Investigating Power Outage Effects on Reliability of
Solid-State Drives

Saba Ahmadian, Farhad Taheri, Mehrshad Lotfi, Maryam Karimi, and Hossein Asadi
Data Storage, Networks, and Processing (DSN) Lab, Department of Computer Engineering
Sharif University of Technology, Tehran, Iran
Email: {ahmadian, farhadtaheri, melotfi, makarimi} @ce.sharif.edu, and asadi @sharif.edu

Abstract—Solid-State Drives (SSDs) are recently employed in
enterprise servers and high-end storage systems in order to
enhance performance of storage subsystem. Although employing
high speed SSDs in the storage subsystems can significantly
improve system performance, it comes with significant reliability
threat for write operations upon power failures. In this paper,
we present a comprehensive analysis investigating the impact of
workload dependent parameters on the reliability of SSDs under
power failure for variety of SSDs (from top manufacturers). To
this end, we first develop a platform to perform two important
features required for study: a) a realistic fault injection into
the SSD in the computing systems and b) data loss detection
mechanism on the SSD upon power failure. In the proposed
physical fault injection platform, SSDs experience a real discharge
phase of Power Supply Unit (PSU) that occurs during power
failure in data centers which was neglected in previous studies.
The impact of workload dependent parameters such as workload
Working Set Size (WSS), request size, request type, access pattern,
and sequence of accesses on the failure of SSDs is carefully studied
in the presence of realistic power failures. Experimental results
over thousands number of fault injections show that data loss
occurs even after completion of the request (up to 700ms) where
the failure rate is influenced by the type, size, access pattern, and
sequence of IO accesses while other parameters such as workload
WSS has no impact on the failure of SSDs.

I. INTRODUCTION

Solid-State Drives (SSDs) are known as high-performance
non-volatile drives that are widely employed in modern storage
systems. Unlike Hard Disk Drives (HDDs), SSDs consume less
power and provide higher performance because of their non-
mechanical structure. However, SSDs cost about 10X higher
than HDDs and support only a limited number of writes [1—
3]. SSDs are composed of high performance flash memories
where each flash cell can retain data for considerable amount
of time (minimum of 10 years) by trapping the electrons in the
floating gate [4, 5].

During erase operation in flash cell, electrons “stick” in the
floating gate which results in the transistor dielectric degra-
dation named write endurance. This makes flash memories
to provide limited number of program/erase cycles [6, 7]. In
addition, they suffer from other different reliability problems
such as read/write disturbance and cell-to-cell program inter-
ference [8]. Furthermore, flash memories suffer from lack of
in-place-update where an additional erase is required for each
write operation. To overcome this limitation, Flash Translation
Layer (FTL) is employed in SSDs which implements various
functionalities including a) address mapping algorithm to hide
SSD limitations from the upper levels, b) garbage collection,
and c) wear leveling algorithms in order to alleviate the negative
impact of write operations on the endurance of the SSDs
[9, 10].

In addition to aforementioned shortcomings, flash-based
SSDs suffer from variant failures due to power failures. Unlike
data durability expectation from flash cells, they manifest
partial volatile behavior under power fault which results in data
failures in SSDs. Such partial volatile behavior is originated
from complex program and erase operations in flash memories.
For a single page programming, the flash controller iterates

several program-read-verify procedure to determine whether
the page cells have reached to the desired state or not. Hence,
such long intervals of iterations may be disrupted by sudden
power failure which results in data corruption of the page
cells. Furthermore, erase operation in flash memories takes long
delay to be completed which makes them more susceptible
against power failures. In addition, such power failures may
disrupt the operation of FTL.

In order to provide high performance write operations,
SSDs keep write pending requests in a volatile write-back
DRAM cache. Such caching scheme within SSDs is susceptible
to data loss due to power failures [11, 12]. To alleviate this
problem, some high-end devices employ batteries and super-
capacitors while low-end devices do not support such costly
recovery schemes. In addition, such schemes only provide the
condition to move the write pending data in DRAM cache
to the flash memories while power outage leads to some
unpredictable failures which may not be recovered in such
manner. Manufacturers always ignore the impact of power
failure on the reliability of SSDs while such failure is one of
the frequently occurring failures in data centers [13-16]. Hence,
investigating the impact of power failures on the entire flash-
based devices such as SSDs assists a) manufacturers to design
more reliable devices and b) designers to carefully architect
storage systems.

In this paper, we investigate the impact of various pa-
rameters such as workload Working Set Size (WSS), request
size, request type, access pattern, sequence of accesses, and
the cache residing in the SSD on the ratio of data failure
in presence of power faults. To this end, we implement a
power failure test platform in order to investigate the impact
of power outages on SSDs. This platform includes software
and hardware parts in which the hardware part is responsible
for injecting real physical faults to SSDs while the software
part schedules the faults and issues IO request to SSDs in
two distinct threads. Failure detection process is performed by
comparing the checksum of the written data and the original
data. Experimental results reveal that single power outage not
only disturbs the under writing cell, it also may corrupt the
cells that are previously written to the SSD. In addition, the
results show that data failure occurs in SSDs in a period of
time (which cannot be determined clearly) after completion of
the request.

Compared to previous studies such as [17] which em-
ulates the power fault effect on flash based memories, our
proposed platform examines the realistic power faults on SSDs.
Moreover, in our proposed test platform, the under test SSDs
experience the real power outage by considering the exact delay
of discharging (i.e., delay of discharging large size capacitors
employed in Power Supply Unit (PSU)) while such delay
has not been included during power failures of the platforms
presented by state-of-the-art studies such as [12, 18].

In summary, the main contributions of this work are as
follows.

e To our knowledge, this paper is the first to inject
realistic power faults to the under test SSDs where the
SSDs experience the real delay of PSU discharging
phase during power failure.

e By conducting extensive workload analysis, we have
investigated the impact of several workload dependent
parameters such as workload WSS, request size, re-
quest type, access pattern, and sequence of accesses on
data failures and observed significant impact of such
parameters on failure rate.

e We propose a fault injection and failure detection
platform which includes hardware-software co-design
in order to evaluate the behavior of SSDs under power
failures. The proposed platform detects three types of
10 failures that may occur for a request during power
faults on SSDs namely: 1) data failure, 2) False Write-
Acknowledge (FWA), and 3) IO error. These three
types of IO failures have not been addressed in the
previous work.

e We have examined more than five SSDs from different
vendors and investigated the impact of power failures
on their reliability.

The rest of paper is organized as follows. Section II discusses
related work. In Section III, we present our proposed test
platform. Section IV provides experimental setup and results.
Finally, Section V concludes the paper.
II. RELATED WORK

Here we present the previous studies about failures of the
flash-based memories under different conditions. The previous
studies can be investigated in two groups where the studies
in the first group mainly focus on different types of failures
due to internal structure of flash cells such as endurance, read
disturbance, and write disturbance. In the second group, the
impact of external failures on flash-based memories such as
power outage is analyzed. In the following we provide the
previous studies in more details.

The studies on flash-based memory systems reliability such
as [7, 19-22] have investigated the failures such as read distur-
bance, write disturbance, and write endurance which commonly
occur on flash-based memories in chip level and device level
designs. Meza et al. have studied the failures on the SSDs
in Facebook datacenters during four years of operation [19].
They observed that the special failure trend in SSDs is same
as “bathtube curve” which consists of early detection, early
failure, usable lifetime, and wearout phases which the wear-
out phase does not experience a monotonic failure rate. Other
similar studies such as [20] have investigated the SSD failures
in the larger scale of production environment presenting more
realistic results. [7, 21] have measured performance, power
consumption, and reliability of flash memories in order to pro-
vide the best trade-off for storage system configuration. They
have observed that there is considerable difference between
experimental results and provided datasheets by manufacturers.

In order to investigate the effects of power failure on
embedded systems, a software-based test platform is presented
in [17]. This platform simulates the power failures in Flash
Translation Layer (FTL) of SSDs and file systems in Operating
System (OS) layer. Such software test platform is able to detect
only a limited number of expected (i.e., previously defined)
failures which is not capable in modeling real faults and
detecting the corresponding failures. Limited number of recent
studies such as [12, 18] have examined real experiments in
order to investigate the impact of real power failures on flash-
based memory systems. Tseng et al. have proposed an FPGA-
based test framework which cuts off the power of flash chip by

employing high-speed power transistors controlled by FPGA
[18]. They have observed several failures caused by power
outage in the chip level design of flash-based memory systems.
However, due to the applied recovery mechanisms in the device
level design of such systems (e.g., SSDs), most of chip level
failures are eliminated in device level products that would not
result in data failures in such devices. Therefore, later studies
have evaluated the reliability of flash-based memory systems
in device level designs such as SSDs in order to reveal the
the behavior of them under power failures. To this end, Zheng
et al. have proposed a test framework to evalute SSD failures
under power faults. Fifteen SSDs from five enterprise vendors
have been examined and the results reveal that thirteen out of
fifteen SSDs have experienced several failures due to power
outage [12]. This study only measures failures by submitting
I/O requests of one constant simple workload (random and
sequential write) while the impact of several important work-
load based parameters such as 1) workloads WSS, 2) requests
size, 3) requests type (read/write), 4) sequence of the accesses
such as Read After Read (RAR), Read After Write (RAW),
Write After Read (WAR), and Write After Write (WAW), 5)
type of application level operations, and 6) requests access
pattern (random/sequential) are neglected during power failure
analysis. Moreover, the hardware fault injection mechanism
which is employed in [12, 18] involves high-speed power
transistors to cut off the power of SSDs. Such power failures
would cut off the power without considering the impact of large
size capacitors employed in PSU on the rise/fall delay of the
SSDs voltage.

ITII. PROPOSED TEST PLATFORM

In order to analyze the effect of power faults on the relia-
bility of SSDs, we have proposed a test platform which injects
real power faults and detects the corresponding failures. Our
proposed platform consists of two parts namely: 1) hardware
part and 2) software part. Fig. 1 depicts an overview of the
proposed platform. It can be seen that the hardware part is
responsible for injecting physical faults and the software part
controls the hardware, sends I/O requests to SSD, and finally
detects and analyzes the failures according to the injected
faults. In the following, we first elaborate the fault injection
mechanism that we have employed in the proposed platform
and then present how our platform detects the failures and their
sources.

A. Fault Injection

Physical fault injection mechanism is performed by the
hardware part of the platform which is controlled by the
software part. In the proposed platform, the software part
schedules and determines the time instances that a fault will
be injected and then sends the commands to the hardware part.
The hardware part physically injects the scheduled fault which
may occur at any time during an IO operation. In the following
we elaborate the details of the software part and hardware part
of the proposed platform.

1) Software-part: As depicted in Fig. 1, the software part
of the proposed platform consists of three major parts, namely:
Scheduler, 10 Generator, and Analyzer. The details of each
parts and how these parts work with each other are as follows:

a) Scheduler: It determines the random time instances
in which power failure will be occurred. It sends On/Off
Commands to the hardware part which is responsible for
physical fault injection. The hardware is programmed to receive
the commands from Scheduler and cut off the power of SSD
at the scheduled time instances.

b) 10 Generator: It produces random read and write
requests as determined by the workload and issues them to the
SSD. The requests are named data packets including header
and data where data is produced randomly (as depicted in Fig.

10 Generator [|
Generate 10
Requests

_____ |
) Execute | I
blktrace

Parameters

Details of Softwar

e
—_— e e, e e e — — — — — e —
~ =

Software (SW)

(scheduler) (10 Generator) Analyzer)]

\

Fig. 1: Overview of the proposed test platform.

Header
A

Size
Address
Queue
Time
Initial
Checksum
Data
Checksum
Final
Checksum
Modified?
Data
Failure?
Not
Issued?
Complete
Time

Data (randomly gerenated)

Fig. 2: Structure of data packets.

2). The parameters of the request such as size, destination
address, issue time (i.e., the time instance that the requests
is queued in the device), and completion time are kept in the
header of data packets. The additional information which is
required in failure analysis are similarly kept in the header of
data packets such as three types of checksum including the
checksum of data request, checksum before issuing request,
and checksum after completion of the request. The request size,
destination address, and issue time are produced randomly and
after completion of the request, we receive acknowledgment
(ACK) and completion time of the requests in order to update
the header of data packets.

c) Analyzer: Analyzer is responsible for assessing the
correctness of 10 operations. For each fault injection, Analyzer
collects the operations which are marked as “completed” by
the disk through blktrace and compares the checksum of data
which is written in the disk by checksum of the corresponding
data packet. Analyzer reports a data loss when a “completed”
operation has a different checksum by the corresponding data
packet or previous data in the corresponding address. In addi-
tion, Analyzer is able to detect the 1O errors (i.e., lost data due
to unavailability of disk). The process of 10O tracing and failure
detection is elaborated in Section III-B.

2) Hardware-part: Fig. 3a depicts the detailed structure of
the proposed hardware part. It can be seen that the hardware
part of the proposed platform resides in the path of power lines
of the SSD and is programmed and controlled by the software
part. In addition, the real implementation of the proposed
platform is depicted in Fig. 3b and Fig. 3c.

As depicted in Fig. 3, the proposed platform includes Host
System, the under test SSDs (or HDDs), an independent PSU,
and the Arduino UNO board [23]. In order to physically switch
the power of SSD to ON or OFF state, we have employed an
Arduino UNO board including a 28-pin Atmega328 microcon-
troller [24]. Through a serial connection, the microcontroller
is connected to the Host System on which the software part
is running on it. The output of the microcontroller (pin 13)
is connected to the pin 16 of the ATX controller of the PSU

which drives the under test SSD power. Pin 16 of the ATX
controller works as an active low pin which cuts off the output
power of the PSU by applying a high voltage (+5V) [25]. The
microcontroller is programmed to receive the On/Off commands
and assign the corresponding value “0” and “1” to the output
pin (pin 13) which controls the ATX controller through pin 16.

Fig. 4 shows the output voltage of the PSU during discharge
phase (i.e., when a power fault is injected) in two conditions: 1)
when the PSU does not drive any device (depicted in Fig. 4a)
and 2) when the PSU drives one SSD in the system (depicted in
Fig. 4b). It can be seen that when the SSD is connected to the
system, the discharge phase (i.e., when the voltage drops from
5V to 0V) takes about 900ms while the PSU purely discharges
whithin 1400ms. During the discharge phase, the SSD becomes
unavailable within the software part in Host System when the
voltage drops to 4.5V where it takes about 40ms.

In the following, we provide the main prominences of our
proposed test platform compared to existing test platforms
presented in previous studies. The power fault injection mech-
anism in the proposed platform is realistic and provides more
real failures in SSDs compared to software-based platform
presented in [17]. In addition, the proposed test platform
drives the power of under test disks with an independent PSU.
Such scheme is advantageous from two aspects: First, SSDs
experience realistic power failures that happen in systems in
data centers. As our experiments reveal, it takes about 900ms
for the large size capacitors in the PSU to purely discharge
where the SSD turns off in about 40ms (when the input
voltage drops to 4.5V). The state-of-the-art studies such as
[12, 18] cut off the SSDs power by employing high-speed
power transistors (the reported delay is in micro seconds
order) where the SSDs do not experience the realistic power
failures and discharge phase. Second, due to interior structure
of PSU which provides comprehensive drive characteristics,
the proposed scheme provides more safe power supplement.
Furthermore, the proposed platform minimizes the probability
of short-circuit problems where it would be more common
in the transistor-based platforms as presented in [12, 18].
The last main difference between our proposed platform with
other existing platforms is that the injection of power faults is
completely controllable by the software part.

B. Failure Detection

In order to detect data failures of the IO requests, a
comprehensive 1O tracing mechanism is required in order to
discover the online state of the IO requests. To this end,
we have employed blktrace and blkparse toolkits as extreme
powerful IO tracing tools which provide wide range of details
about IO requests in the device block layer. In addition, we
have employed btt as a post-processing tool for the output of
blktrace. We have modified the source code of b#t and provided
a new version of btf tool which is able to extract additional
information about IO request. In the following we elaborate
the details of the modifications that we have performed on btt
and then show how we can detect IO failures such as IO errors
and data failures and their types.

We have modified the source code of btf in order to provide
timing information about 10 requests in a standard format
where we are able to detect the complete and incomplete
requests. To this end, we have modified the underlying opera-
tion of “—per-io-dump” switch in brr which extracts the trace
of individual IO requests. Such modification is advantageous
for tracing the large size requests which are divided to more
than one request (namely sub-requests) in the device block
layer. In addition, we extract the timing information and other
parameters such as destination address, request size, and state
of the request in the device queue. Finally, the data failure

SATA
USB
Host System.
, . I [rarr——— I
;s==5m§§mm>w~~
B
ATmega328 Micro
Bh S BBINRNERNNNY 4 9: +5v Standby Voltage :
P A A A T 15: Ground i
Arduino UNO 16: PSU On (Active Low)

6V] SSD truns off in 4.5V

Py e A i
200ms mel 200ms time}

40MS=—=--oooo

-

oltage

letage

o

(@ (b)

Fig. 4: The output voltage of the PSU (a) when the PSU does not drive any device and
(b) when the PSU drives one SSD.

detection process starts after receiving the ACK signal of the
IO request (i.e., when the request is completed). For each
request we update two flags namely completed and notApplied.
A request would be marked as completed when all its sub-
requests are in the complete state. Otherwise the request is
marked as incomplete (we have set 30 seconds timeout for
delayed requests). On the other hand, in the next step, we
compare 1) the checksum of original data (i.e., data in data
packet) with the written data and also 2) the checksum of
the corresponding address prior to issuing the request. In case
of inequality in the first comparison and also equality of the
second comparison, the value of notApplied flag is set to 1,
otherwise it would be equal to 0. Based on the values of the
flags, we detect the type of failures as follows.

1) completed =1, notApplied = 1: In such condition,
SSD has performed the write operation and the ACK
signal is sent to the upper layer while the data is not
written in the corresponding address due to power
failure. Such failure is called FWA as a type of data
failure or data loss.

2) completed = 1, notApplied = 0: In such condition,
the request is issued to the SDD and the ACK signal
is received by the Host System. In this condition, in
case of inequality in checksum of the original data
and written data, data failure or data loss is detected.

3) completed = 0, notApplied = 1/0: In such condi-
tion, the request is issued to the SDD when it was
unavailable by the Host System. Such failure is called
10O error.

IV. EXPERIMENTAL RESULTS

In order to evaluate the reliability of SSDs, we have
conducted comprehensive experiments by employing our pro-
posed test platform. The Host System as a part of test plat-
form includes Intel(R) Core(TM) i5 and 8GB DDR3 RAM
(froy Hynix Semiconductor) that are connected to a Z97-
A motherboard from ASUSTeK computer incorporation. The
running operating system on the Host System is Ubuntu 17.04

py ATX
UNO I Controller

(b) (©

Fig. 3: Hardware part of the proposed test platform.

TABLE I: Information of employed SSDs in the experiments.

. Bit .
SSD Size Internal ¥ Release Number of SSD
Type | (GB) | Merface | cucner ECC? ‘ o ear in Experiments
A 256 SATA Yes Yes MLC 2013 2
Yes
B 120 SATA Yes (LDPC) TLC 2015 2
C 120 SATA Yes Yes MLC NA 2

with the kernel version 4.10.0-19-generic. The experiments are
performed on six SSDs from different vendors. Table I provides
the detailed information about the characteristics of the SSDs
in our experiments.

The experiments are performed to reveal the impact of
workload dependant parameters such as workload WSS, re-
quests size, requests type (read/write), requests access pattern
(sequential/random), and sequence of accesses (RAR, RAW,
WAR, and WAW). In addition, we have investigated the effect
of SSDs internal volatile DRAM cache and the impact of time
intervals between the completion of the request and power
outage on the failure rate. The results of the experiments
reveal three types of failure namely data failure, FWA, and 10
error. In Section III-B, we have elaborated the failure detection
mechanism that have been employed in our test platform.

A. Impact of Time Interval After Request Completion and
Power Outage

In this section, we analyze the impact of time interval
between the completion of the request (i.e., when the ACK
signal is received in the application layer) and power outage
occurrence. The IO requests are submitted to random address
(uniform random distribution) with varying size between 4KB
and 1MB and the power fault is injected to the SSD in variable
time intervals after completion of the request. The experimental
results show that the power fault not only may disturb the
currently writing data, it may corrupt the previously written
data which was finished completely. Conducted experiments on
the SSDs (depicted in Table I) reveal that on average 700ms
after receiving ACK signal of the request in application layer,
the power fault can corrupt the corresponding request which
was successfully written on the SSD. The reason of such failure
can be due to the volatile DRAM cache of the SSD where write
pending requests are kept. We have also performed experiments
by disabling the SSD internal cache where the results reveal
the similar failures in such conditions.

B. Impact of Request Type

In this section, we evaluate the vulnerability of read/write
requests that are submitted to the SSD under power failures.
To this end, we have generated the workloads with random
access pattern (uniform random distribution) with varying size
between 4KB and 1MB where the type of requests varies from
fully write to fully read (i.e., the percentage of write operation
is 100%, 80%, 50%, 20%, and 0%). In these experiments, more
than 300 power faults are injected to the SSD during 24, 000

800
700 -
600 -
500 -
400
300
200
100

T T
Number of Data Failures =<1 1 45
1/0 Error BXXX3
FWA L2721
Data Failure per Power Fault Hm—

Number of Data Failures
N
Data Failure per Power Fault

Read Percentage (%)
Fig. 5: Impact of request type on data failures.

700 T T T T

T T T T
Number of Data Failures EXXX
Data Failure per Power Fault H—

600 -

Number of Data Failures
Data Failure per Power Fault

Workload Working Set Size (GB)
Fig. 6: Impact of workload working set size on data failure.

requests. As depicted in Fig. 5, it can be seen that by decreasing
the percentage of write requests in the workload, the ratio of
data failure decreases where in fully read workload, there is
no data failure, however, the IO error is occurred due to disk
unavailability during power failure. The workloads with write
requests are vulnerable to both data failure and FWA failures
where we detect about two data failure per power fault in our
experiments.

C. Impact of Workload Working Set Size (WSS)

In this section, we perform experiments to reveal the
impact of power fault on the ratio of data failures in different
workloads with different WSS. To this end, we have generated
the workloads with varying WSS from 1GB up to 90GB. The
size of requests is considered random between 4KB and 1MB
and the requests are submitted to the SSD with uniform random
access pattern. In these experiments, we have injected more
than 200 power faults to the SSD during 16,000 requests.
Fig. 6 demonstrates that the workloads WSS has no significant
impact on the ratio of data failures. Instead, the data failure is
significantly affected by the access patterns of the request (i.e.,
locality of IO requests) rather than the workload WSS which
is investigated in the next section.

D. Impact of Requests Access Pattern (Random/Sequential)

In this section, we investigate the impact of requests access
pattern on the failure rate. The experiments of this section are
done by submitting the IO requests of two different workloads
where the first one is consist of fully uniform random write
operations while the second one includes fully sequential write
operations. The request size in both workloads varies between
4KB and 1MB and the WSS of both workloads is considered
to be equal to 64GB. In these experiments, SSDs experience
more than 300 power faults during 24,000 requests. Note
that the experiments of this section include two independent
experiments where the running workload on the platform is
different. It is important to note that in the workloads with
sequential access pattern, FTL only keeps the first address in
the mapping table where such scheme reduces the amount of
table entries but on the other hand may have significant impact
on the failure rate due to power loss (particularly in case of
map table failure which is kept in the volatile DRAM cache).
The results of the experiments prove such claim and reveal that
the ratio of data failure in a workload with sequential access
pattern is about 14% more than the workload with random
access pattern.

T T
Number of Data Failures ESSX1 | 100
FWA EXXXA
Data Failure per Power Fault =

35000 -
30000 - 80
25000 [

20000 - 60

15000 40

10000 -
20

Number of Data Failure

5000 [

Data Failure per Power Fault

Request Size (KB)
Fig. 7: Impact of request size on data failure.

E. Impact of Request Size

In this section, we investigate the impact of request size
on the failure rate under power faults. To this end, we submit
the requests of the workload which includes the write requests
with uniform random access pattern to the SSD. The request
size of the workloads is constant in each experiment where it
varies between 4KB and 1MB in different experiments. In these
experiments, the SSD experiences more than 800 power failure
where the number of requests is more than 64, 000. As shown
in Fig. 7, the ratio of data failure in the workload with smaller
request size (e.g., 4KB) is significantly more than the workload
with larger request size. The main reason of such behavior is
due to the different number of committed request per time.
In a equal time interval, the number of requests with smaller
size is significantly larger than the requests with larger size.
Therefore, occurring a power failure can affect larger number
of requests in the workloads with smaller request sizes. It can
be seen from Fig. 7 that most of the failures in the workload
with 4KB request size is from FWA type where the ACK is
received in the application through the SSD but the data is not
written. This may be due to the impact of power failure on
volatile DRAM cache inside of the SSD while the experiments
on the SSDs with disabled cache suffer from FWA failure.
F. Impact of Requested IOPS Submitted to the SSD

Here we evaluate the impact of requested IOPS (i.e., the
number of operation that are submitted to the SSD in one
second) by the workload on the failure ratio under power faults.
To this end, we have generated various workloads with different
requested IOPS. The workloads include uniform random write
requests where the requests size varies between 4KB to 1MB.
In each experiment, more than 600 power faults are injected
to the SSDs. Fig. 8 depicts the responded IOPS of the SSD
and also the number of failures in each experiment based
on requested IOPS for each workload. It can be seen that
by increasing the ratio of the requested IOPS, the responded
IOPS by the SSD increases up to 6900 (the responded IOPS
saturates when we send the requests with more than 7000
IOPS to the SSD). The results reveal that data failure increases
by increasing the requested IOPS until the responded IOPS
saturates where increasing the requested IOPS has no impact
on the failure rate. This is because the SSD responds to only a
limited number of requests (about 6900 uniform random writes
in our experiments) where the fault only affects the responded
IOPS.

G. Impact of Sequence of the Accesses

In this section, we have performed experiments to evaluate
the vulnerability of the SSDs under power failure with the
workloads by different sequence of the accesses including
RAR, WAR, WAW, and RAW. In these experiments, each
request is submitted on the address of the previously completed
request. As depicted in Fig. 9, there is significantly large
number of failures due to power failure in the accesses with
the WAW pattern. This is due to the large number of write
operations in the workload with WAW accesses. The results
reveal that power failure after a WAW sequence may affect

8000

T T T - 1950
7000 - Responded IOPS - 1800 §
& Data Failure C=—3 4 1650 =2
6000 - - 1500 ©
2 5000 1 180 '
8 - 1200 =

L - 1050
T 4000 1 E
8_ 3000 [-4 750 ©O
@ 4600 %
g 2000 1as0 3
1000 - 130 E
-4 150 2

0 0
1200 2400 6000 12000 20000 25000 30000
Requested IOPS
Fig. 8: Impact of requested IOPS submitted to the SSD on number of data failures.

=

. 3000 T T T T 5 >
@ 2700 |- Number of Data Failures 145 8
= 2400 1/ Error B2 14 &
© 2100 - ' 135 &
Data Failure per Power Fault . o

© L i o
S 1800 3 &
& 1500 425 €
‘5 1200 12)
=4

5 900 - 115 3
2 600 41 B
5 300 -1 0.5 ©
] ©

0 o B

RAW WAR RAR

Sequence of Accesses
Fig. 9: Impact of sequence of the accesses on data failure.

WAW

both of written data (corresponding to write operation) and
the previously written data in that address. Such failures are
experienced in the accesses with WAR and RAW sequences
while similar to the workloads with fully read request, there is
no data failure in the workload with RAR accesses. Note that
in the workloads with WAR, WAW, and RAW accesses, SSDs
experience considerable number of failures from FWA type.

V. CONCLUSIONS

In this paper, we investigated the impact of workload depen-
dent parameters on the failure ratio of the SSDs under power
outage. To this end, we presented a fault injection and failure
detection platform which injects the realistic power faults to the
under test SSDs. During power failure, SSDs experience the
exact voltage drop behavior that occurs during power failures
in data centers. The results of our experiments reveal that
the failure ratio in SSDs due to power outage is significantly
affected by the parameters of the running workloads in the
application layer. In addition, we show that failures in SSDs
are not only due to volatile DRAM cache but also we observe
similar failures in SSDs with disabled internal cache.

REFERENCES

[1] R. Micheloni, A. Marelli, and K. Eshghi, Inside Solid
State Drives (SSDs). Springer Science & Business
Media, 2012.

R. Salkhordeh, H. Asadi, and S. Ebrahimi, “Operating
System Level Data Tiering Using Online Workload Char-
acterization,” The Journal of Supercomputing, vol. 71,
no. 4, pp. 1534-1562, 2015.

R. Salkhordeh, S. Ebrahimi, and H. Asadi, “ReCA: an
Efficient Reconfigurable Cache Architecture for Storage
Systems with Online Workload Characterization,” IEEE
Transactions on Parallel and Distributed Systems (TPDS),
vol. PP, no. PP, pp. 1-1, 2017.

Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu,
“Data Retention in MLC NAND Flash Memory: Char-
acterization,” High Performance Computer Architecture
(HPCA), pp. 551-563, 2015.

R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,
“Introduction to Flash Memory,” 2003.

G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and
T. Wobber, “Extending SSD Lifetimes with Disk-Based
Write Caches,” in File and Storage Technologies (FAST),
vol. 10, 2010, pp. 101-114.

(2]

(3]

(4]

(5]
(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

[14]
(15]
(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]
[25]

S. Boboila and P. Desnoyers, “Write Endurance in Flash
Drives: Measurements and Analysis,” in File and Storage
Technologies (FAST), 2010, pp. 115-128.

Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F.
Haratsch, “Vulnerabilities in MLC NAND Flash Mem-
ory Programming: Experimental Analysis, Exploits, and
Mitigation Techniques,” in High Performance Computer
Architecture (HPCA),. 1EEE, 2017, pp. 49-60.

F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-
Aware Flash Translation Layer Enhancing the Lifespan
of Flash Memory based Solid State Drives,” in File and
Storage Technologies (FAST), vol. 11, 2011, pp. 77-90.
E. Gal and S. Toledo, “Algorithms and Data Structures
for Flash Memories,” 2005.

M. Zheng, J. Tucek, F. Qin, M. Lillibridge, B. W. Zhao,
and E. S. Yang, “Reliability Analysis of SSDs under
Power Fault,” ACM Transactions on Computer Systems
(TOCS), vol. 34, p. 10, 2016.

M. Zheng, J. Tucek, F. Qin, and M. Lillibridge, “Under-
standing the Robustness of SSDs under Power Fault.” in
File and Storage Technologies (FAST), 2013, pp. 271-284.
R. McMillan, “Amazon Blames Generators for Blackout
that Crushed Netflix,” www.wired.com, Accessed: Sep.
2017.

T. Claburn, “Amazon Web Services Hit by Power Out-
age,” www.smh.com.au, Accessed: Sep. 2017.

R. Miller, “Human Error Cited in Hosting. com Outage,”
datacenterknowledge.com, 2012, Accessed: Sep. 2017.
A. Leach, “Level 3s UPS Burnout Sends Websites Down
in Flames,” www.theregister.co.uk, 2012, Accessed: Sep.
2017.

S.-K. Kim, J. Choi, D. Lee, S. H. Noh, and S. L.
Min, “Virtual Famework for Testing the Reliability of
System Software on Embedded Systems,” in Proceedings
of the 2007 ACM symposium on Applied computing(SAC).
ACM, 2007, pp. 1192-1196.

H.-W. Tseng, L. Grupp, and S. Swanson, “Understanding
the Impact of Power Loss on Flash Memory,” in Design
Automation Conference (DAC). ACM, 2011, pp. 35-40.
J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A Large-Scale
Study of Flash Memory Failures in the Field,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 43,
no. 1. ACM, 2015, pp. 177-190.

I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield,
A. Sivasubramaniam, B. Cutler, J. Liu, B. Khessib, and
K. Vaid, “SSD Failures in Datacenters: What? When? and
Why?” in Proceedings of the 9th ACM International on
Systems and Storage Conference(SYSTOR). ACM, 2016,
p-7.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf, “Characterizing
Flash Memory: Anomalies, Observations, and Applica-
tions,” in Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2009, pp. 24-33.
B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reli-
ability in production: The expected and the unexpected,”
in File and Storage Technologies (FAST), 2016.

Farnell, “ARDUINO-UNO,”
https://www.farnell.com/datasheets/1682209.pdf,
Accessed: Sep. 2017.

Atmel, “Atmega32B Datasheet,” www.atmel.com, Ac-
cessed: Sep. 2017.

SMPS-Power-Supply, “Computer Power
http://www.smpspowersupply.com/connectors-
pinouts.html, Accessed: Sep. 2107.

Supply,”

