required to program the cells are disregarded. Fur-
thermore, a considerable direct current (i.e., 1V voltage) is permanently
applied on the PCM cells that may lead to a read disturb in PCM-based
cells as it has been demonstrated in [36].

A similar PCM based voltage-divider storage element has been
proposed in [15] that can replace SRAM cell. The authors report 40%
delay improvement achieved by using low resistance PCM (compared
with resistance of an NMOS transistor). However, the PCM cells have
been employed as configuration cells of the routing multiplexers and
produce constant voltages, and hence, they are not in the critical path
of the blocks and keep the delay intact. In addition, HRS of such
PCM cell with LRS = 3.7KΩ is estimated to be in the range of
Mega-Ohm [6] which consumes a huge leakage power around 1µW .
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A general stand-alone memory architecture is suggested to program the
cells, but important details (e.g., controlling the word- and bit-lines,
loading bitstream, etc.) have been neglected.

B. NVM-Based LUT and SB

1) STT-MRAM based Designs: A STT-MRAM based LUT has been
proposed in [23]. The LUT uses conventional Pass-Gate (PG) based
multiplexer structure in which an Magnetic Tunnel Junction (MTJ) cell
is placed between ground and the multiplexer branches (i.e., at the leaves
of multiplexer tree). Based on the LUT input signals, the corresponding
multiplexer branch and its associated MTJ is selected and compared with
a base resistance (which has a value between LRS and HRS values)
using a sense amplifier (similar to that in Section II-A) at the output of
LUT. Relative resistance of the selected MTJ cell and the base resistance
determine the output voltage. The drawback of [23] is the sense amplifier
which requires a sensing signal to be triggered after each change in
LUT inputs. This is analogous to placing a latch at the output of each
conventional LUT that demands a clock at each cycle, which prevents
cascading the LUTs and/or designing combinational circuits.

A similar MRAM-based LUT with duplicated multiplexer structure
is also proposed in [24]. Two MRAM cells, which correspond to a
single bit, are programmed complementary in each multiplexer. Per
each LUT input, a pair of MRAMs is selected and compared/sensed at
the output of the structure to determine the stored logical value. The
proposed sense amplifier has eliminated the aforementioned SRAM-
like structure as well as the need for triggering signal (therefore it
is hardened to radiations/particles) but the overhead of the duplicated
structure and sense amplifier is significant. It should also be noted that
since the relative resistance of STT-MRAM to NMOS transistor is low,
any fluctuation in the resistance level of the cells can endanger a reliable
sense operation in the aforementioned structures.

2) PCM-based Designs: A PCM-based 2 × 2 SB design employing
24 PCM cells has been proposed in [19]. A major shortcoming of the
suggested structure is that some of the PCM cells are not properly placed
in between two programming drivers. Therefore, the programming
current required for such a cell should pass through another PCM
cell which either may be hindered by the cell (if it was previously
programmed to HRS) or can cause an unwanted write operation in that
cell. In additin, 24 PCM cells occupy huge area with currently matured
PCM technology.

A fabricated PCM-based LUT prototype has been demonstrated in
[31]. The LUT structure is based on a duplicated PG-based multiplexer.
A configuration cell is represented by two complementary-programmed
PCM cells, each placed in a different multiplexer branch (one connected
to logical 1, and the complement cell is connected to 0). Based on the
relative resistance of the PCM cells, either 0 or 1 is directed to the
output. This architecture suffers from area overhead caused by duplicated
multiplexer. Two programming transistors per each configuration bit is
also used which are in the critical path of the LUT. More importantly, this
architecture is not scalable for large-input LUTs (e.g., K = 6) since it
necessitates inserting buffer in the multiplexer branches, which imposes
infinite resistance in the pair of complementary paths and disrupts the
voltage-dividing between the selected complementary paths.

PCM-based LUT and SB structures have been proposed in [6]. In
the proposed LUT, each SRAM cell is replaced with a single PCM cell
and the output is determined by exploiting voltage-dividing between the
selected cell and a base resistance, Rout, at the LUT output. In such
structure, as for [23], only the selected (based on LUT input) PCM cell
consumes power. However, the voltage difference between the selected
cell and the output node causes a significant power consumption. For
example, when the selected cell is in HRS, the LUT output will be zero.
This consumes a power equivalent to Vdd

2

HRS+Rpath
, which is higher than

the SRAM-based counterpart. This could be alleviated by choosing high
resistance cells, however, the delay will be affected adversely since the

PCM cells are in the critical path. Similar to [31], this architecture is
also not scalable to larger LUTs since inserting any buffer within the
multiplexer structure forces its output to zero. Without the buffer, on the
other hand, its delay will be increased exponentially. The SB proposed
in [6] is based on a conventional 2 × 2 crossbar structure in which,
similar to [18] and [33], each pass-gate is replaced with an RRAM. The
LRS state of the RRAM within the path determines that the path is on.
Conversely, the HRS RRAM turns off the corresponding path. In order
to provide high performance, low LRS PCM cells have been utilized,
which also have relatively low HRS due to the limited HRS

LRS
ratio of

PCM. This causes significant leakage power consumption as detailed
in Section III. To provide programmability, input buffers (drivers) of
the SB are replaced by multiplexers to choose either the input signal
or programming current. Therefore, further area is imposed, especially
the multiplexer (added) transistors should be large because they reside in
the routing paths. In addition, an output-buffered multiplexer will prevent
the programming current to pass through. Buffer-less multiplexer, on the
other hand, provides weak driving strength and thereby imposes delay
overhead. Finally, no system-level programming scheme including the
bitstream loading and timing control for neither the LUT nor the SB is
suggested.

3) RRAM-based Designs: Generic RRAM-based multiplexer struc-
ture has been proposed in [21]. The proposed structure can be employed
in either global (i.e., SB) or local (i.e., intra-cluster) routing network
as interconnection building blocks, with any input size. In this study,
all multiplexer transistors have been replaced with RRAMs that control
the on/off state of routing paths by its LRS/HRS state. Since RRAM
footprint is currently larger than a typical NMOS transistor, they can
become area bottleneck in such a structure. In addition, all RRAM
cells in the same multiplexer stage are programmed simultaneously.
Thus, the programming transistors (which are stacked in series) should
be upsized accordingly in order to tolerate the huge programming
current for all RRAM cells and reduce the stacking effect, which leads
to significant area overhead. Furthermore, architecture and controlling
scheme of configuring the entire FPGA (i.e., loading the bitstream) has
not been provided. Moreover, to implement a 2 × 2 crossbar SB, four
3-input multiplexer are needed (see Fig. 1(a)) that would require 28
programming transistors and 24 RRAM cells which, in overall, imposes
large area footprint.

An FPGA with RRAM-based interconnection networks is suggested
in [22] in which only a limited, prefabricated set of buffers are utilized.
Therefore, it can improve further CMOS area in conjunction with
eliminating the SRAM cells. The proposed SB is similar to [18], [33],
and [6], i.e., a 2× 2 crossbar in which each pass-gate and SRAM have
been replaced by an RRAM. A system-level overview of programming
structure has been also discussed in which the RRAMs are arranged
as a memory-bank and the cells are selected and programmed con-
secutively. This individual programming scheme can lead to significant
configuration time, especially taking into account the high programming
time of RRAM, compared to SRAM. It also uses 2-NMOS/1-Resistor
programming structure which has major limitations as explained in [38].

Finally, a one-level RRAM-based multiplexer structure that can be
used in routing network of FPGAs has been proposed in [39] and [40]. To
resolve the issues with 2-NMOS/1-Resistor programming structure, the
authors propose a 4-Transistor/1-Resistor programming structure and use
a transistor sharing scheme to reclaim the area. The proposed multiplexer
uses a one-by-one programming scheme which excessively increases the
FPGA configuration time, particularly, considering the high number of
RRAM cells in such an all-RRAM block. Programming a multiplexer is
well explained, but the overall configuration architecture has not been
discussed; considering the large number of controlling signals, a consid-
erable area and shifting time overhead (necessary for programming each
RRAM) for the scan register is expected. Last but not the least, power
efficiency of such all-RRAM structure is the key issue; in an N-input
one-level multiplexer, N −1 of RRAM cells are configured to HRS and
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Fig. 1. Conventional SRAM-based SB designs (a and b) [37] and our proposed RRAM-based SB with the programming peripherals (c)

consume power due to the voltage difference between their terminals.
For example, an SRAM-based 64-input connection block of 2-level
multiplexer has 16 SRAMs and consumes ' 16× 28.5nW = 456nW ,
while in the RRAM-based equivalent, each of the utilized RRAM cells
has a HRS of 23MΩ, resulting in 63× 1V

23MΩ
= 2740nW which is 6×

of the SRAM-based equivalent.

III. PROPOSED RRAM-BASED ARCHITECTURE

In this section, we first detail the structure of the proposed switch
box. Next, we discuss its operation and programming modes and then
elaborate how it can be programmed using modern FPGA configuration
schemes. Afterwards, we detail the structure and the normal operation
and programming modes of the proposed LUT. Finally, we demonstrate
how the proposed LUT can be used as a part of the FPGA inside the
programming scheme of the state-of-the-art FPGAs.

A. Proposed RRAM-based Switch Box

Multiplexer and Pass-Gate based (PG-based) designs are two com-
monly used switch box structures (introduced in [37]), which can be seen
in Fig. 1(a) and Fig. 1(b), respectively. PG-based design affords simple
architecture and higher performance since only one transistor resides
between two input-output terminals. However, it contains higher number
of configuration cells, thereby, higher area and power consumption. We
borrow the switch box structure of Fig. 1(b) [37] and replace each pass-
gate and its associated controlling SRAM cell of the conventional PG-
based switch box with a single RRAM cell. Therefore, all SB elements
are removed except the buffers, providing an efficient structure. The
proposed switch box along with the programming circuitry can be seen
in Fig. 1(c). Similar NVM-based SB structure has been also used in
[6], [18], [22], [33]. Nevertheless, [18] and [33] use two programming
transistors for each RRAM (i.e., total of 24 transistors) and [6] change
the input drivers which can lead to area or delay overhead (see Section
II-B for more details). Our programming structure, however, simply
shares eight large transistors between 12 RRAM cells. Substantial impact
of programming transistors in SB area will be detailed in Section IV.
It should be noticed that the input buffers shown in Fig. 1(c) are
abstract, i.e., they are the output buffers of adjacent SBs. That is, each
unidirectional SB has only (four) output drivers, as in the multiplexer-
based one shown in Fig. 1(a).

There is a high resistance cell in the paths that are supposed to be
open, while there is a low resistance cell in the paths that should conduct.
In the proposed SB architecture, all SRAM cells are eliminated and
their corresponding high strength pass-gates (or transmission gates) are
replaced with smaller number (i.e., eight) of programming transistors.

To illustrate the functionality of the proposed SB, we have depicted
the detailed SB architecture in Fig. 2. Input WI drives the output EO

through low resistance RRAM2. Since the input terminal of the other
two RRAMs connected to EO (i.e., NI through RRAM6 and SI through
RRAM10) does not drive any logical value, the strong zero passes
properly through RRAM2 from WI. Input EI also drives the output
NO by logical 1, through LRS-configured RRAM7. However, NO is
also driven by WI, through the HRS-configured RRAM1. Therefore, a
voltage dividing takes place in the input of the NO buffer, as VNO =

HRS
HRS+LRS

' 1. Thus, a weak logical 1 (denoted by 1w) passes to the
NO buffer. A similar scenario occurs for the SO buffer but in this case,
the LRS RRAM is driven by logical 0, hence, VSO = LRS

HRS+LRS
' 0.

Apparently, in the case that EI and WI drive the same logical value, all
of the mentioned nodes will be driven by strong 0 or 1.

We have designed a novel programming circuitry and adapted the
FPGA programming scheme to fit the proposed SB. The proposed switch
box is programmed by the transistors labelled P1 to P4 and N1 to N4, as
shown in Fig. 1(c). The programming voltage is applied to either P1 to
P4 transistors while the ground signal is enabled by N1 to N4 transistors
depending on the intended cell. The selection of each combination of P1
to P4 and N1 to N4 creates the necessary path for programming of each
RRAM cell. For instance, in order to program RRAM7, the transistors
P3 and N2 are enabled. Notice that in each write operation, only one
P-N pair is enabled; hence the drain node (encircled in Fig. 1(c)) of all
Pi transistors is connected to a unique programming node to provide
efficient overall configuration loading, as it will be discussed in Section
III-D.

We verify the functionality of the programming structure using the
RRAM model proposed in [28]. Consider that all RRAM cells of the
SB in Fig. 1(c) have been initially in their HRS state. We validate
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Fig. 2. Examining the functionality of the proposed SB
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the functionality by programming (i.e., set) RRAM1 to LRS which
connects the WI input to NO output. Since RRAM7 and RRAM11
are also connected to NO output (they connect the EI and SI to NO,
respectively) we should also check whether they are still in HRS state.
That is, they have not been undesirably programmed while programming
R1. As it is demonstrated in Fig. 3, P1 and N2 are enabled by
applying Vprog = 1.3V to their gate voltage, and at the same time, the
programming voltage V1 is applied to the source node of P1. Note that
source node of all PMOS transistors are connected to the same node, but
since only P1 is enabled, the programming current is expected to flow
through P1. After 200µs, the programming phase finishes and Vprog is
cut-off. Right after, three pulses V1, V7 and V11 are simultaneously
applied on, respectively, RRAM1, RRAM7, and RRAM11 through the
corresponding input buffers (i.e., WI, EI, and SI). The output node (NO)
is initially low and rises to one only when V1 rises (at T = 300µs).
Rising V7 and V11, however, does not affect the output voltage which
indicates that their path is correctly off. Here, two reliability challenges
may arise. First, the programming current passing from P1 can sink to
the ground through NMOS transistor of WI or the applied voltage may
interfere with output voltage of WI. Second, an unbearable voltage may
occur in the gate of output buffers which can cause them to breakdown.
These challenges have been addressed in Section V-C.

It should be noted that during programming RRAM1, while only
N2 is enabled, the programming current generated through P1 can
also partially flow through other leaky paths to sink the ground using
N2 (for instance, through the paths RRAM2→RRAM10→RRAM11
or RRAM3→RRAM9→RRAM7). Similar situation can occur in other
programming scenarios which may aggressively set some of RRAM cells
to LRS and create short paths. In addition, the already programmed
(LRS) RRAMs may be reset back to the HRS state during the pro-
gramming of subsequent cells. We examined the possibility of such
issues by thoroughly investigating all programming scenarios (beginning
with all RRAMs in the HRS state) and measuring the voltage across
RRAM terminals. For a Vset = 2.0V of the employed RRAMs (see
Section IV-A for more details), a maximum voltage of 10−5V on LRS
and 1.2V on HRS cells is observed. Compared to Vreset = 1.3V ,
the voltage of 10−5V is negligible to reset the already LRS cells. In
addition, the ∆V = 1.2V on the terminals of HRS cells is smaller than
Vset = 2.0V (and even less than Vreset = 1.3V ) to unwillingly set those
cells. Analogously, during the erase operation (i.e., reset all RRAMs to
HRS) of each RRAM using Vreset = 1.3V , the voltage across other
RRAMs does not exceed 0.78V . Therefore, no short paths (which need
a voltage even higher than applied 1.3V ) can be created unintentionally.
Furthermore, we examined the correct functionality of the proposed
SB in all configuration scenarios by applying different pulses on the
input terminals of on RRAMs and observing the corresponding output
voltages. According to our experiments, for 1V applied pulses, a
maximum of 2×10−5V difference between the input and output voltages
is observed, which indicates that the proposed SB can properly pass the

signals.

B. Proposed RRAM-based Look-Up Table

The proposed LUT cell along with the programming circuitry can
be seen in Fig. 4. In our proposed LUT, the conventional SRAM cell is
replaced by RRAM-resistor cells that act as a voltage-divider. In contrary
with majority of similar work such as [13], [32], only one programmable
RRAM is used in the proposed cell. The passive resistive element (i.e.,
R) can also be RRAM or any other CMOS compatible technologies,
however, only one RRAM in each cell needs to be programmed. The
passive resistor has a fixed value between RRAM low and high states,
so the RRAM-resistor pair provides either an output voltage of zero or
one depending on the RRAM value. Based on the cell structure (i.e.,
RRAM and passive R locations) shown in Fig. 4, to provide logical 1,
RRAM should be programmed to LRS, resulting in V = R

R+LRS
� 0.5.

Similarly, a HRS RRAM provides V = R
R+HRS

� 0.5.
While the RRAM and passive resistor locations are interchangeable

in the proposed cell, we intentionally connect the RRAM to VDD to
provide more power saving opportunity as it will be discussed in Section
IV-D. Although a voltage-divider scheme consumes leakage power, it is
significantly smaller compared with leakage of an SRAM due to using
high resistance RRAM cells. The multiplexer and the input signals are
used to select the correct memory value as in SRAM-based LUTs. This
value is then propagated to the output of the multiplexer through the
transmission or pass-gate tree structure.

In the normal operation mode of the proposed LUT, P̄ = 1, so N1

delivers the ground node to all the RRAM-based configuration cells.
Due to the high resistance of RRAM and R elements, a minimum size
NMOS can tolerate the passing leakage current through all configuration
cells. In the programming mode, P̄ = 0 and N1 cuts off. Otherwise, the
applied programming current/voltage (i.e., Vset or Vreset) will flow to
the ground by passing through all configuration cells. However, P̄ = 0
provides a theoretically infinite resistance to the cells. On the other hand,
the Select input provides a ground path to the selected cell (cell #1 in
Fig. 4(b)) through N2. Therefore, the applied programming current only
passes through and programs the desired RRAM (due to lower, i.e.,
non-infinite resistance within its path).

It is noteworthy that to provide voltage boosting and prevent expo-
nential delay increase, the inclusion of intermediate buffers within the
transistor tree structure of LUT is inevitable. These buffers, however, will
prevent flowing the programming current from RRAM cells to ground
through N2. To resolve this issue, we add a parallel bypass transistor
to these buffers, as shown in Fig. 4(b). During the programming phase,
P = 1 enables this transistor (N2) and allows programming current
to flow through it. The size of this transistor can be smaller than the
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Fig. 4. Proposed LUT in different operating modes
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Fig. 5. Integrating the proposed SB in FPGA programming scheme

other transistors of the LUT since it does not reside in the critical path
but it should be large enough to pass the programming current. The
capacitance impact of these transistors is negligible and does not affect
the LUT delay.

C. Discussion

As explained in [38], the 2-NMOS/1-RRAM programming structures
suffer from (a) low programming current density due to the voltage
drops across transistors, (b) increased transistors threshold, and thereby,
reduced driving strength due to the body effect, (c) voltage drops in the
driving inverters, and (d) inefficient sizing of transistors for the worst-
case current (i.e., reset or set current). By exploiting unipolar RRAMs,
in the proposed 1-PMOS/1-NMOS structure, the NMOS transistors are
directly connected to ground (shown in Fig. 1(c)) which eliminates
the driving inverters and corresponding voltage drop. In addition, both
source and bulk of the NMOS transistors have the same voltage, i.e.,
Vs = Vb = GND; hence, body effect does not occur in NMOS transis-
tors. On the other hand, although in 4-Transistor/1-RRAM structure each
pair of PMOS-NMOS transistors is sized according to corresponding
set and reset current, in our 1-PMOS/1-NMOS structure, only one
(shared) pair of PMOS-NMOS is used and occupies less area. That is,
Pmax{set,reset} + Nmax{set,reset} < Pset + Nset + Preset + Nreset.
In addition, as detailed in Section IV-A, for our utilized RRAM cell
V̄max{set,reset} = 2.0V and Imax{set,reset} = 100µA for which a
minimum size programming transistor is also adequate for the worst-
case scenario. Eventually, as explained in Section IV-A, the shared
encircled node of PMOS transistors in an SB should be switched between
Vreset = 1.3V and Vset = 2.0V to reset and set the RRAM. The
required multiplexer is shared between a column of SBs (see Fig. 5), thus
it can be upsized by 20× to offset the voltage drop. In addition, since the
programming I/O transistors can operate with up to 3.0V and maximum
programming voltage is 2.0V, the applied programming voltage can be
boosted to conserve the voltage drop.

D. Overall Programming Circuitry

In emerging NVM-based FPGA architectures, loading the configura-
tion bits into NVM cells is one of the major design issues as opposed
to the conventional SRAM-based FPGAs, where loading is performed
serially [41]. In the proposed architecture, we present a write circuitry
to load the configuration bits from registers to the RRAM cells as
depicted in Fig. 5. Once the register containing the bitstream data (i.e.,
Data Reg) has been serially loaded, the operation to transfer the data
in RRAM configuration cells begins. For switch boxes, a finite state
machine generates a sequence to enable the previously explained N1
to N4 and P1 to P4 signals in an appropriate order. At the same time,
both reset and set pulses are sent to their respective lines. Based on the
configuration bits, the data register determines which of these pulses are
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Fig. 6. Integrating the proposed LUT in FPGA programming scheme

fed into the program lines of each selected switch box. For instance, in
the first programming cycle, the FSM enables P1 and N2. Thus, RRAM1
is selected in all switch boxes within a Switch Matrix (SM) row, i.e.,
switch boxes in SM1 and SM2 in Fig. 5. Hence, it takes 12 programming
periods (due to the total of 12 cells in the SB) to program all switch
boxes in a row. Notice that all Pi transistors within a switch box are
connected to a unique programming voltage node, however, only the
right one is activated based on the FSM output. Analogously, in the
second programming cycle, the FSM enables P1 and N3, so RRAM2
will be selected. Simultaneously, the bitstream frame corresponding to all
RRAM2 in the first SM row is loaded to Data Reg. After programming
all 12 cells in the first SM row, One-Hot Reg selects the second SM row
and the same programming scenario repeats.

The proposed programming scheme works also when set and reset
duration are not necessarily the same. Generally, after loading each
bitstream frame into the data register which takes Tframe = C ×
W/2 × TDFFshift (see Section IV-A), Vset and Vreset pulses are
applied for durations Tset and Treset, respectively. Therefore, assuming
Tset > Treset, for the set voltage, a simple periodic pulse with the
period of TVset = Tframe + Tset and the duty cycle (i.e., percentage
of a cycle in which signal is high) of Dset = Tset

Tframe+Tset
should

be applied. The reset pulses are also synchronized with set pulses, i.e.,
TVreset = Tframe + Tset. However, the duty cycle of reset voltages is
determined by reset duration, i.e., Dreset = Treset

Tframe+Tset
. This means

that both set and reset pulses are disabled (zero) during loading the
bitstream and the set pulse is active during the remaining programming
cycle. Nevertheless, the reset pulses become zero after Treset.

Note that the programming current of RRAMs can be controlled by
either adjusting the drain voltage or gate bias voltage, i.e., Pi. However,
since the Pi signals are shared between all SBs in the same row and
one RRAM can be programmed to LRS while the other needs to be
programmed to HRS, controlling by the gate bias will require different
Pi values in such a scenario. Therefore, we adjust different Vset and
Vreset voltages for the constant Pi for both set and reset operations.

The configuration operation for the LUT takes place by consecutively
writing each of the RRAM cells. The scheme for this purpose is depicted
in Fig. 6. The scheme is similar to that of switch boxes except the path
to the ground signal plays the critical role in LUTs. The added transistor
before the output buffer can provide the ground signal at the end of the
multiplexer tree. This allows having only one of such transistors for each
LUT. To program a cell, (a) P is set to active, (b) the appropriate pulse
is selected using the serially shifted register (data register), and (c) the
path to the newly created ground signal is activated using multiplexer
inputs. Notice that all original virtual grounds should be cut off using the
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P̄ transistors in order to avoid undesired write operations. This process
has to be repeated for all RRAM resistor pairs in each LUT. Several
LUTs can be programmed at the same time as long as they are in the
same frame and use the data register at the same time.

IV. EVALUATION

In this section, we first compare the configuration time of the proposed
RRAM-based FPGA with the SRAM-based equivalent by mapping and
routing the MCNC benchmarks. Afterwards, we compare the proposed
LUT/SB building blocks with state-of-the-art blocks as well as we
compare the RRAM-based FPGA built upon the proposed designs with
FPGAs based on (a) a STT-MRAM-based non-volatile configuration cell
[14], (b) PCM-based non-volatile cells [2], (c) PCM-based LUT and SB
designs [6], (d) a perpendicular Magnetic Tunnel Junction (pMTJ)-based
LUT [23], and (e) a one-level RRAM-based multiplexer for routing
network [39]. Our evaluation also includes finding optimum parameters
for the proposed designs. The experimental setup and toolsets to estimate
each metric are detailed in the corresponding subsection.

A. Programming Time

The routing and logic blocks can be programmed simultaneously,
however, we examine them separately for the sake of simplicity. Let’s
assume that, as shown in Fig. 7, the target device has an island-style
architecture as most of the modern FPGAs such as Xilinx Virtex Series
[42] and it consists of R rows and C columns of switch matrices and
Configurable Logic Blocks (CLBs). We also assume the unidirectional
routing channel width is W, thus there are W/2 switch boxes in each SM
(see Fig. 7).

As detailed in Section III-D, programming each row of SM begins
with loading the bitstream frame into Data Reg (see Fig. 5). The
total number of flip-flops in Data Reg can be obtained by multiplying
the number of SM columns by the number of SBs inside each SM,
i.e., LDataReg = C × W/2. RRAM1 in all SBs is simultaneously
programmed, which takes max{Tset, Treset} = Tset. This procedure
repeats for the remaining 11 RRAMs in the first SM row, and then,
repeats for the whole R device rows. Accordingly, the total SM program-
ming can be calculated according to Equation 1 in which TDFFshift is
the shift delay of each flip-flop (e.g., 0.3ns).

TSM,prog = R× (12× (C ×W/2× TDFFshift + Tset)) (1)

As explained in Section III-A, programming SBs requires to initially
erase/reset them which requires erase time of TSM,erase as Equation 2.

TSM,erase = R× (12× (C ×W/2× TDFFshift + Treset)) (2)

Similarly, supposing there are NLUT number of K-input LUTs inside
every CLB (which are arranged in a R×C array), the total programming
time of logic blocks (TLB) can be computed according to Equation 3.

TLB = R× (2K × (N × C × TDFFshift + Tset)) (3)

We compare the programming time of the proposed architecture with
that of conventional SRAM-based FPGAs. In this regard, we place
and route the 20 largest MCNC benchmarks [30] on minimum size
FPGAs using VPR 7.0 toolset [29] to find the array size (i.e., R and
C parameters). MCNC benchmarks include both combinational and
sequential circuits and have been widely used in, especially, FPGA
academic research. These circuits are also provided in Berkeley Logic
Interchange Format (BLIF) in the VPR repository. The name and
number of LUTs of these benchmarks are provided in Table II. In the
experiments, we have targeted 4-input LUTs, i.e., K = 4. The cluster
size of N = 10 (thereby 10 LUTs within each cluster) has been chosen
as it is considered in most recent studies [29]. Notice that the FPGA flow
(map, place, and route) has nothing to do with the underlying technology
or programming scheme. Therefore, no modification in the CAD tool
is required for this purpose. The architectural setup used in VPR is
reported in Table I. Unidirectional SBs arranged in a Subset topology,
as shown in Fig. 7, has been used. These parameters along with area
and timing parameters (see Section IV-B and Section IV-C) are wrapped
an architecture file with X = 16 (see Table I) provided in VPR power
repository. Table II provides the number of 4-input LUTs in netlist, and
size (R and C) and channel width (W ) of the mapped (i.e., placed and
routed) device for each circuit.

Plenty of RRAM devices with various electrical and resistive attributes
have been devised [11]. While some previous studies have used RRAM
with LRS = 1KΩ and HRS = 1GΩ [22] which pretty fits in
our proposed designs due to its high HRS/LRS ratio, such cells are
not mature enough at the moment due to their large footprint and
programming current (e.g., 3µm × 3µm [12]). In our experiments,
we use RRAM cells with 1GΩ and 10KΩ HRS and LRS resistances,
respectively and 1µm2 footprint which has been properly fabricated in
[43]. As it has been demonstrated in [43], the LRS resistance of our
employed RRAM can be adjusted by controlling the bias condition. To
achieve low LRS values, higher set and reset currents (voltages) are
required. For 10KΩ, measured reset and set currents are 100µA and
∼3µA, respectively. An average 2.0V and 1.3V set and reset voltages are
reported. It should be noticed that RRAM cells necessarily do not show
Ohmic behaviour, especially in the HRS state [11], [43]. This means
that the programming voltage of RRAM is not simply corresponded to
its programming current (and vice versa), i.e., I 6= V

R
or R 6= V

I
. Since

the programming speed of the employed RRAM has not been reported,
we pessimistically assume Tset = 50ns and Treset = 10ns which
are large-enough comparing with similar devices [11]. Finally, we set
TDFFshift = 0.24ns by synthesizing a shift register using Synopsys
Design Compiler [27] and Nangate 45nm Standard Cell Library [44]
and – conservatively – choosing minimum size flip-flop cells. Notice
that operating frequency of a shift register is independent of its width
(i.e., TDFFshift = Tclk to Q + Tsetup).

Fig. 8 compares the programming time (as sum of TSM = TSM,prog+
TSM,erase and TLB) of the FPGA based on the proposed RRAM-based
LUTs and SBs with the conventional SRAM-based FPGAs. For the
SRAM-based FPGA, the total number of configuration bits is calculated
by Equation 4 and a maximum programming rate of 371.4MB/s (i.e.,

TABLE I
VPR ARCHITECTURAL PARAMETERS

Parameter Definition Value
N Cluster size 10
K LUT size 4
I Routing to cluster input 22
L Wire segment length 1
Fs Wire branches in each switch box 3

Fcin Ratio of channel tracks connected to connection block 0.2
Fcout Ratio of channel tracks a LB output connects to 0.1

X Intra-cluster multiplexer size 16
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TABLE II
NUMBER OF 4-INPUT LUTS, DEVICE SIZE, AND CHANNEL WIDTH (W) OF

MCNC BENCHMARKS

Benchmark LUT4, Size, W Benchmark LUT4, Size, W Benchmark LUT4, Size, W
alu4 861, 11, 88 dsip 679, 14, 132 s298 666, 10, 82

apex2 993, 13, 110 elliptic 1905, 15, 130 s38417 2294, 19, 194
apex4 836, 11, 110 ex1010 2897, 22, 180 s385841 2116, 20, 130
bigkey 567, 14, 110 ex5p 614, 10, 100 seq 916, 12, 114
clma 3206, 22, 160 frisc 1752, 16, 138 spla 1872, 17, 138
des 815, 16, 130 misex3 799, 11, 100 tseng 706, 10, 80

diffeq 698, 10, 80 pdc 2443, 20, 154 average 1382, 15, 75

∼ 0.337ns per SRAM) is assumed [45].

NSRAM = (R× C ×W/2× 12) + (R× C ×NLUT × 2K) (4)

While the programming time of an individual RRAM cell is substantially
higher than an SRAM cell (i.e., 50ns

0.337ns
= 148×), due to the efficient

programming circuitry of the proposed designs, the configuration time is
increased by only 81%. This is 83× faster compared with individually
programming of RRAM cells (i.e., 50ns per cell) as in [22]. These
numbers can be obtained by using the device size and channel width of
each benchmark presented in Table II. For instance, for pdc benchmark
with a 20× 20 array size and channel width of 106, configuration time
of the logic and routing resources will be 31.4µs and 63.5µs+ 73.1µs
(erase and program), respectively, with a total of 167.9µs. On the
other hand, it contains 318,400 configuration cells which results in
318, 400×0.337ns = 107.2µs and 318, 400×50ns = 15, 920µs (i.e.,
95× of the proposed method) for, respectively, conventional SRAM-
based shifting and RRAM-based one-by-one programming scheme [22].
In larger designs such as ex1010, the delay overhead of shifting a frame
(into Data Reg) is well compensated by simultaneous programming
a large fraction of cells, hence such designs have better relative pro-
gramming time. For parameters of a moderate-size commercial Virtex-
II consisting of 64 × 64 CLB array, W = 192 and N = 4 [5], the
configuration time in the proposed design is only 39.3% larger than that
of the equivalent SRAM-based FPGA.

B. Area

Area of the proposed LUT is reduced by eliminating the SRAM
cells and placing the RRAM cells atop CMOS. However, a few extra
transistors, including N1 and N2 and bypass transistors for intermediate
buffers (in overall, eight buffers right after the third stage of LUT) are
added. Due to the low programming current (Ireset = 100µA), these
transistors can be even selected to have minimum width, i.e., 90nm in
the 45nm process. Area of the proposed SB is reduced by removing the
SRAM cells and associated pass-gates. However, as shown in Fig. 1(c),
eight programming transistors has been added in the structure of SB. The
Pi transistors are directly connected to the programming voltage source
and should provide an average 2.0V (up to maximum 2.5V) set voltage
for the employed RRAMs; thus, larger transistor with thick gate oxide
should be utilized. As reported in [38], I/O transistors of a commercial
45nm technology with W

L
= 320nm

270nm
can tolerate VGS and VDS of 2.5V.

Since the area footprint of a design depends on the geometrical shape
of its layout, we use minimum width transistor area model which follows
the dimensionless formula Area(x) = 0.447 + 0.128x+ 0.391

√
x [46]

in which x is the ratio of transistor strength (size) to the minimum
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Fig. 8. Comparing the programming time of the proposed RRAM-based FPGA
and SRAM-based counterparts

TABLE III
VPR EXPERIMENTAL PARAMETERS (AREA IS DIMENSIONLESS AS DETAILED

IN SECTION IV-B)

Parameter Value Parameter Value
Switch type Buffered SRAM-based SB area 133.7

Segment length 1 Proposed SB area 43.9
SB buffer stage ratio 5× SRAM-based LUT area 233.5

SRAM area 6.0 Proposed LUT area 137.5
SB pass-gate size 10× Prog. transistors size 320nm/270nm

width transistor in the same technology. It gives the area as a factor
of area of minimum width transistor (which is typically 60L2) and has
been adjusted for 65nm and smaller technologies. Further details can
be found in [46]. Table III summarizes the area parameters used in
VPR experiments. Both SRAM- and RRAM-based LUTs employed in
the experiments are based on transmission-gates and include isolating
buffers (inverter) after the configuration cells to provide higher drive
strength and reliability. During programming the proposed LUT, these
buffers can be bypassed similar to the scheme explained in Section III-B.
Area of programming transistors (assumed as 2× of standard transistors
[39]) is included in both the proposed SB and LUT designs.

Fig. 9 compares the area (as well as the delay and power which will
be discussed in Sec. IV-C and Sec. IV-D) of the proposed LUT and
SB designs with the aforementioned studies. The results reported in
this figure will be later used to compare the efficiency of the FPGAs
built upon these blocks. All results are normalized to that of the SRAM-
based block. Actual quantities of SRAM- and the proposed RRAM-based
designs have been represented in Table III. It should be noted that [23]
has proposed a NVM-based LUT, but lacks a NVM-based SB. Also,
the study in [39] proposes a NVM-based SB and lacks a LUT design.
Therefore, for the sake of holistic comparison in the subsequent sections,
we assume SRAM-based designs for those lacking circuits. Area of both
[2] and [14] has been slightly increased due to larger cell areas (8.9 and
7.0 minimum width transistor area, compared to 6.0 for SRAM). Area
of one-level RRAM-based SB [39] is also higher than the area of the
proposed SB since [39] employs two programming transistors per each
RRAM cell with an additional shared pair. Area of LUT presented in
[6] is slightly smaller than our proposed LUT since the proposed LUT
comprises a set of bypass transistors for internal buffers, as explained
in Section III-B. Eventually, the MTJ-based LUT structure [23] has the
minimum area because it eliminates the input buffers.

Fig. 10 compares the area of the proposed RRAM-based FPGA and
the related studies over the MCNC benchmarks using the parameters
of Table III and Fig. 10. The results reveal that, compared to SRAM-
based FPGAs, total area is reduced by 59.4%, on average (a detailed
comparison can be found in Table VII). This improvement converges
with [5] which indicates that if all configuration cells and SBs are moved
to top layers, the area can be reduced by ∼57%. Notice that the area
of RRAMs has been set to zero since they can be stacked atop CMOS
layers. In addition, the area of the RRAM layer is not larger than the
CMOS layer (i.e., RRAMs are not bottleneck). The total area of 12
RRAM cell is 12µm2 [43]. On the other hand, based on the Nangate
Cell Library [44], a 5× buffer occupies ∼ 2.5µm2, therefore the area
corresponding to four buffers of the proposed SB is 10µm2. In addition,
the area of the eight programming transistors would be larger than 2µm2,
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Fig. 9. Comparison of the proposed architecture with the related work in terms
of area, delay, and power
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making the aggregate area of the CMOS part larger than that of RRAM.
Programming Peripheral: The programming circuitry of the pro-

posed architecture comprises C × W
2

+ R and N × C + R flip-
flops (including data and one-hot ones, respectively) for SBs and LUTs
configuration, respectively (see Fig. 5 and Fig. 6). Also, C× W

2
+8×R

and N ×C +R column and row drivers are required, respectively. For
SRAM-based FPGAs, a memory-array-like structure for configuration
cells can be considered, as in [41], in which NSRAM number of
configuration bits are arranged as a

√
NSRAM ×

√
NSRAM array.

The number of SRAMs can be obtained from Equation 4. This struc-
ture has

√
NSRAM +

√
NSRAM (column and row) flip-flops, and√

NSRAM + 2
√
NSRAM (for Wordline and Bitline/Bitline) drivers.

According to Nangate Open Cell Library, the area of a flip-flop and
maximum-size buffer is 5µm2 and 13µm2, respectively. Using this
information with the C, R, and W values of Table II reveals that
the programming peripheral of the proposed architecture, on average,
occupies 19.3% less area compared with SRAM-based architecture.

C. Delay

The total delay of an FPGA mapped design is composed of logic
and routing delay, in which the latter includes the switch box and its
associated routing wire (i.e., wire driven by the switch box) delays. The
proposed RRAM-based LUT does not affect the delay since it employs
the same multiplexer structure of an SRAM-based LUT. In addition,
as for the SRAM-based LUTs, the RRAM-based LUT includes an
isolating buffer between the configuration cells and the multiplexer input
to provide robustness by preventing rush currents from the multiplexer to
the cells (which can cause bit flip in the SRAM cells) and also providing
higher drive strength for the multiplexer.

Delay of the LUT and SB designs is measured by using HSPICE
circuit level simulation and employing High-Performance 45nm Pre-
dictive Technology Model (PTM) [47]. To model the RRAM cells, we
exploit RRAM model presented in [28] and change the LRS and HRS
values based on the parameters of the employed RRAM [43]. Sizing
of switch box buffer and transistor have been reported in Table III.
The resistive and capacitive characteristics of metal layers for local and
global routing of default 22nm process are first extracted using COFFE
tool [46] with the architectural parameters of Table I . Afterwards,
we scaled the extracted values to 45nm using the scaling parameters

obtained from [48], i.e.,
R45nm

R22nm
= (

22

45
)2 and

C45nm

C22nm
= (

45

22
)0.15. In

the experiments, we also take into account the role of area reduction in
the wire length and its resistance and capacitance [5]. To this end, we

correlate the area and wire length by l =

√
s̄

s
in which l is the wire

length scaling/reduction factor and s̄ and s are the new and original area,
respectively. In other words, if the area is scaled by α, then the device
dimensions, and hence, wire lengths and the corresponding resistance
and capacitance will be scaled by

√
α. As observed in Section IV-B,

RRAM-based FPGA reduces the area by 59.4%, hence, α = 0.41. It
is noteworthy that the exploited RRAM model [28] takes the inherent
parasitic capacitance between electrodes of an RRAM cell into account.
The parasitic capacitance can be a delay bottleneck in an all-RRAM
design such as [39] and [40] wherein all RRAM cells are connected to

TABLE IV
HSPICE DELAY MEASUREMENTS PARAMETERS AND RESULTS

Parameter Value Parameter Value
SRAM routing res. 50.9Ω SRAM LUT delay (avg) 102ps
RRAM routing res. 32.6Ω RRAM LUT delay (avg) 103ps
SRAM routing cap. 11.8fF SRAM SB + wire delay 99ps
RRAM routing cap. 7.6fF RRAM SB + wire delay 75ps

a single output node. However, the parasitic contact resistance of the
electrodes is negligible compared to resistance of the RRAM cell itself
[28].

HSPICE reports for the RRAM- and SRAM-based LUT and SB
delay are summarized in Table IV. As reported in this table, 24.2%
improvement in SB delay has been obtained. This improvement arises
from scaled area of RRAM-based FPGA, and thereby, reduced wire
resistance and capacitance. It is noteworthy that a minimum width
NMOS transistor resistance is ∼9KΩ [29]. Since 10× width transistors
are used for SRAM-based SB, the resistance of pass-gate would be
∼ 10× smaller than that of employed RRAM cell with RLRS = 10KΩ.
Pass-gate based switch, however, considerably increases the delay since
the NMOS transistor cannot appropriately pass the logical one. On
the other hand, the transmission-gate based SB increases the area
significantly. Therefore, to boost the baseline SRAM-based SB, we used
SRAM cells with VDD = 1.2V . For longer wire segments, e.g., L = 4,
the delay could further be decreased since in larger segment lengths, the
wire delay becomes dominant, which is reduced in the proposed designs.
The normalized delay of the previous studies has been provided in Fig. 9.
The delay of the proposed LUT, [14], and [2] has almost remained intact
with regard to SRAM-based LUT because of using the same multiplexer
structure and providing the required voltage level at multiplexer inputs
(i.e., configuration cells). Delay of the LUT in [6], however, has been
increased because of the passive output-resistance which is used for
voltage-dividing and also resides within its critical path. Particularly,
the required voltage/current passes through the configuration PCM and is
divided at the multiplexer output. Large HRS of PCM cells significantly
increases the delay. On the other hand, similar to the proposed SB, [6]
improves the SB delay by replacing low-resistance PCM cells instead of
pass-gates and having smaller wire length due to device shrinking. Delay
of the pMTJ-based LUT structure is determined by the interval in which
the sense signal should be enabled to have a successful read operation.
This delay could be further increased by adding a safety margin for
sensing operation. The increase in SB delay of [2] and [14] stems from
increased FPGA area, and subsequently, wire delay. Experimental results
over the MCNC benchmark are shown in Fig. 11. On average, the
proposed design reduces the total delay by 20.1% compared to SRAM-
based FPGAs (please refer to Table VII for detailed comparison). It is
noteworthy that while [6] could afford a similar area improvement to the
proposed architecture, it degrades the average performance by 19.6%.

D. Power Consumption

1) Cell Structure: In contrary to the SRAM-based LUTs in which
power consumption of an SRAM cell does not depend on its holding
value, the resistive state of the RRAM cell (i.e., HRS or LRS) and
the percentage of time in which a cell contains a specific configuration
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play a substantial role in determining the overall power consumption of
the proposed LUTs. Therefore, we first attempt to find the optimum cell
structure and the passive resistor value, i.e., R. For this end, analyzing the
configuration bits of MCNC benchmarks revealed that about 70% of the
LUT configuration cells hold zero and the remaining is configured to one.
Table VI illustrates the structures and the corresponding leakage power
wherein the first structure consumes less power. Notice that LRS �
R� HRS, thus R+HRS and R+LRS are simplified to HRS and
R, respectively.

2) Optimum R: While specifying R to its maximum allowable value
(i.e., R = HRS/2 which provides an effective one and a logical zero

' 1

3
) makes the voltage-divider power efficient, it causes the associated

isolating buffer to be always on which consequently will consume
significant power. Indeed, the output logical zero of voltage-divider part
should be considerably smaller than the threshold voltage (Vth ' 0.3V )
of associated buffer to prohibit significant leakage power. Analogously,
logical one of the structure should be larger than VDD−Vth. Moreover,
it provides weak drive strength to the multiplexer tree. Therefore, we
carry out HSPICE simulations investigating the whole R space such
that Pavg = 0.7P0 + 0.3P1 is minimized. As demonstrated in Fig. 12,
iterating with 10MΩ steps suggests that R = 30MΩ provides the best
power efficiency. The power includes the power of resistive structure
and the associated isolating buffer.

3) Estimation: The power consumption of an RRAM inside the
proposed switch box depends on the voltage difference on its terminals.
As shown in Fig. 2, for example, RRAM2, RRAM3, and RRAM7 have
zero leakage power because there is no voltage difference between their
terminals. However, RRAM1 and RRAM9 consume the maximum power
due to ∆V = 1V on their terminal. Hence, in order to accurately
estimate the static power of each benchmark, we obtain the average
signal probability of the wires by exploiting ACE 2.0 activity estimator
[49]. Accordingly, the probability of voltage difference between the
RRAM cells can be obtained. In order to estimate the dynamic power of
each benchmark, we first calculate its average signal activity using the
ACE tool. Next, we conduct HSPICE simulations to obtain the dynamic

TABLE V
STATIC POWER PARAMETERS OBTAINED BY HSPICE SIMULATIONS

Design Power (µW ) Design Power (µW )
RRAM LUT (all 0) 0.82 SRAM LUT (all 0) 0.87
RRAM LUT (all 1) 1.06 SRAM LUT (all 1) 1.01

RRAM SB (avg) 0.78 SRAM SB 1.07

TABLE VI
POWER CONSUMPTION OF DIFFERENT RRAM-BASED CELL STRUCTURES

Cell Config 0 Config 1 ∼P0 ∼P1 ∼Pavg

R

R

R+HRS

R

R+ LRS

1

HRS

1

R

0.7

HRS
+

0.3

R

R LRS

LRS +R

HRS

HRS +R

1

R

1

HRS

0.7

R
+

0.3

HRS

TABLE VII
OVERALL COMPARISON BETWEEN THE PROPOSED ARCHITECTURE AND

RELATED WORK

Proposed SRAM MRAM [14] PCM [2] PCM [6] p-MTJ [23] RRAM [39]
Area 1.00× 2.46× 2.66× 3.06× 0.98× 2.07× 1.99×
Delay 1.00× 1.25× 1.29× 1.38× 1.50× 1.36× 1.00×
Power 1.00× 1.32× 1.99× 2.31× 5.60× 1.38× 1.51×
Power-Delay 1.00× 1.65× 2.57× 3.19× 8.37× 1.88× 1.51×

power of a single switch box using the wire resistance and capacitance
represented in Table IV. Initially, we assume an activity factor α = 1
and frequency of 100MHz, and also assume that one output of the switch
boxes is active (i.e., are switching). Table V summarizes the HSPICE
static power results for individual designs. Dynamic power of SRAM-
and RRAM-based SBs are, respectively, 1.66µW and 0.73µW . Note
that the dynamic power of logic elements is equal in both the RRAM-
and SRAM-based designs since the proposed LUT does not affect
the original multiplexer structure and, additionally, the configuration
cells have no impact on dynamic power consumption. The reduction in
dynamic power of the proposed SB is due to the smaller wire capacitance
of the RRAM cells compared with the large pass-gates of the SRAM-
based SB.

The relative power consumption of the designs proposed in the related
work can also be obtained from Fig. 9. According to this figure, both
[14] and [2] increase the LUT and SB power compared with SRAM-
based design because of adding the (large) sensing transistor within their
SRAM-like sensing circuitry which adds to the static power. Especially,
[2] uses a PMOS as sensing transistor which required higher channel
width results in higher area and leakage power. On the other hand,
experiments revealed that [6] could improve the LUT power (compared
with our proposed architecture) by tuning the resistor in its structure.
Nevertheless, it would increase the LUT delay intensively as discussed
in Section II. Therefore, optimum parameters that minimize its power-
delay product are used in our simulations. An advantage of the LUT
proposed in [6] is that only the selected cell consumes power. Notice
that our results are in contrast with that in the original paper of [2] as this
study has reported 1.2nW leakage power for the entire 4-input LUT.
This value, however, is even smaller than the power of a minimum-size
inverter [44]. As for the LUT, the SB power of [14] and [2] is increased
due to their increased cell power. The SB power of [6] is increased due
to using low resistance PCM cells which consume significant power
when a ∆V = 1V occurs on their terminal. As discussed in Section II,
the NVM cells of the LUT proposed in [23] do not consume leakage
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power. Nonetheless, it requires to trigger the sense signal which floats
the SRAM-like sensing circuitry and consumes significant power on that
interval.

Fig. 13 demonstrates the overall power consumption of each circuit
which is obtained by post-processing the architectural results for each
circuit (e.g., array size and channel width) and applying its actual activity
factor and segment utilization. An average saving of 24.3% with respect
to SRAM-based designs has been achieved over the MCNC benchmarks
which stems from reducing the static and dynamic power of the routing
resources. Table VII presents the power and power-delay product results
of other designs, as well.

It should be noted that the impact of the architectural parameters on
dynamic power (i.e., Fs, Fcin and Fcout which are the same for all
benchmark circuits) had been inherently considered while obtaining the
wires capacitance and resistance using COFFE tool [46]. The channel
width, however, does not affect the power of each individual SB. It is
because I

4
× 2 Connection Block (CB) multiplexers with Fcin ×W are

connected to each horizontal or vertical channel from adjacent CLBs.
Thus, totally I

4
× 2 × Fcin ×W inputs are connected to W tracks of

the channel, resulting in I
4
× 2 × Fcin inputs per routing track, which

induce a capacitance independent of channel width.

E. Impact of LUT Input Size

To demonstrate the scalability of the proposed architecture, we have
compared the area and average delay and power of the proposed
four to six input LUTs in Table VIII. Expectedly, delay and power
of SRAM-based and the proposed LUTs are similar in LUTs with
different sizes. It is because the original multiplexer-based structure of
the LUT has not been modified in the proposed design and the RRAM
configuration cells are not in the critical path. In addition, since the
average power consumption of the RRAM cell is almost equal to an
SRAM cell, both designs consume similar average power. On the other
hand, area of a K-input SRAM- and RRAM-based LUT can be estimated
as 2KSSRAM + (2K − 1)Amux2 and (2K − 1)Amux2, respectively.
Therefore, ALUT,RRAM

ALUT,SRAM
' 2KAmux2

2KASRAM+2KAmux2
= Amux2

ASRAM+Amux2

which is independent of LUT size. According to experimental results in
Table VIII, area improvement of the proposed LUTs are between 41%
and 42%, i.e., it is independent of number of the inputs.

V. RELIABILITY

One of the major obstacles that may hinder the industrial success of
RRAM devices is their reliability. In the context of NVMs, reliability
aspects not only include device inherent parameters such as endurance
(i.e., the maximum number of reliable programming cycles), retention
time, and HRS/LRS resistance values, but also switching parameters

TABLE VIII
COMPARING DIFFERENT SRAM- AND RRAM-BASED LUTS

SRAM/RRAM LUT4 SRAM/RRAM LUT5 SRAM/RRAM LUT6
Delay (ps) 102/103 126/127 139/140

Power (uW) 0.91/0.89 1.75/1.71 3.45/3.37
Area 233.5/137.5 467.1/270.9 932.1/548.1
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Fig. 14. Programming time of RRAM-based FPGA (with respect to initial time)
for Tset and Treset from 1× to 10×

such as programming duration and voltage. Moreover, the relatively high
voltage requirement of programming the RRAM cells can interfere with
regular transistors of the device and cause them to breakdown. In this
section, we examine the impact of uncertainties in parameters such as
programming time and HRS and LRS resistance values on the proposed
designs. At the end, reliability aspects of the proposed programming
structure is discussed.

A. Programming Duration

The programming speed of the proposed FPGA is determined by both
set and reset operations. As it has been investigated in [50], in the worst
case, 10× increase in programming duration of devices with initial Tset

of ∼100ns (TiO2) can be observed. It is noteworthy that there is a trade-
off between programming duration and cell disturb immunity. Thus,
providing long reset or set periods enhances the programming reliability,
in addition to taking the worst-case cells duration into consideration.
Therefore, we estimate the programming time of the proposed RRAM-
based FPGA considering Tset and Treset from 1× (i.e., initial 50ns
and 10ns) to 10× (i.e., 0.5µs and 100ns). Fig. 14 demonstrates the
programming time of RRAM-based FPGAs as RRAM write time (reset
and set) increases from 1× to 10×. For this end, four devices with
different sizes are selected, i.e., tseng (smallest), elliptic (medium), and
ex1010 (largest). In addition, the largest Virtex-II device, i.e., XC2V8000
with 93,184 LUTs which can be assumed as a ∼ 96× 96 device is also
considered. As shown in Fig. 14, the programming time of larger devices
is less affected since in these devices, the Tset and Treset factors are
prorated by the frame loading time. Tseng exhibits 4.9× increase in
programming time when Tset and Treset increases to 10×, however,
this value is only 1.5× for Virtex-II device.

B. HRS and LRS Variation

The device-level phenomenon behind the origin of HRS and LRS
resistance variations together with techniques to alleviate them (e.g., by
tuning the oxide thickness using additional buffer oxide layer or using
write-verify technique) has been discussed in the literature. For more
details, the reader can refer to [51]. LRS resistance variation manifests
itself as increase in the original value. On the other hand, HRS drift
exhibits as decrease in the primary resistance. Such techniques can
reduce the distribution of tail bits of HRS to > 0.5× and the tail bits
of LRS to < 2× of the intended values.
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We examine the impact of resistance variations of the RRAM cells
in the delay and power characteristics of the proposed designs. To this
end, we suppose no device-level or architectural-level enhancements on
the RRAM resistance have been carried out; hence a pessimistic 2×
increase and 0.1× decrease (i.e., decrease to 0.1× of the initial value)
[51] for the LRS and HRS resistance values is considered, respectively.
It should be noticed that the delay of the proposed SB merely depends
on the LRS value of the RRAM. However, the leakage power of the
proposed LUT and SB depends on both the LRS and HRS cells. Thus,
a two-dimensional resistance state should be investigated for the latter
cases. In addition, since the configuration cells of the LUT are not in
its critical path, variation in RRAM resistance does not affect the LUT
delay (unless the associated buffer fails to provide a strong 0/1 which
does not occur in the considered range of variations).

Fig. 15 represents the increase in SB delay (with different buffer
strengths) as the LRS increases from original 10KΩ to the maximum
of 20KΩ. This 2× increase results in only 4.7% delay increase in the
SB used in our experiments (i.e., SB with 5× buffer size) because
the main contributor in the SB delay is the input/output buffer and
the corresponding wire segment resistive and capacitive parameters.
Therefore, even assuming worst-case LRS value which increases the
SB delay to 83ps, the proposed SB has still smaller delay than SRAM-
based counterpart. Extrapolating the results reported in Fig. 15 reveals
that up to 6× increase in RRAM LRS value (60KΩ) in the proposed SB
can be tolerated, i.e., it still affords a delay smaller than SRAM-based
SB delay. In addition, as it is evident from Fig. 15, the impact of RRAM
variation diminishes in larger buffers.

It should be noted that our investigation on impact of the RRAM
parameter variation on SB delay is different from [52]. We study the
impact of undesirable resistance variations on circuit performance. These
variations can either have device-level [51] or architecture-level origin
such as variations in set or reset currents. For example, the 6× increase
in LRS resistance can be accounted for (unwanted) 3× fluctuation in
the set current (voltage), as the measured set current associated with
LRS = 60KΩ is ~1µA, compared with 3µA required to set the
RRAM to 10KΩ. On the other hand, [52] explores the efficient size
for programming transistors which gives the minimum path delay. In
our analysis, we assumed a fixed programming transistor size (hence,
constant parasitic capacitance) because the RRAM resistance values are
supposed to be fixed (except the unwillingly varied ones). In addition,
we have used minimum size I/O transistors ( 320nm

270nm
) which is sufficient

to deliver 100µA and only the programming voltage was the determinant
factor. RRAM cell with higher LRS resistance requires lower reset and
set current, however, it does not affect the size of currently minimum-
size transistors.

Fig. 16(a) and Fig. 16(b), respectively, demonstrate the leakage power
of the proposed SB and LUT with regard to varying LRS and HRS
values. In both figures, LRS variation has negligible impact on the design
power. It is because, as mentioned in Section IV-D, in the proposed
SB, LRS cells consume almost zero power since there is no voltage
difference between terminals (nodes) of such cells. Additionally, in the
proposed LUT, the RRAM is in its LRS state when the cell holds one.
Accordingly, the cell power will be equal to V 2/(LRS + R) ' V 2/R since

R is significantly greater than LRS, i.e., R� LRS.
As illustrated in Fig. 16(a), the leakage power of the proposed SB

increases by 20.6% as the HRS values of all cells reduce to 0.1×.
Therefore, the voltage difference on a HRS cell nodes (see Section
IV-D or Fig. 2) results in approximately 10× power consumption of
such cells1. However, low fraction of cells with such condition (i.e.,
having voltage difference between nodes) and relatively high power of
SB large buffers reclaims its total power increase. On the other hand,
as shown in Fig. 16(b), drift in RRAMs HRS down to 0.3× imposes
up to 90% power overhead and it exceeds 200% when the RRAMs
resistance diminishes to 0.2×2. The exponential increase of power as the
HRS reduces corresponds to leakage power of the associated isolating
buffers (see Section. IV-C). Low HRS resistance value produces weak
zero (e.g., HRS = 300MΩ results in V = R/(R + HRS) = 130mV )
which subsequently applies a near-Vth voltage to the configuration
buffer and pushes its transistors into high leakage saturation region.
Nevertheless, this problem could be mitigated by choosing high-Vth

buffers – especially as the buffers are not in the critical path.
It is noteworthy that the employed RRAM cell [43] maintains the

initial 1GΩ HRS after 105 programming cycles, and such pessimistic
resistance drift will not occur. A 2× increase in LRS value is observed
after 105 cycles, however, as shown in Fig. 16, the impact of LRS on
power consumption is negligible. The retention time of 10 years has
been observed for the employed RRAM cells, as well.

C. Programming Reliability

Back to Fig. 1(c), during programming (for instance) RRAM1, P1
is enabled and delivers the programming voltage/current to the output
node of buffer WI. In this condition, depending to its input, either the
NMOS or PMOS transistor of WI buffer is on. The former scenario
causes the programming current to sink to ground through the WI
buffer (in addition to N2) and consequently reduces the current density
necessary to program RRAM1. To address this issue, the input buffers
of the proposed switch box can be equipped with enabling (i.e., tri-state)
transistors to cut off the buffer during the programming and preclude of
sinking the programming current.

On the other hand, since the programming current flows through the
transistor N2, a non-zero voltage occurs on input node of the NO buffer.
If this voltage rises above the operating voltage of the transistors of NO
buffer, (which is typically 1V − 1.2V in 45nm technology) it can cause
them to breakdown. Nevertheless, during the reset process, Vreset =
1.3V and resistance of the RRAM increases from initial 10KΩ (to
1GΩ). Thus, the resistance of P1-RRAM1 pair will be always larger
than that of N2 during the reset process. Thus, voltage of input node
of NO buffer will be smaller than RN2

RP1+RRRAM1
× 1.3V = 0.65V .

Analogously, during the set process, a voltage equal to 2.0V will be
applied to source node of P1 and RRAM1 resistance begins to reduce
from 1GΩ downto 10KΩ. In the worst case (i.e., RRRAM1 = 10KΩ),
a maximum voltage of 2.0

2
= 1.0V will be applied to NO which is far

below the breakdown voltage.

VI. CONCLUSION

In this paper, we presented switch box and lookup table designs
for the RRAM-based FPGAs to integrate the programming circuitry in
these blocks and create efficient programmable components. By taking
advantage of RRAM appealing features and eliminating the CMOS-
compatibility and scalability of flash memory, the proposed RRAM-
based FPGA offers the features of SRAM-based FPGAs (e.g., design
reconfiguration and short time-to-market) with non-volatility of flash-
memory-based FPGAs. Experimental results demonstrated that despite
using one programmable RRAM per configuration bit, the proposed
architecture increases the configuration time by only 39.3% compared
with commercial-size SRAM-based FPGAs while it enhances it by

1The power of such HRS cells increases from 1/1GΩ = 1nW to 10nW .
2HRS below 300MΩ is not shown in Fig. 16(a) as it disfigures the scales.
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Fig. 16. Static power distribution of the proposed switch box and LUT with respect to HRS and LRS variation

83× compared to previous studies that use one-by-one programming
scheme. Simulation results over the MCNC benchmarks demonstrated
that the proposed RRAM-based FPGA reduces the total area and
delay by 59.4% and 20.1%, respectively. By eliminating the always-on
SRAM-based configuration cells, the static power reduced by 24.3%, on
average. Finally, keeping the logic dynamic power intact, the dynamic
power of our proposed architecture decreased by 56.0%, mainly due
to shrinking the routing wire length. We also investigated the role of
RRAM parameters variation, e.g., set and reset write time and resistance
drift, in the efficiency of the proposed architecture. Experimental results
showed that with 10× increase of the write time, the configuration
time of commercials-size device increases by 1.5× while for smallest
benchmark circuits, this value can raise up to 4.9×. Nonetheless, this
programming time is still admissible for FPGA-based designs since the
device reconfiguration is usually performed once a while. In addition, in
the worst case when HRS resistance value of all switch box RRAM cells
shrinks to 0.1× of the original value, its static power increases by 20.6%
which is still power-efficient than conventional SRAM-based switch box.
On the other hand, the power overhead due to RRAM resistance drift
of the proposed LUT can reach to more than 2× in the worst scenario.
However, RRAM cell tuning and high-threshold buffers can suppress
this overhead without any performance loss.
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