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ABSTRACT

In recent years, high interest in using Virtual Machines (VMs) in
data centers and Cloud computing has significantly increased the
demand for high-performance data storage systems. A straight-
forward approach to provide a high performance storage system
is using Solid-State Drives (SSDs). Inclusion of SSDs in storage
systems, however, imposes significantly higher cost compared to
Hard Disk Drives (HDDs). Recent studies suggest using SSDs as a
caching layer for HDD-based storage subsystems in virtualization
platforms. Such studies neglect to address the endurance and cost
of SSDs, which can significantly affect the efficiency of I/O caching.
Moreover, previous studies only configure the cache size to provide
the required performance level for each VM, while neglecting other
important parameters such as write policy and request type, which
can adversely affect both performance-per-cost and endurance.

In this paper, we present a high-Endurance and Cost-efficient
I/O Caching (ECI-Cache) scheme for virtualized platforms, which
can significantly improve both the performance-per-cost and en-
durance of storage subsystems as opposed to previously proposed
I/O caching schemes. Unlike traditional I/O caching schemes
which allocate cache size only based on reuse distance of accesses,
we propose a new metric, Useful Reuse Distance (URD), which
considers the request type in reuse distance calculation, result-
ing in improved performance-per-cost and endurance of the SSD
cache. By online characterization of workloads and using URD,
ECI-Cache partitions the SSD cache across VMs and is able to dy-
namically adjust the cache size and write policy for each VM. To
evaluate the proposed scheme, we have implemented ECI-Cache
in an open source hypervisor, QEMU (version 2.8.0), on a server
running the CentOS 7 operating system (kernel version 3.10.0-327).
Experimental results show that our proposed scheme improves the
performance-per-cost and endurance of the SSD cache by 30% and
65% compared to the state-of-the-art dynamic cache partitioning
scheme, respectively.

ACM Reference Format:
Saba Ahmadian, Onur Mutlu, and Hossein Asadi. 2018. ECI-Cache: A

High-Endurance and Cost-Efficient I/O Caching Scheme for Virtualized
Platforms. In Proceedings of 18 (SIGMETRICS). ACM, Irvine, Califor-
nia, USA, 19 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Virtualization is widely used in data centers and Cloud comput-
ing in order to improve the utilization of high-performance servers
[48]. Integrating various Virtual Machines (VMs) running with
different operating systems on a server provides more flexibility
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and higher resource utilization while delivering the desired perfor-
mance for each VM. In addition, virtualization provides system
isolation where each VM has access only to its own resources. In
a virtualized platform, shown in Fig. 1, the resource allocation of
each VM is managed by a hypervisor. By employing various mod-
ules such as a VM scheduler and a memory and network manager,
the hypervisor orchestrates the sharing of resources between VMs
according to their demand, in order to maximize the overall per-
formance provided by the server (and this maximizes performance-
per-cost by enabling the use of a smaller number of physical servers
than one for each VM) [51, 53].
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Figure 1: Example state-of-the-art virtualization plat-
form.

With increasing performance requirements of data-intensive ap-
plications in data centers, storage subsystems have become per-
formance bottlenecks of computing systems. Hard Disk Drives
(HDDs), which are used as main media for data storage in storage
systems, provide large capacity and low cost, but they suffer from
low performance, particularly for random access workloads. The
low performance of HDD-based storage systems can be avoided by
employing high-performance storage devices such as Solid-State
Drives (SSDs). Compared to HDDs, SSDs provide higher perfor-
mance due to their non-mechanical structure used to retrieve and
store data. SSDs, however, impose up to 10X higher cost and sup-
port only a limited number of reliable writes [10], which makes the
replacement of all HDDs by SSDs usually prohibitively expensive
[1, 2, 37, 41].

In order to take advantage of the merits of both HDDs and
SSDs, several studies from EMC2, Facebook, FusionIO, Mercury,
and VMware [4, 9, 13, 16, 19, 25, 26, 28, 30, 33, 36, 37, 42, 49] em-
ploy high-performance SSDs as a caching layer for high-capacity
HDDs in storage systems (as shown in Fig. 1). Applying such I/O
caching on virtualization platforms requires a proper cache man-
agement scheme in order to achieve higher I/O performance. In
previous studies, such caches have been used as either a shared
global cache [16, 19, 30] or a cache statically partitioned across
VMs [9]. The former scheme fails to provide a guaranteed mini-
mum cache space for each VM. This is due to the fact that the
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entire cache is shared between all VMs and each VM can poten-
tially use up an unbounded amount of the entire cache space, af-
fecting the performance of the other VMs. The latter scheme stat-
ically partitions SSD space between VMs where the partitioning
is performed independently of the characteristics of the workloads
running on VMs. This scheme has two major shortcomings. First,
the allocated cache space could be underutilized by the VM if
there is low locality of reference in the workload access pattern.
Second, since cache space partitioning and allocation are done
statically offline, cache allocation for a new VM during runtime
is not practical using this scheme, which makes the scheme inflexi-
ble and the system underutilized. To alleviate the shortcomings of
the two aforementioned schemes, partitioned I/O caching has been
proposed. Variants of this technique dynamically estimate and al-
locate cache space for each VM by estimating an efficient cache
size for each VM [6, 27, 35]. They do so by calculating the reuse
distance of the workload, i.e., the maximum distance between two
accesses to an identical address [27, 38, 55] . Unfortunately, such
I/O caching schemes only focus on estimating cache size for VMs
and neglect other key parameters, such as write policy (i.e., how
write requests are handled by the cache), request type (i.e., read or
write requests), and their corresponding impact on the workload
reuse distance, which greatly affects the performance-per-cost and
endurance of the SSD cache, as we show in this work.

In this paper, we propose a new high-Endurance and Cost-
efficient I/O caching (ECI-Cache) scheme which can be used for
virtualized platforms in large-scale data centers. ECI-Cache aims
to improve both the performance-per-cost and endurance of the
SSD cache by dynamically configuring 1) an efficient cache size to
maximize the performance of the VMs and 2) an effective write
policy that improves the endurance and performance-per-cost of
each VM. To this end, we propose a metric called Useful Reuse
Distance (URD), which minimizes the cache space to allocate for
each VM while maintaining the performance of the VM. The main
objective of URD is to reduce the allocated cache space for each
VM. The reduced cache space is obtained by computing workloads
reuse distance based on request type, without considering unneces-
sary write accesses (i.e., writes to a block without any further read
access). Employing URD in our proposed I/O caching scheme max-
imizes the performance-per-cost and also enhances the endurance
of the SSD cache by allocating much smaller cache space compared
to state-of-the-art cache partitioning schemes. We also propose a
detailed analysis of the effect of write policy on the performance
and endurance of an SSD cache, clearly demonstrating the nega-
tive impact of having the same write policy for VMs with different
access patterns (as used in previous studies) on the IO perfor-
mance and SSD endurance. To achieve a sufficiently high hit ratio,
ECI-Cache dynamically partitions the cache across VMs.

In the proposed scheme, we mainly focus on two approaches: 1)
URD based per-VM cache size estimation and 2) per-VM effec-
tive write policy assignment, via online monitoring and analysis
of IO requests for each VM. In the first approach, we allocate
much smaller cache space compared to previous studies for each
VM, which results in improved performance-per-cost. In the sec-
ond approach, we assign an effective write policy for each VM in
order to improve the endurance of the I/O cache while minimiz-
ing the negative impact on performance. The integration of these
two approaches enables ECI-Cache to partition and manage the
SSD cache between VMs more effectively than prior mechanisms
[6, 27, 35].

We have implemented ECI-Cache on QEMU (version 2.8.0) [39],
an open source hypervisor (on the CentOS 7 operating system, ker-
nel version 3.10.0-327). We evaluate our scheme on an HP ProLiant
DL380 Generation 5 (G5) server [20] with four 146GB SAS 10K
HP HDDs [21] (in RAID-5 configuration), a 128GB Samsung 850
Pro SSD [44], 16GB DDR2 memory, and 8 x 1.6GHz Intel(R) Xeon
CPUs. We run more than fifteen workloads from the SNIA MSR
traces [47] on VMs. Experimental results show that ECI-Cache 1)
improves performance by 17% and performance-per-cost by 30%
compared to the state-of-the-art cache partitioning scheme [27],
2) reduces the number of writes committed to the SSD by 65%
compared to [27], thereby greatly improving the SSD lifetime.

To our knowledge, we make the following contributions.

• This paper is the first to differentiate the concept of reuse
distance based on the type of each request. We propose a
new metric, Useful Reuse Distance (URD), whose goal is
to reduce the cost of the SSD cache by allocating a smaller
cache size for each VM.

• By conducting extensive workload analyses, we demonstrate
the importance of dynamically adjusting the cache write pol-
icy on a per-VM basis, which no previous I/O caching policy
explicitly takes into account. We use these analyses to de-
velop a mechanism that can efficiently adjust both cache size
and write policy on a per-VM basis.

• We propose ECI-Cache, which consists of two key novel
components: 1) dynamic per-VM cache size estimation, and
cache partitioning using the URD metric and 2) per-VM
write policy to improve both system performance-per-cost
and SSD cache lifetime.

• We implement ECI-Cache in QEMU, an open source hyper-
visor. Our extensive evaluations of ECI-Cache on a large
number of diverse workloads show that ECI-Cache signifi-
cantly improves performance-per-cost over the best previous
dynamic cache partitioning policy and reduces the number
of writes to the SSD.

The rest of the paper is organized as follows. Sec. 2 discusses re-
lated work. In Sec. 3, we provide an illustrative example and mo-
tivation. In Sec. 4, we propose the metric of URD. In Sec. 5, we
present our proposed technique. Sec. 6 provides experimental setup
and results. Finally, Sec. 7 concludes the paper.

2 RELATED WORK

Previous studies on I/O caching in virtualization platforms inves-
tigate 1) the location of the cache or 2) the cache partitioning
policy. The former set of works explores caching techniques based
on where the I/O cache resides, whereas the latter examines mech-
anisms for sharing and partitioning of the cache across VMs. Based
on the location of the SSD cache, three main alternatives for I/O
caching in virtualization platforms have been introduced, as shown
in Fig. 2. We next describe possible schemes for I/O caching and
discuss their advantages and shortcomings.

2.1 VM-based I/O Caching

In VM-based I/O caching (Fig. 2a), each VM in a virtualized plat-
form has full control on a portion of the SSD cache. In this scheme,
separate SSD slots are allocated for each VM and the cache man-
agement is conducted by VMs. Cache size adjustment, cache par-
titioning, and sharing techniques cannot be applied in this scheme.
In order to employ a VM-based I/O caching scheme in a virtual-
ized platform, caching schemes presented in [13, 28, 37, 42] can
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Figure 2: I/O caching using SSDs in virtualized platforms.

be applied on VMs and improve the IO performance of individual
VMs, which is likely not efficient in virtualized platforms.

2.2 Storage system-based I/O Caching

In Storage system-based I/O caching (Fig. 2b), VMs and the hy-
pervisor have no knowledge of the SSD cache, which prohibits
the advantages achieved by cache partitioning schemes. Similar
to VM-based I/O caching, previous caching techniques, such as
[13, 28, 37, 42], can be employed in storage systems, but such
techniques cannot be managed in a virtualized platform.

2.3 Hypervisor-based I/O Caching

In Hypervisor-based I/O caching (Fig. 2c), cache management is
done by the hypervisor. Since the hypervisor has full knowledge
about workloads running on VMs, it can perform efficient cache
management and cache space partitioning across VMs. This type
of I/O caching scheme has been proposed frequently in previous
studies [6, 27, 35]. These works mainly focus on cache manage-
ment, sharing, and partitioning across VMs. From the partition-
ing perspective, Hypervisor-based I/O caching schemes can be di-
vided into two groups: global/static and dynamic cache partition-
ing. We next describe state-of-the-art hypervisor-based I/O caching
schemes.

2.3.1 Global Caching and Static Cache Partitioning. Examples
of global caching or static cache partitioning schemes include the
EMC VFCache [16], NetApp Mercury [9], Fusion-io ioTurbine [19],
and vFRM [30]. In global caching, each VM can use up the entire
SSD cache, thereby potentially adversely affecting the performance
of the other VMs [6]. In static cache partitioning, SSD cache space
is equally partitioned across VMs based on the number of VMs
in the platform, without taking into account the data access and
reuse patterns of each VM. Static cache partitioning is also un-
able to allocate cache space for newly-added VMs during online
operation.

2.3.2 Dynamic Cache Partitioning. Dynamic cache partitioning
schemes alleviate the shortcoming of global and static cache par-
titioning [3, 5, 6, 27, 35, 54]. These techniques partition the SSD
cache across VMs based on the cache space demand of each VM,
and they are aware of data access and reuse pattern of VMs. Argon
[54] presents a storage server that partitions the memory cache
across services based on their access patterns. This scheme allo-
cates minimum cache space for each service to achieve a prede-
fined fraction of hit ratio namely R-Value. To estimate the required
cache size for each service, Argon employs an online cache simula-
tion mechanism and finds the fraction of accesses that are served by

cache (namely I/O absorption ratio). Janus [3] partitions the flash
tier between workloads at the filesystem level. Janus maximizes
the total read accesses served from the flash tier by allocating the
required space for each workload. The required space is estimated
based on the ratio of read operations of each workload. S-CAVE
[6] is a hypervisor-based online I/O caching scheme that allocates
cache space for each VM by dynamically estimating the working
set size of workloads running on VMs. To minimize the possibility
of data loss, S-CAVE uses theWrite-Through (WT) policy in cache
configuration. vCacheShare [35] is another hypervisor-based I/O
caching scheme that dynamically partitions the SSD cache space
across VMs. This scheme considers locality and reuse intensity (i.e.,
burstiness of cache hits) in order to estimate the required cache
size for each VM. vCacheShare reduces the number of writes in the
SSD cache by using the Write Around policy where write opera-
tions are always directed to the storage subsystem. Such scheme
shows improved performance only for read operations while it has
no performance improvement for write operations. Centaur [27],
another online partitioning scheme for virtualized platforms, aims
to maximize the IO performance of each VM as well as meeting
QoS targets in the system. It employs Miss Ratio Curves (MRCs)
to estimate an efficient cache space allocation for each VM. Cen-
taur does not consider the negative impact of write operations on
SSD cache lifetime in 1) cache size estimation, or 2) write policy
assignment. Centaur employs the Write-Back (WB) policy to max-
imize the IO performance without considering the impact of the
WB policy on the number of writes into the SSD. CloudCache [5]
estimates each VM’s cache size by considering Reuse Working Set
Size (RWSS), which captures temporal locality and also reduces
the number of writes into the SSD cache. In addition, this scheme
employs a VM migration mechanism to handle the performance
demands of VMs in the Cloud.

To summarize, among previous studies, S-CAVE [6], vCache-
Share [35], Centaur [27], and CloudCache [5] are the closest to our
proposal. However, they only consider cache space partitioning and
do not consider adaptive write policies. The cache size estimation
scheme presented in S-CAVE, which is based on working set size
estimation fails in cache size estimation for workloads with sequen-
tial access patterns and has become deprecated, as shown in [35].
vCacheShare and CloudCache perform cache size estimation based
on reuse intensity. Such cache allocation schemes are based on as-
sumptions that cannot be applied to the I/O cache in the storage
subsystem, as demonstrated in [27]. Reuse intensity based schemes
are only effective for workloads that are aligned with their size es-
timation schemes and would not be accurate compared to reuse
distance based schemes such as [27]. The state-of-the-art scheme
is Centaur, which works based on MRCs and reuse distance anal-
ysis. This scheme does not consider 1) the impact of request type
on reuse distance calculation and 2) the impact of write policy on
either endurance or performance.

3 MOTIVATION AND ILLUSTRATIVE
EXAMPLE

The main purpose of employing a high-performance cache layer is
to reduce the number of accesses to the disk subsystem. Theoreti-
cally, an ideal SSD cache layer would provide access latency equal
to the SSD device access latency. However, due to limited SSD
size and imperfect write policy, the observed average latency of
accesses to the SSD cache is much higher than the SSD device la-
tency. For example, we find that the access latency of the caching
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technique presented in [28] is 50X higher than the raw access
latency of the employed SSD device, as shown in Fig. 3.1
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Figure 3: HDD and SSD access latency vs. I/O caching
[13, 28].

The major parameters affecting IO cache performance are cache
size, write policy, and replacement policy. In this work, we mainly
study the effect of cache size and write policy on the performance
and endurance of an SSD cache. A commonly-used metric to com-
pare the performance of different cache configurations is cache hit
ratio. To maximize the cache hit ratio, the cache size should be
large enough to house the working set of the running workload.
Similar to size, write policy can also affect the performance of the
cache particularly for write-intensive workloads. There are three
major write policies that are fundamentally different: 1) Write-
Back (WB), 2) Write-Through (WT), and 3) Read-Only (RO).
WB reduces the number of accesses to the storage subsystem by
buffering temporal writes in the SSD cache and writing them back
to the storage subsystem only after the buffered dirty blocks are
evicted. WB can improve the performance of both read and write
operations, but it suffers from low reliability since the SSD cache
can become a single point of failure (i.e., buffered writes can get
lost before being propagated to the storage subsystem, if the SSD
fails). WT policy buffers write operations but also transfers them
to the storage subsystem at the same time. This policy improves
the performance of only read operations but provides a higher
level of reliability by assuming that each written block is propa-
gated immediately to the storage system. RO caches only the read
operations and sends write operations directly to the storage sub-
system without buffering them. Therefore, it is not able to improve
the performance of write operations but it keeps them reliable. We
conduct experiments to show the impact of cache size and cache
write policy on IO performance and SSD endurance. To this end,
we perform several experiments on a system with a 200GB HDD
and 30GB SSD (our experimental setup is reported in Table 1). We
employ EnhanceIO [17] as an open source SSD caching scheme in
the experiments. To investigate the impact of write policy on per-
formance and endurance, we run 30 workloads from Filebench on a
fixed-size SSD cache with both the WB and RO policies. We omit
the results of the WT policy, since WT has the same endurance
as WB and provides less performance than WB.

Fig. 4 shows the impact of write policy on both Bandwidth (i.e.,
the amount of data that is transmitted for a workload in one sec-
ond) and I/O Per Second (IOPS) of eight sample workloads (Fig.
4a through Fig. 4h). We make five major observations: 1) the SSD
cache has 2.4X performance improvement with the WB policy in
the Fileserver workload where the RO cache has only 1.6X im-
provement on the IO performance of this workload (Fig. 4a). 2)
WB policy improves the IO performance of RandomRW and Var-
mail workloads, both over no caching (Fig. 4b and Fig. 4c). 3)

1All numbers in Fig. 3 are based on the results reported in [13, 28].

Table 1: Setup of the motivational experiments.

HW/SW Description

Server HP Proliant DL380 G5

CPU 8x 1.6GHz Intel(R) Xeon

Memory 16 GB DDR2, Configured Clock Speed: 1600 MHz

HDD 438GB: four SAS 10K HP HDDs in RAID5 (partition size = 200GB)

SSD 128GB Samsung 850 Pro (partition size = 30GB)

OS Centos 7 (Kernel version: 3.10.0-327)

Filesystem ext3 (Buffer cache is disabled) [52]

Webserver and Webproxy workloads achieve good and similar per-
formance with both the WB and RO write policies (Fig. 4d and
Fig. 4f). 4) Employing the SSD cache has negative impact on the
performance of the CopyFiles workload (Fig. 4e). 5) The RO write
policy can significantly improve the performance of Mongo and
SingleStreamRead workloads by 20% and 48%, respectively (Fig.
4g and Fig. 4h).

Our main experimental conclusions are as follows:

(1) In workloads such as Fileserver, Varmail, and SingleStream-
Read, only a specific cache configuration can improve IO per-
formance. About 45% of the workloads prefer the WB policy
and about 33% of workloads prefer the RO policy. Hence, it
is necessary to employ a workload-aware write policy for the
IO cache. Random-access and write-intensive workloads pre-
fer WB while random-access and read-intensive workloads
can be satisfied with the RO policy.

(2) In 20% of workloads, e.g., Webserver and Webproxy, both
WB and RO write policies result in similar improvements.
Hence, we can employ RO instead of WB in order to re-
duce the number of writes to the SSD cache. Such workloads
that are random and read-intensive do not take advantage
of buffering writes in the SSD cache.

(3) In workloads such as Mongo and CopyFiles, the SSD cache
provides little performance improvement. Hence, one can al-
locate SSD cache space to other workloads that can benefit
more from the available cache space. One can prevent the
allocation of cache space for the workloads that do not ben-
efit from allocated cache, and hence reduce the number of
unnecessary writes into the SSD cache.

4 USEFUL REUSE DISTANCE

Traditional Reuse Distance (TRD) schemes [7, 14, 15, 18, 34, 38, 45,
55, 56] work based on the addresses of requests without considering
the types of the requests. We provide examples demonstrating the
benefit of considering the request type of the workloads in the
calculation of reuse distance. The main objective of this analysis
is to present the metric of Useful Reuse Distance (URD), which
enables assigning smaller amounts of cache space to the VMs while
preserving I/O performance.

We examine a sample workload (shown in Fig. 5) and show how
reuse distance analysis assigns cache size for the workload in two
cases: 1) without considering request type (TRD) and 2) consider-
ing request type (URD). In the sample workload given in Fig. 5a,
the maximum reuse distance is due to the access of Req7 to the
second sector which was previously (five requests before) accessed
by Req2. Hence, the maximum TRD of the workload is equal to
4, and according to TRD, we should assign cache space equal to
5 blocks in order to maximize the hit ratio of this workload. Fig.
5a also shows the contents of the allocated cache to this workload
based on TRD. It can be seen that when we allocate cache space
based on TRD, we reserve one block of cache (Block 2) to keep
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Figure 4: Impact of write policy on the performance of workloads (NC: No Cache, WB: Write Back, RO: Read Only).
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and (b) with considering request type (REQ: Request,
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Cache Block).

Here we classify the sequence of accesses in four groups based
on their type (illustrated in Fig. 6): 1) Read After Read (RAR),
2) Write After Read (WAR), 3) Read After Write (RAW), and
4) Write After Write (WAW). We show how data blocks of such
accesses are stored in both the WB and WT caches (i.e., allocate
on write). Fig. 7 shows the operation of the cache for both read
and write requests [23]. The operation of cache is defined for two
cases: 1) for read accesses, if the data is found in the cache we
read data from cache. Otherwise, the data is read from the disk
subsystem and is stored in the cache for further access. 2) Write
operations are directly written to the cache and may modify the
previously written data in the cache. We define cache hit only for
read requests.

(1) RAR: In the first read access, a cache miss fetches data from
HDD to the cache. The second access reads the data from
the cache. In this case, caching the data block of the first
access improves the hit ratio at the cost of imposing one
write access to the SSD.

(2) WAR: The first read access leads to fetching the data from
HDD to the cache. The second access modifies the data in
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Figure 7: Flowchart of I/O cache access for a (a) Read or
(b) Write.

the cache without any read access to this block. In this case,
caching the data block of the first read access does not im-
prove the hit ratio but it comes at the cost of two writes into
the SSD.

(3) RAW: The first access writes the data to the cache. The
second access reads the data from the cache. In this case,
caching the data block of the first access increases the hit
ratio of the cache at the cost of imposing one write access
into the SSD.
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(4) WAW: The first access writes the data to the cache. The
second access modifies the data without any read access. In
this case, caching the data block of the first access does not
improve the hit ratio but comes at the cost of two writes to
the cache.

We now show how we can allocate a smaller cache size to the
sample workload (shown in Fig. 5b) by distinguishing between the
four different types of access patterns we just described. We call
this scheme Useful Reuse Distance (URD) as it takes into account
the request type in calculating the reuse distance of the workload.
URD only considers accesses to the referenced data. It eliminates
WAW and WAR access patterns from the reuse distance calcula-
tion. It considers only the maximum reuse distance of RAR and
RAW access patterns in reuse distance calculation. The maximum
URD of the sample workload (Fig. 5b) is equal to 1, due to the
read access of Req3 to the first sector of disk which was previously
(two request before) written by Req1. In this case, we assign cache
size equal to only two blocks. Fig. 5b shows the contents of the
allocated cache space based on URD for the sample workload. It
can be seen that by employing the concept of URD, we achieve
hit ratio similar to the TRD scheme while reducing the allocated
cache size.

To summarize, in order to show how URD is able to allocate
a smaller cache space compared to TRD and at the same time
also achieve a similar hit ratio, we classify the workloads into two
groups:

(1) Workloads where RAR and RAW (RA*) accesses are in-
volved in the maximum reuse distance calculation.

(2) Workloads where WAR and WAW (WA*) accesses are in-
volved in the maximum reuse distance calculation.

These workloads are characterized with the following two equa-
tions, respectively.2

1 : RD(WA∗) ≤ RD(RA∗) → TRD ∝ RD(RA∗),
URD ∝ RD(RA∗) → TRD = URD

2 : RD(WA∗) > RD(RA∗) → TRD ∝ RD(WA∗),
URD ∝ RD(RA∗) → TRD > URD

(1)

In the workloads of the first group (Eq. 1: part 1), both TRD and
URD work similarly in cache size estimation. On the other hand, in
the workloads of the second group (Eq. 1: part 2), the URD of the
workload is smaller than TRD and hence URD allocates a smaller
cache size compared to TRD. This is because URD considers only
the RA* accesses. The maximum reuse distance of RA* requests is
smaller than the maximum reuse distance of WA* requests for the
workloads in the second group and hence URD provides smaller
maximum reuse distance and leads to the allocation of a smaller
cache space. In this case, URD achieves a similar hit ratio while
allocating a smaller cache space compared to TRD.

5 ECI-CACHE ARCHITECTURE

In this section, we describe the architecture of the ECI-Cache. ECI-
Cache 1) collects and analyzes the access patterns of the VMs and
2) allocates an efficient and effective cache size and write policy
to each VM. Fig. 8 provides an overview of the ECI-Cache archi-
tecture in the hypervisor of a virtualization platform. As shown
in this figure, ECI-Cache consists of three major components: (1)
Monitor, (2) Analyzer, and (3) Actuator. ECI-Cache resides in the
path of IO requests coming from VMs to the storage subsystem.

2RD: Reuse Distance.
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Figure 8: Architecture of ECI-Cache.

Monitor captures and collects information about the IO behavior
of each VM. Analyzer decides the cache size and write policy by
characterizing the IO behavior of the corresponding VM. Actuator
realizes the decisions made by Analyzer by allocating an efficient
and effective cache space and write policy for each VM in the SSD
cache. We describe each component in more detail:

(1) Monitor receives all the IO requests coming from VMs and
extracts important information such as VM Identification
Number (VM-ID), request type, destination address, and re-
quest size by using blktrace, a block layer IO tracing tool
[8] that is available in the Linux kernel (version 2.6.16 and
upper). Blktrace receives event traces from the kernel and
records the IO information. We modified the source code of
blktrace to extract the owner of each request (i.e., the VM
that sends the request) at the hypervisor level. Such mod-
ification helps us to classify the requests and discover the
access patterns of the running workloads in different VMs.
The extracted information is passed to Analyzer.

(2) Analyzer decides 1) the target destination of a given IO re-
quest, 2) an efficient cache size for each VM, and 3) the
write policy of the I/O cache for each VM, based on 1) the
information it receives from Monitor and 2) a database it
employs, called VM Info. Analyzer keeps information about
each VM, such as cache size, write policy, workload charac-
teristics, and the number of VMs running in the system in
the VM Info database.

(3) Actuator is responsible for realizing the decisions made by
Analyzer. It allocates the decided cache space for each VM,
configures the decided write policy, and also routes the IO
requests to the SSD cache or the storage subsystem. Actua-
tor keeps logs for blocks stored in either the SSD cache or
the storage subsystem in a table (namely Map Table). This
table is used for responding to future requests.

Typically, in a virtualization platform, there are several VMs run-
ning various workloads with different IO behavior. The hypervisor
is responsible for partitioning the cache space efficiently between
VMs. In workloads with a sequential access pattern, there is lit-
tle locality of reference and hence buffering data to capture future
reuse demonstrates very poor hit ratio (Fig. 9a). In workloads with
a random access pattern, the probability of referencing the blocks
that are accessed previously is significantly greater than that in
workloads with a sequential access pattern and hence buffering
data with a random access pattern improves the hit ratio (Fig.
9b). Hence, in our proposed architecture, cache space will be allo-
cated to only VMs with random read or write access patterns. Sec.
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Figure 9: Cache hits in sequential and random access pat-
terns.

5.1 describes our proposed algorithm for cache space partitioning
across VMs via online characterization of the workloads. Sec 5.2
describes the write policy assignment to each VM.

5.1 Efficient Cache Size Estimation

We propose an ECI-Cache size allocation algorithm, which aims
to allocate an efficient cache size for each VM based on the reuse
distances of the running workloads. Previously, in Sec. 4, we pro-
posed the metric of URD and provided an example that showed
the effect of considering request type on 1) the reuse distance of a
workload and 2) the estimated cache size. We also demonstrated
that employing URD instead of TRD in cache size estimation pre-
serves the performance of the workload while reducing the allo-
cated cache size. Such a scheme allocates a much smaller cache
space to the workloads and hence improves the performance-per-
cost of each VM. It also reduces the number of unnecessary writes
(due to WAW and WAR operations) into the SSD cache, thereby
improving SSD lifetime.

Periodically, ECI-Cache calculates the URD of the running
workloads in VMs and then estimates an efficient cache size for
each VM. To provide the minimum latency for all VMs, we em-
ploy an optimization algorithm that meets the conditions of Eq.
2. In this equation, ci is the allocated cache space for each VMi,
C is the total SSD cache space, N is the number of running VMs,
and hi(ci) denotes the achieved hit ratio for the running workload
on VMi when we allocate cache space equal to ci. In addition,
Thdd and Tssd indicate the average read/write access latency to
the HDD and the SSD, respectively.


LatencyVMi = hi(ci)× Tssd + (1− hi(ci))× Thdd

Objective: Minimize[
∑N

i=1 LatencyVMi]

Constraint1:
∑N

i=1 ci ≤ C

Constraint2: 0 ≤ ci ≤ curdi

(2)

According to the constraints in Eq. 2, ECI-Cache partitions the
cache space in a way that aims to minimize the aggregate latency
of all VMs. Since allocating cache space for workloads with se-
quential access patterns achieves very poor hit ratio, ECI-Cache
allocates cache space for VMs with random access patterns that
have a high degree of access locality. ECI-Cache estimates the true
amount of cache space for each VM based on URD. The total SSD
cache space should be greater than or equal to the sum of the

cache sizes of all N VMs. Hence, we have two possible cases for
the allocated cache size: (1) the sum of estimated cache sizes for
all VMs using URD is less than the total SSD cache space or (2)
the sum of estimated cache sizes is greater than the total SSD
cache space. In the first case (i.e., when the SSD cache space is
not limited), ECI-Cache would allocate the exact estimated cache
space for each VM and thus maximize the overall hit ratio. In
the second case (i.e., when the SSD cache space is limited), since
we have shortage of cache space, it is necessary to recalculate the
cache size for each VM in order to fit each VM into the existing
cache space.

Algorithm 1 shows how ECI-Cache estimates and allocates
cache space in a virtualized platform with N VMs (Algorithm 4
in the Appendix provides a more detailed version of Algorithm 1).
Initially, a previously defined minimum cache size (cimin) is allo-
cated to each VM.3 At specific time intervals (∆t), we separately
extract the IO traces of the running workloads on the VMs into
text files (line 1 and line 2). The information included in the IO
traces for each request are: 1) the destination address, 2) size, 3)
type, and 4) VMID of the request. This information is extracted
by the Monitor part of the ECI-Cache.

In the next step, we use the collected traces to calculate the
URD of the workloads using the calculateURD function (line 4).
In the calculateURDbasedSize function (line 5), based on the
calculated reuse distances, we find the required cache space for
each VM that maximizes the hit ratio. We check the feasibility
of the estimated cache sizes to see if the sum of estimated cache
sizes (csum which is calculated in line 6) is less than the total
SSD cache capacity (line 8). When the condition in line 8 is met
and the sum of estimated cache spaces for all VMs is less than
or equal to the total SSD cache capacity, we call the cache space
allocation “feasible”; otherwise (when the condition in line 11 is
met) we call the allocation “infeasible”. In case of in-feasibility (in
line 13), we need to recalculate the cache space allocation of each
VM such that the SSD cache capacity is not exceeded. To do so,
we run the calculateEffSize function that employs an optimized
minimization algorithm (“fmincon”) [32] to find the most efficient
set of cache space allocations that minimizes the aggregate latency
of all VMs under the constraint that the total allocated cache space
is less than the SSD cache capacity.4 The input of the minimization
algorithm is (1) the existing SSD cache capacity, (2) the hit ratio
function of each VM (which will be described in Algorithm 2)
based on allocated cache space (H(c)) that has been extracted
by analyzing the reuse distances of the workloads, and (3) the
estimated cache sizes by the algorithm which cannot be fit into
the existing SSD cache capacity. Finally, in line 15 we allocate
efficient cache spaces for each VM.

Algorithm 2 shows the structure of the hit ratio function. h(ci)
provides the hit ratio that can be obtained, if we assign a spe-
cific cache space (ci) to VMi. This function is extracted from
the output of the calculateURD function (described in Algorithm
1). In the calculateURD function, we extract the ratio of ac-
cesses with useful reuse distance N (URDN ). Then, for each ci
(ci = URDN × cacheBlkSize), hi(ci) is equal to ratio of accesses
with useful reuse distance N . The specific cache space ci is cal-
culated based on the different reuse distances whose hit ratio is
the ratio of corresponding reuse distances. In each time interval,
in case of infeasibility, we update the hit ratio function of each

3In the experiments, cimin
is set to 1, 000 blocks.

4To this end, we use the “fmincon” function from the MATLAB Optimiza-
tion toolbox [32].
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Algorithm 1: ECI-Cache size allocation algorithm.

/* Inputs: Number of VMs: (N), SSD cache size: (C), HDD Delay: (THDD),

SSD Delay: (TSSD) */

/* Output: Efficient cache size for each VM: (ceff [1..N ]) */

1 Sleep for ∆t

2 Extract the traces of the workloads running on the VMs including 1)

destination address, 2) request size, and 3) request type

3 for i = 1 to N do
4 URD[i] = calculateURD(V M [i])

5 sizeurd[i] = calculateURDbasedSize(URD[i])

6 csum+ = sizeurd[i]

7 end

/* Check the feasibility of size estimation and minimize overall latency for

estimated sizeurd[1..N ] */

8 if csum ≤ C then
9 ceff [1..N ] = sizeurd[1..N ]

10 end

11 else if csum > C then
12 Create hit ratio function of VMs (Hi(c)) based on reuse distance of the

workloads.

13 ceff [1..N ] = calculateEffSize(sizeurd[1..N ], C)

14 end

15 allocate(ceff [1..N ], V M [1..N ])

/*

Functions Declaration:

calculateURD */

16 Function calculateURD(V M) is
/* This function calls PARDA [38] which is modified to calculate URD

(reuse distance only for RAR and RAW requests.) */

17 return URD

18 end

19 /*

calculateURDbasedSize */

20 Function calculateURDbasedSize(URD) is
21 sizeurd = URD × cacheBlkSize

22 return sizeurd

23 end

24 /*

calculateEffSize */

25 Function calculateEffSize(sizeurd[1..N ], C) is
26 initialSize = {cmin, ..., cmin}
27 lowerBound = {cmin, ..., cmin}
28 upperBound = {sizeurd[1], ..., sizeurd[N ]}
29 weightV M = {1, ..., 1}

/* Here we use fmincon function from MATLAB Optimization toolbox. */

30 ceff [1..N ] =

fmincon(ObjectiveFunction, initialSize, weightV M,Ctot, {}, {}
, lowerBound, upperBound)

31 return ceff [1..N ]

32 end

33 /*

ObjectiveFunction */

34 Function ObjectiveFunction() is
35 for i = 1 to N do
36 h[i] = Hi(c[i])

37 hsum+ = h[i]

38 csum+ = c[i]

39 end

40 diff = C − csum

41 Obj = diff + (hsum) × TSSD + (N − hsum) × THDD

42 return Obj

43 end

VM and feed it to the minimization algorithm. The minimization
algorithm uses the hit ratio function of running VMs to minimize
the sum of latency of all VMs, as calculated using Eq. 2.

5.2 Write Policy Estimation

In order to allocate the most efficient write policy for each VM,
ECI-Cache analyzes the access patterns and also the request types
of the running workloads on the VMs. We choose between RO and
WB policies for each VM. The key idea is to use 1) the RO policy
for VMs with write operations without any further read access
and 2) the WB policy for VMs with referenced write operations
(i.e., write operations with further read access). To minimize the
number of unnecessary writes, we assign the RO policy to the
caches of VMs with read-intensive access patterns (including RAR

Algorithm 2: The structure of hit ratio function.

1 Function Hi(c) is
2 if 0 ≤ c < m1 then
3 h = h1

4 end

5 else if m1 ≤ c < m2 then
6 h = h2

7 end

8 ...

9 else if mk−1 ≤ c < mk then
10 h = hk

11 end

12 return h

13 end

and RAW accesses). The RO policy improves the performance of
read operations and increases the lifetime of the SSD. In addition,
such a scheme is more reliable since it does not buffer writes in
the cache.

As mentioned previously in Sec. 5, Analyzer is responsible for
the write policy assignment for each VM and it does so period-
ically (every ∆t). Analyzer checks the ratio of WAW and WAR
operations (namely, writeRatio). If the writeRatio of the running
workload exceeds a defined threshold, we change the write policy
to RO, to avoid storing a large number of written blocks in the
cache. This is due to two reasons: 1) such a workload includes a
large amount of writes and holding such writes in the SSD cache
would likely not have a positive impact on the hit ratio, 2) caching
such a large amount of writes has a negative impact on the en-
durance of the SSD. We select the WB cache policy when the
running workload on a VM includes a large fraction of RAW ac-
cesses. In addition, we assign the RO policy to the caches with a
larger fraction of WAW and WAR accesses.

Algorithm 3 shows how ECI-Cache assigns an efficient write
policy for each VM’s cache space. Initially, we assign the WB policy
for a VM’s cache space. Then, periodically, we analyze the behavior
of the running workload and re-assess the write policy. In line 3 of
Algorithm 3, after a period of time (∆t), we calculate the ratio of
WAW and WAR requests (writeRatio) for VMi (line 4). In line 5,
we check whether the ratio of WAW and WAR requests is greater
than a threshold (namely wThreshold) or not. If the ratio of such
requests is greater than wThreshold, we assign the RO policy for
VMi (in line 6); otherwise the policy remains as WB.

Algorithm 3: ECI-Cache write policy assignment algorithm.

/* Inputs: Number of VMs: (N) */

/* Output: Efficient cache policy for each VM: (Pieff
) */

1 set(Pieff
, V Mi) = WB /* Initialization */

2 for i = 1 to N do
3 Sleep for ∆t

4 writeRatio =
getNumOfWAW (V Mi)+getNumOfWAR(V Mi)

getNumOfReq(V Mi)

5 if writeRatio ≥ wThreshold then
6 set(Pieff

, V Mi) = RO

7 end

8 end

6 EXPERIMENTAL RESULTS

In this section, we provide comprehensive experiments to evaluate
the effectiveness of the ECI-Cache.

6.1 Experimental Setup

To evaluate our proposed scheme, we conduct experiments on a
real test platform, an HP ProLiant DL380 Generation 5 (G5)
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server [20] with four 146GB SAS 10K HP HDDs [21] (in RAID-5
configuration), a 128GB Samsung 850 Pro SSD5 [44] used as the
SSD cache, 16GB DDR2 memory from Hynix Semiconductor [46],
and 8 1.6GHz Intel(R) Xeon CPUs [24]. We run the QEMU hyper-
visor on the Centos 7 operating system (kernel version 3.10.0-327)
and create different VMs running Ubuntu 15.04 and Centos 7 op-
erating systems on the hypervisor. The configuration of the device
layer is in the default mode where the request merge option in the
device layer is enabled for a 128-entry device queue size. We have
integrated ECI-Cache with QEMU to enable dynamic partition-
ing of the SSD cache and allocation of an efficient cache space and
write policy for each VM.

6.2 Workloads

We use MSR traces from SNIA [47], comprising more than fifteen
workloads, as real workload traces in our experiments. We run
Ubuntu 15.04 and Centos 7 operating systems on the VMs and
allocate two virtual CPUs, 1GB memory, and 25GB of hard disk
for each VM. The experiments are performed with 16 VMs. Table
2 shows the workloads run on each VM. The SSD cache is shared
between VMs. ECI-Cache estimates the most efficient cache size
for each VM and partitions the SSD cache space between the VMs
based on the running workload’s IO pattern and request type. We
have also implemented the state-of-the-art IO caching scheme for
virtualized platforms, Centaur [27], on our test platform. We run
the same experiments with Centaur. Similar to ECI-Cache, Cen-
taur works based on reuse distance but it does not consider request
type in reuse distance calculation. In addition, it does not have any
control on the write policy of the SSD cache for each VM.

6.3 Cache Allocation to Multiple VMs

To show how ECI-Cache affects performance, performance-per-
cost, and allocated cache space to VMs compared to Centaur, we
conduct experiments in two conditions: 1) when the SSD cache
capacity is limited, i.e., when the total SSD cache size is less than
the sum of the estimated cache spaces for the VMs. In this case,
the cache size estimation by ECI-Cache and Centaur may become
infeasible and 2) when the SSD cache capacity is unlimited, i.e.,
the cache has enough space to allocate the required and efficient
cache space for each VM.6 In the experiments, VMs are run con-
currently and cache space is partitioned across VMs for both ECI-
Cache and Centaur schemes (we perform the same, yet separate
and independent experiments for both schemes and then compare
the results).

The experiment is performed on 16 running VMs. An initial
cache space equal to 10, 000 cache blocks (block size is equal to
8KB) with WB policy is allocated to each VM. The total SSD
cache capacity is 3 million blocks. Cache space is calculated in 10-
minute time intervals (∆t) for both ECI-Cache and Centaur. We
select 10-min time intervals to reduce the time overhead of the
URD calculation to less than 5% (this trade-off has been obtained
based on the reported URD calculation overheads in Table 3 in
Appendix B). Reducing the length of the time interval provides
more accurate estimations but it also increases the time overhead
of the URD calculation.

5The capacity of selected SSD is larger than the sum of efficient cache spaces
for the running VMs. Thus, there is no SSD cache capacity shortage in the
experiments. As a result, employing an SSD with a larger size would not
provide any improvement in the performance of VMs.
6The experiments of the second case are provided in Appendix A.

Fig. 10a and Fig. 10b show how Centaur and ECI-Cache allocate
cache spaces for the VMs in the time interval from t = 950 min
to t = 1, 700 min of the experiment when the SSD cache capac-
ity is limited to 3 million blocks. We make two major observa-
tions: 1) Centaur becomes infeasible and reduces the allocated
cache spaces of the VMs to fit in the existing SSD capacity and
2) ECI-Cache never becomes infeasible since the sum of estimated
cache spaces for the VMs is less than existing SSD capacity. This
is because Centaur estimates a larger cache space for each VM
because it does not consider the request type while ECI-Cache
estimates much smaller cache space because it does consider the
request type. When the estimated cache space becomes infeasible
(in Centaur), Centaur employs an optimization algorithm to find
efficient cache sizes which can be fit in the existing SSD cache ca-
pacity. To this end, Centaur allocates smaller cache space to each
VM and hence achieves a smaller hit ratio than ECI-Cache. In
these experiments, in-feasibility does not happen for ECI-Cache.
However, when ECI-Cache becomes infeasible, Centaur would be
infeasible, too. In such cases, both schemes should apply optimiza-
tion algorithms to reduce the estimated cache spaces in order to
fit in the existing SSD cache.7 We conclude that in infeasible cases,
ECI-Cache provides greater hit ratio and better performance than
Centaur.

Fig. 11 shows the details of allocated cache sizes for each individ-
ual VM by both Centaur and ECI-Cache. In addition, this figure
shows the IO latency of the VMs for both schemes. During the ex-
periment, the running workloads on the VMs finish one by one (be-
cause different workloads have different runtimes) and since VMs
with the finished workload generates no more IO requests, ECI-
Cache excludes those VMs from cache space partitioning. During
the course of the experiment, we retrieve the allocated cache space
of such VMs. In order to provide more detail, we present the results
of each VM separately. The infeasible areas that lead to latency
degradation in Centaur are shown by dashed circles around la-
tency lines. We observe that in infeasible states, i.e., when SSD
cache capacity is limited, ECI-Cache improves performance and
performance-per-cost by 17.08% and 30% compared to Centaur.

6.4 Write Policy Assignment

To show how ECI-Cache assigns an efficient write policy for each
VM, we conduct experiments based on Algorithm 3. We character-
ize incoming requests from different VMs and calculate the ratio
of WAW and WAR operations for the running VMs. Then, we
assign an efficient write policy for the VM’s cache. In the experi-
ments, we set the value of wThreshold to between 0.2 and 0.9 and
achieve different results based on the value of wThreshold. Note
that we assign the RO policy to a VM cache if the ratio of com-
bined WAW and WAR requests over all requests is greater than
or equal to wThreshold.

Fig. 12 shows the ratio of different types of the requests in the
running workloads. In addition, Fig. 13 shows the number of WAW,
WAR, RAR, and RAW accesses for the workloads of the running
VMs, which are sampled in 10-minute intervals. Since the first ac-
cess (either read or write request) to an arbitrary address within
a sequence of I/O requests cannot be classified as either WAW,
WAR, RAR, and RAW, we denoted the first read and write access

7In Section 4, we showed that the estimated cache space based on TRD
(Centaur) would be greater than or equal to the estimated cache space by
URD (ECI-Cache), and hence Centaur would reduce the cache size of each
VM more than ECI-Cache would. In this case, the performance degradation
in Centaur would be greater than performance degradation in ECI-Cache.
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Table 2: Information of running workloads on the VMs.
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Figure 10: Cache allocation for the VMs in infeasible state by (a) Centaur and (b) ECI-Cache.

to an address as Cold Read (CR) and Cold Write (CW), respec-
tively. Here we set wThreshold = 0.5.
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It can be seen that in the first 70-minute interval of web 1 (run-
ning on VM1 as shown in Fig. 13b and Fig. 12), neither WAW
nor WAR accesses exist and ECI-Cache assigns the WB policy
for the allocated cache. Then at t = 100 min, WAW operations
become dominant and the RO policy is assigned to the cache. In
VM0, with the running workload of wdev 0, after about 50 min-
utes, we recognize that 77% of the requests are WAW and the
remaining are mostly RAR (shown in Fig. 13a and Fig. 12) and
thus at t = 50 min, the RO policy is assigned to the cache of VM0
by ECI-Cache. As shown in Fig. 13e and Fig. 12, hm 1 running on
VM4 consists of mostly RAR operations (more than 92%) without
any WAR and WAW accesses and thus the RO policy is assigned
to this VM. In time intervals between t = 0 to t = 500 min and
t = 610 min to t = 1200 min, more than 86% of the requests of
proj 0 running on VM6 are CW and WAW operations, and thus
ECI-Cache assigns the RO policy to this VM. In the remaining
interval (t = 500 min to t = 610 min), the WB policy is assigned

to this VM. ECI-Cache assigns the RO policy for VMs such as
prxy 0 and web 0 that have a large number of WAW and WAR
operations. Doing so minimizes the number of unnecessary writes
into the cache in these workloads.

6.5 Performance and Performance-Per-Cost
Improvement

The results of previous experiments on the proposed test platform
indicate a significant performance and performance-per-cost (i.e.,
performance per allocated cache space) improvement for the run-
ning workloads on the VMs, as quantified in Fig. 14. We observed
that ECI-Cache is able to estimate a smaller cache space for each
VM than Centaur, without any negative impact on performance.
In other words, ECI-Cache achieves similar hit ratio while allocat-
ing smaller cache space and hence improves performance-per-cost.
In addition, ECI-Cache achieves higher performance compared to
Centaur in infeasible cases for each VM. Cache size estimation in
the proposed scheme is based on the URD metric and thus ECI-
Cache allocates much smaller cache space to the VMs compared
to Centaur. Centaur estimates cache space based on TRD, which
does not consider the request type, leading to a higher cache size
estimation for each VM.

Fig. 14 shows the achieved performance and performance-per-
cost of the VMs when we use the Centaur and ECI-Cache schemes.
We observe that allocating cache space based on ECI-Cache for
each VM improves the performance and performance-per-cost com-
pared to Centaur in all workloads.

Fig. 15 shows the cumulative latency of the running VMs with
Centaur vs. ECI-Cache in infeasible states (i.e., when the total
SSD cache capacity is limited). In the time interval shown in Fig.
15, ECI-Cache achieves a higher hit ratio than Centaur. Therefore,
in infeasible states ECI-Cache reduces the latency of the workloads
by 17%, on average. We conclude that ECI-Cache improves perfor-
mance and performance-per-cost for the running VMs by 17.08%
and 30%, by intelligently reducing the allocated cache space for
each VM.
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Figure 11: Allocated cache space of each VM and corresponding latency in infeasible state with limited SSD cache
capacity (ECI-Cache vs. Centaur).
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6.6 Endurance Improvement

To show the endurance improvement of ECI-Cache, we perform
experiments by applying our write policy assignment algorithm
and show the impact of the proposed scheme on the number of
writes and also the performance of the VMs. Endurance of the
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Figure 13: ECI-Cache write policy assignment to the VMs.

SSD is affected by the number of writes committed to it. Write
operations on the SSD impose NAND flash memory writes and
increase the P/E-cycle count [10–12, 36, 43, 50]. ECI-Cache has
a positive impact on the endurance of the SSD because it reduces
the number of committed writes to the SSD. While ECI-Cache
can effectively manage the committed writes to the SSD, it has
no control on the writes initiated by the garbage collection and
wear-leveling algorithms used within the SSD. Hence, we report
endurance improvement of the SSD cache by using the reduced
number of writes as a metric. A smaller number of writes is ex-
pected to lead to better endurance. Similar metrics are used in
previous system-level studies, such as [22, 29, 31, 40]. Note that
the total number of writes for each workload (reported in the ex-
periments) is calculated by Eq. 3 which includes writes from the
disk subsystem to the SSD and also the writes from the CPU to
the SSD:

Total Writes =
∑

(CR+ CW +WAR+WAW ) (3)

where CR (Cold Read) is the first read access to an address and
CW (Cold Write) is the first write access to an address. Fig. 16
shows the number of writes into the SSD cache and the allocated

cache space with Centaur and ECI-Cache. As this figure shows,
ECI-Cache assigns a more efficient write policy for each VM as
compared to Centaur. We re-conducted experiments of Sec. 6.4
and the results demonstrate that by using the RO policy, we can
reduce the number of writes by 44% compared to the caches us-
ing the WB policy. When ECI-Cache applies the RO policy on
the VMs, only writes due to CRs (Cold Reads) will be written
on the cache. Applying the RO policy on the VMs has a nega-
tive impact on the hit ratio of RAW operations (by 1.5%). As it
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Figure 16: Writes into the SSD cache and allocated cache
space to the VMs by Centaur and ECI-Cache.
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can be seen in Fig. 16, applying ECI-Cache on the VM running
hm 1 has no impact on the number of writes into the cache. This
workload mostly consists of RAR and RAW operations where it
is necessary to cache referenced data by assigning the WB policy.
It is important to note that as presented in Sec. 5.1 (shown in
Fig. 14), ECI-Cache allocates about 50% smaller cache space to
this VM, which is calculated based on the reuse distance of RAR
and RAW operations by using URD. Similarly, for the VMs run-
ning stg 1, mds 1, and prn 1, ECI-Cache allocates much less cache
space based on the calculated URD for RAR and RAW operations
and assigns the WB policy. Hence, ECI-Cache has no impact on
the number of writes into the SSD in such VMs. For the remain-
ing VMs running workloads such as mds 0, ECI-Cache reduces the
number of writes by 80% and the allocated cache space by 25%.
ECI-Cache achieves 18% cache size reduction by 90% reduction
in number of writes for ts 0. For proj 0, cache size and the num-
ber of writes is reduced by 22% and 46%, respectively. ECI-Cache
reduces the number of writes for prxy 0, wdev 0, rsrch 0, src2 0,
and src1 2 by 90%, 85%, 87%, 85%, and 88%, respectively. We
conclude that ECI-Cache assigns an efficient write policy for each
VM and thereby reduces the number of writes into the SSD cache
by 65% on average across all VMs.

7 CONCLUSION

In this paper, we presented the ECI-Cache, a new hypervisor-based
I/O caching scheme for virtualized platforms. ECI-Cache maxi-
mizes the performance-per-cost of the I/O cache by 1) dynamically
partitioning it between VMs, 2) allocating a small and efficient
cache size to each VM, and 3) assigning a workload characteristic-
aware cache write policy to each VM. The proposed scheme also
enhances the endurance of the SSD I/O cache by reducing the
number of writes performed by each VM to the SSD. ECI-Cache
uses a new online partitioning algorithm to estimate an efficient
cache size for each VM. To do so, ECI-Cache characterizes the run-
ning workloads on the VMs and makes two key decisions for each
VM. First, ECI-Cache allocates cache space for each VM based
on the Useful Reuse Distance (URD) metric, which considers only
the Read After Read (RAR) and Read After Write (RAW) oper-
ations in reuse distance calculation. This metric reduces the cost
of the allocated cache space for each VM by assigning a smaller
cache size because it does not consider Write After Read (WAR)
and Write After Write (WAW) accesses to a block to be useful
for caching purposes. Second, ECI-Cache assigns an efficient write
policy to each VM by considering the ratio of WAR and WAW op-
erations of the VM’s workload. ECI-Cache assigns the Write Back
(WB) policy for a VM with a large amount of re-referenced data
due to RAW and RAR operations and the Read Only (RO) write
policy for a VM with a large amount of unreferenced (i.e., not re-
referenced) writes due to WAR and WAW accesses. By allocating
an efficient cache size and assigning an intelligent cache write pol-
icy for each VM, ECI-Cache 1) improves both performance and
performance-per-cost (by 17% and 30%, respectively, compared to
the state-of-the-art [27]) and 2) enhances the endurance of the SSD
by greatly reducing the number of writes (by 65%). We conclude
that ECI-Cache is an effective method for managing the SSD cache
in virtualized platforms.
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A CACHE ALLOCATION IN FEASIBLE
STATE

In this section, we show how ECI-Cache and Centaur allocate
cache space for the VMs in feasible state. We conduct experiments
by applying both schemes in the hypervisor when the SSD cache
capacity is unlimited. The experiments are performed on 16 run-
ning VMs with an initial cache space equal to 10, 000 cache blocks
for each VM (block size is equal to 8KB) and using the WB pol-
icy for each VM’s cache space. Fig. 17 shows the allocated cache
space by ECI-Cache and Centaur scheme for the VMs separately.
In addition, this figure shows the latency of each VM.

We observed that for write-intensive workloads with a large
amount of unreferenced (i.e., not re-referenced) data, such as stg 1
in VM2, ECI-Cache allocates significantly smaller cache space
(about 14, 000 cache blocks) for caching referenced data while Cen-
taur allocates about 1000X larger cache space to that VM. The
allocated cache space by ECI-Cache for VM5, VM6, VM7, and
VM12 in some cases becomes equal to the allocated cache space
by Centaur (as shown in Fig. 11f, Fig. 11g, Fig. 11h, and Fig. 11m,
respectively). This is because the maximum reuse distance of the
workloads is mainly affected by RAR and RAW requests. In Fig.
11f, at t = 600 min, there is a hit ratio drop which is recovered by
increasing the allocated cache space by both ECI-Cache and Cen-
taur. It can be seen that the allocated cache space by ECI-Cache
is much smaller than the allocated space by Centaur. In addition,
there is a hit ratio drop in VM1 at the first 50-minute interval
where increasing the cache space using the Centaur scheme does
not have any positive impact on the hit ratio. This is due to the
lack of locality in references of the requests, which mostly include
WAR and WAW operations. It can be seen that ECI-Cache does
not increase the cache space at this time. At t = 60 min, ECI-
Cache increases the allocated cache space, which results in improv-
ing the hit ratio. ECI-Cache allocates the minimum cache space for
rsrch 2 which is running on VM14 while Centaur allocates a much
larger cache space (more than 50, 000X) than ECI-Cache. This is
because this workload mostly consists of WAR and WAW opera-
tions with poor locality of reference. Hence, ECI-Cache achieves
the same hit ratio by allocating much smaller cache space to this
workload. We conclude that in feasible state, both ECI-Cache and
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Figure 17: Allocated cache space of each VM and corresponding latency in feasible state with unlimited SSD cache
capacity (ECI-Cache vs. Centaur).
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Figure 18: Cache allocation for the VMs in feasible state by (a) Centaur and (b) ECI-Cache.

Centaur achieve the same performance while ECI-Cache allocates
much smaller cache space for the VMs compared to Centaur.

Fig. 18a and Fig. 18b show cache space allocation for the VMs
in the time interval from t = 950 min to t = 1, 700 min by Centaur
and ECI-Cache, respectively. It can be seen that in all time inter-
vals, ECI-Cache allocates much smaller cache space to the VMs
compared to Centaur. We observe that in feasible state (i.e., un-
limited SSD cache), ECI-Cache allocates much smaller cache space

(29.45%, on average) than Centaur and hence reduces performance-
per-cost significantly.

B URD OVERHEAD AND TIME
INTERVAL TRADE-OFF

In this section, we report the average delay of calculating URD
for the workloads running on the VMs in our experiments. We se-
lect the intervals of URD calculation in the experiments in order
to limit the time overhead of URD calculation (the time that we

15



SIGMETRICS, ACM, 2018 Saba Ahmadian, Onur Mutlu, and Hossein Asadi

Table 3: Time overhead of URD calculation in the running VMs.
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should wait until URD is calculated). Table 3 reports the average
time it takes to calculate URD for each workload. As reported in
the table, the maximum time it takes to calculate URD is about
22.67 seconds, which is reported for the prn 1 workload. In ad-
dition, the average time overhead of the URD calculation for all
workloads is about 4.82 seconds. We selected 10 min time intervals
which is calculated based on maximum URD calculation delay to
reduce the time overhead of URD calculation to less than 5% in
our experiments.

C WORST-CASE ANALYSIS
In this section, we provide three examples that illustrate corner
cases where ECI-Cache fails in cache size estimation, and as a
result, does not have a positive impact on performance improve-
ment. We find that these cases are uncommon in the workloads
we examine.

Case 1. Sequential-Random workload : The workload has two inter-
vals: 1) sequential accesses followed by 2) random and repetitive
requests (i.e., requests to the previously-accessed addresses). In
the first interval, ECI-Cache does not allocate cache space for the
workload while the requests in the second interval are random ac-
cesses to the previously (not buffered) accesses. Thus, in the first
interval, ECI-Cache underestimates the allocated cache size for the
workload. Fig. 19a shows an example of such workloads. We elab-
orate on how ECI-Cache works in each interval for the example
workload:

(1) At the end of the first interval (i.e., when ECI-Cache recal-
culates URD and cache size), the URD of the workload is
equal to 0. Hence, no cache space is allocated to this VM.

(2) In the second interval, the workload accesses become random
with repetitive addresses where all requests are provided by
the HDD and none of them are buffered in the cache (since
no cache space is allocated to this VM).

(3) At the end of the second interval, the maximum URD of the
workload is equal to three and hence ECI-Cache allocates
cache space equal to four blocks for this VM.

(4) In the last interval, the workload issues two accesses to the
storage subsystem but neither of them can be supplied by
the cache (since the cache has no valid data) and the re-
quests are buffered in the cache without any performance
improvement.

We find that allocating cache space in such a manner (i.e., only at
the end of the second interval) cannot improve the performance
of requests of the last interval in this workload. In this case, the
Centaur scheme works similar to ECI-Cache.

Case 2. Random-Sequential workload : In this case, in the first inter-
val, the workload issues random accesses to the storage subsystem
and ECI-Cache allocates cache space based on the URD of the

requests. In the second interval, the accesses of the workload be-
come sequential without any access to previously-buffered requests.
ECI-Cache overestimates the allocated cache space for the work-
load. Fig. 19b shows an example workload for this case. We show
how ECI-Cache overestimates the cache space for this example
workload:

(1) In the first interval, the workload is random with locality of
accesses and at the end of interval. The maximum URD is
equal to two. Hence, at the end of the interval, three cache
blocks are allocated to this VM.

(2) In the second interval, requests become sequential writes and
are buffered in the allocated cache space.

(3) At the end of the second interval, the maximum URD of
the workload is equal to two and hence ECI-Cache allocates
three cache blocks for this workload.

(4) In the last interval, repetitive requests (that are the same
as requests of the first interval) cannot be supplied by the
cache since the entire cache space is used up by the accesses
of the second interval (sequential writes).

We observe that although enough cache space is allocated
for the VM, ECI-Cache cannot improve the performance of
the workload compared to the HDD-based system due to the
access behavior. In this case, Centaur works similar to ECI-Cache.

Case 3. Semi-Sequential workload : Such a workload includes simi-
lar sequential accesses in different intervals, which creates a large
maximum URD without any locality of reference. In this case, ECI-
Cache allocates a large cache space for the VM. Further requests
use up the entire cache space without any read hit from allocated
cache. Fig. 19c shows an example workload. We elaborate on how
ECI-Cache allocates cache size for this example workload:

(1) At the end of the first interval, the maximum URD of the
workload is 0 and no cache space is allocated to this VM.

(2) In the second interval, all accesses of the first interval are
repeated and are provided by the HDD. Since we have no
cache space, none of them are buffered in the cache.

(3) At the end of the second interval, the maximum URD of
the workload is equal to three and ECI-Cache allocates four
blocks to this VM.

(4) In the third interval, the workload issues read accesses to the
storage subsystem and all of them are provided by the HDD
(since the allocated cache has no valid data). In this case,
these requests are buffered in the cache (all cache blocks are
used).

(5) In the last interval, since cache space is used up by accesses
of the third interval, the future requests that are identical
to requests of the second interval miss in the cache and are
supplied by the HDD.
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Figure 19: Corner cases where ECI-Cache fails in size estimation (TYP: Type, SEC: Sector, W: Write, R: Read, Buff.:
Buffer, and Mod.: Modify).

In this example, we observe that ECI-Cache allocates large cache
space to the VM and buffers unnecessary data without any im-
provement in performance. We can resolve this problem by chang-
ing the length of the intervals.

D CONVEX OPTIMIZATION

In the following, we show why the objective function of the pro-
posed algorithm (Eq. 4) is convex and then show how we solve the
function using the MATLAB optimization toolbox. To do so, we
first show that the objective function is convex. Then we show that
the objective function and its constraints are in canonical form of
convex.


LatencyVMi = hi(ci)× Tssd + (1− hi(ci))× Thdd

Objective: Minimize[
∑N

i=1 LatencyVMi]

Constraint1:
∑N

i=1 ci ≤ C

Constraint2: 0 ≤ ci ≤ curdi

(4)

LatencyVMi is a linear function and is convex. The objective
function is the sum of LatencyVMi functions because the sum
of convex functions is convex. We express the first constraint of
the objective function (constraint 1) as follows (I is a unity matrix
of N by N):

Constraint1:

N∑
i=1

ci ≤ C −→ I ×


c0
..
..

cN−1

 ≤ C (5)

We express the second constraint (constraint 2) as:

Constraint2: 0 ≤ ci ≤ curdi

−→ I ×


c0
..
..

cN−1

 ≤


curd0
..
..

curdN−1


and

− I ×


c0
..
..

cN−1

 ≤


0
..
..
0


(6)

Then, we have:

[1 ... 1
]

I
−I

×


c0
..
..

cN−1

 ⪯



C
c0
..
..

cN−1



0
..
..
0




(7)

Eq. 7 is the canonical form of convex and hence the objective func-
tion with constraints is convex. We employ MATLAB optimization
toolboxes to minimize the objective function.

E DETAILS OF ECI-CACHE SIZE
ESTIMATION ALGORITHM

In this section, we present Algorithm 4, which provides the details
of Algorithm 1. Table 4 summarizes the key notational elements
used in Algorithm 1 and Algorithm 4.

The main objective of Algorithm 4 (similar to Algorithm 1)
is to find the most appropriate cache sizes for the running VMs
such that the system is able to meet the following conditions: 1)
Sum of allocated cache spaces for all VMs is less than or equal
to the total SSD cache capacity. 2) Aggregate latency of all VMs
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Algorithm 4: ECI-Cache size allocation algorithm (in more details).

/* Inputs: Number of VMs: (N), SSD cache size: (C), HDD Delay: (THDD), SSD Delay: (TSSD) */

/* Output: Efficient cache size for each VM: (ceff [1..N ]) */

1 Sleep for ∆t

2 Extract the traces of the workloads running on the VMs including 1) destination address, 2) request size, and 3) request type

/* Here we estimate the efficient cache space for each VM by calculating URD of the running workloads. */

3 for i = 1 to N do

4 URD[i] = calculateURD(V M[i]) /* Here we find URD for each VM. */

5 sizeurd[i] = calculateURDbasedSize(URD[i]) /* Here we calculate the estimated cache size for each VM based on its URD. */

6 csum+ = sizeurd[i] /* We keep the sum of estimated sizes in csum. */

7 end

/* In the following we check the feasibility of size estimation and minimize overall latency for estimated sizeurd[1..N ] */

8 if csum ≤ C then

/* If this condition is met, our estimation is feasible */

9 ceff [1..N] = sizeurd[1..N] /* We assign the estimated sizes to the efficient sizes. */

10 end

11 else if csum > C then

/* If this condition is met, the estimation is infeasible. */

12 Update hit ratio function of VMs (Hi(c)) based on updated reuse distance of the workloads. /* The structure of hit ratio function is provided in Algorithm 2. */

13 ceff [1..N] = calculateEffSize(sizeurd[1..N], C) /* We call calculateEffSize to find the efficient sizes that fit in total SSD cache space. */

14 end

15 allocate(ceff [1..N], V M[1..N]) /* This function allocates the calculated efficient cache spaces for each VM. */

/*
Function Declarations:
calculateURD */

16 Function calculateURD(V M) is

/* The purpose of this function is to find the URD of the running workload on V M. This function calls PARDA [38], which is modified to calculate URD (reuse

distance only for RAR and RAW requests). */

17 return URD

18 end

/*

calculateURDbasedSize */

19 Function calculateURDbasedSize(URD) is

/* The purpose of this function is to calculate URD based cache size of each VM. */

20 sizeurd = URD × cacheBlkSize

21 return sizeurd
22 end

/*

calculateEffSize */

23 Function calculateEffSize(sizeurd[1..N], C) is

/* This function is called in infeasible states and aims to minimize the overall latency (sum of VMs latencies). */

24 initialSize = {cmin, ..., cmin}/* We set cmin as the initial cache space for each VM. */

25 lowerBound = {cmin, ..., cmin} /* Here we set the minimum cache space for each VM equal to cmin */

26 upperBound = {sizeurd[1], ..., sizeurd[N]} /* Here the maximum cache space for each VM is set. */

27 weightV M = {1, ..., 1} /* We assume that the VMs are weighted identically. */

/* All abovementioned variables are the inputs of the fmincon function. We pass ObjectiveFunction to this function. */

28 ceff [1..N] = fmincon(ObjectiveFunction, initialSize, weightV M,Ctot, {}, {}, lowerBound, upperBound)

29 return ceff [1..N]

30 end

/*

ObjectiveFunction */

31 Function ObjectiveFunction() is

/* This function is called until the condition of Eq. 2 is met by the estimated cache sizes (c[1..N ]). */

32 for i = 1 to N do

33 h[i] = Hi(c[i]) /* Here we calculate the hit ratio of each VM for c[i] input. This function is updated in ∆t intervals. */

34 hsum+ = h[i] /* hsum variable keeps the sum of hit ratios of the VMs */

35 csum+ = c[i] /* csum variable keeps the sum of cache sizes of the VMs */

36 end

37 diff = C − csum /* diff variable is used in maximizing the total estimated cache sizes */

38 Obj = diff + (hsum) × TSSD + (N − hsum) × THDD /* Objective: Maximizing estimated sizes and minimizing sum of VM latencies. */

39 return Obj

40 end

is minimum. 3) Allocated cache space for each VM is less than
or equal to the estimated cache space by URD. This objective
is obtained by the calculateEffSize function via the use of the
ObjectiveFunction. ObjectiveFunction minimizes diff which is
the difference between sum of allocated cache spaces for the VMs
(csum) and the SSD cache capacity (C) (i.e., assigns the maxi-
mum cache space for each VM). In addition, ObjectiveFunction
minimizes the aggregate latency of the running VMs.
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Table 4: Description of notation used in Algorithm 1 and Algorithm 4.

Variables

Notation Description

N Number of running VMs.

C SSD cache capacity.

THDD HDD delay (i.e., HDD service time).

TSSD SSD delay (i.e., SSD service time).

Ceff [i] Efficient cache size allocated for each VMi.

URDi Useful Reuse Distance (URD) for VMi, which is the output of calculateURD() function.

SizeURD[i] Initial efficient cache size suggested by URD for VMi.

csum Sum of initial efficient cache sizes (i.e., sum of SizeURD[i] of all running VMs).

cacheBlkSize Size of cache blocks (equal to 8KB in our experiments).

initialSize Array of initial cache sizes allocated to each VM.

lowerBound Array of minimum cache sizes that can be assigned to the VMs.

upperBound
Array of efficient cache sizes suggested by URD.
The efficient cache sizes by ECI-Cache for each VM is less than or equal to the suggested
cache sizes by URD.

weightVM Weight of VMs.

h[i] Hit ratio of VMi.

hsum Sum of hit ratio of VMs.

diff Difference between total SSD cache capacity and estimated cache sizes by ECI-Cache.

Obj The objective variable.

Functions

calculateURD
Input: VM
Output: Useful Reuse Distance (URD) of each VM.

calculateURDbasedSize
Input: URD
Output: efficient cache size suggested by URD (sizeURD)

calculateEffSize

Input: sizeURD[1..N ], C
// This function is called only in infeasible states where the existing SSD cache size is
less than required cache sizes by VMs.
Output: efficient cache size for each VM (ceff [i])

objectiveFunction
Input: —
// This function is used within the calculateEffSize function.
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