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In recent years, high interest in using Virtual Machines (VMs) in data centers and Cloud computing
has significantly increased the demand for high-performance data storage systems. A straightfor-
ward approach to provide a high performance storage system is using Solid-State Drives (SSDs).
Inclusion of SSDs in storage systems, however, imposes significantly higher cost compared to Hard
Disk Drives (HDDs). Recent studies suggest using SSDs as a caching layer for HDD-based storage
subsystems in virtualization platforms. Such studies neglect to address the endurance and cost of
SSDs, which can significantly affect the efficiency of I/O caching. Moreover, previous studies only
configure the cache size to provide the required performance level for each VM, while neglecting
other important parameters such as cache write policy and request type, which can adversely affect
both performance-per-cost and endurance.

In this paper, we present a new high-Endurance and Cost-efficient I/O Caching (ECI-Cache)
scheme for virtualized platforms, which can significantly improve both the performance-per-cost
and endurance of storage subsystems as opposed to previously proposed I/O caching schemes.
Unlike traditional I/O caching schemes which allocate cache size only based on reuse distance of
accesses, we propose a new metric, Useful Reuse Distance (URD), which considers the request
type in reuse distance calculation, resulting in improved performance-per-cost and endurance for
the SSD cache. Via online characterization of workloads and using URD, ECI-Cache partitions the
SSD cache across VMs and is able to dynamically adjust the cache size and write policy for each VM.
To evaluate the proposed scheme, we have implemented ECI-Cache in an open source hypervisor,
QEMU (version 2.8.0), on a server running the CentOS 7 operating system (kernel version 3.10.0-
327). Experimental results show that our proposed scheme improves the performance, performance-
per-cost, and endurance of the SSD cache by 17%, 30% and 65%, respectively, compared to the
state-of-the-art dynamic cache partitioning scheme.
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1 INTRODUCTION

Virtualization is widely used in data centers and Cloud computing in order to improve the
utilization of high-performance servers [48]. Integrating various Virtual Machines (VMs)
running with different operating systems on a server provides more flexibility and higher
resource utilization while delivering the desired performance for each VM. In addition,
virtualization provides system isolation where each VM has access only to its own resources.
In a virtualized platform, shown in Fig. 1, the resource allocation of each VM is managed
by a hypervisor. By employing various modules such as a VM scheduler and a memory
and network manager, the hypervisor orchestrates the sharing of resources between VMs
according to their demand, in order to maximize the overall performance provided by the
server (and this maximizes performance-per-cost by enabling the use of a smaller number of
physical servers than one for each VM) [51, 53]. With increasing performance requirements
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Fig. 1. Example state-of-the-art virtualization platform.

of data-intensive applications in data centers, storage subsystems have become performance
bottlenecks of computing systems. Hard Disk Drives (HDDs), which are used as main media
for data storage in storage systems, provide large capacity and low cost, but they suffer from
low performance, particularly for random access workloads. The low performance of HDD-
based storage systems can be avoided by employing high-performance storage devices such
as Solid-State Drives (SSDs). Compared to HDDs, SSDs provide higher performance due to
their non-mechanical structure used to retrieve and store data. SSDs, however, impose up
to 10X higher cost and support only a limited number of reliable writes [10], which makes
the replacement of all HDDs by SSDs usually prohibitively expensive [1, 2, 37, 41].
In order to take advantage of the merits of both HDDs and SSDs, several studies from

EMC2, Facebook, FusionIO, Mercury, and VMware [4, 9, 13, 16, 19, 25, 26, 28, 30, 33,
36, 37, 42, 49] employ high-performance SSDs as a caching layer for high-capacity HDDs in
storage systems (as shown in Fig. 1). Applying such I/O caching on virtualization platforms
requires a proper cache management scheme in order to achieve higher I/O performance.
In previous studies, such caches have been used as either a shared global cache [16, 19, 30]
or a cache statically partitioned across VMs [9]. The former scheme fails to provide a
guaranteed minimum cache space for each VM. This is due to the fact that the entire cache
is shared between all VMs and each VM can potentially use up an unbounded amount of the
entire cache space, affecting the performance of the other VMs. The latter scheme statically
partitions SSD space between VMs where the partitioning is performed independently of the
characteristics of the workloads running on VMs. This scheme has two major shortcomings.
First, the allocated cache space could be underutilized by the VM if there is low locality

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 9. Publication date: March 2018.



ECI-Cache: A High-Endurance and Cost-Efficient
I/O Caching Scheme for Virtualized Platforms 9:3

of reference in the workload access pattern. Second, since cache space partitioning and
allocation are done statically offline, cache allocation for a new VM during runtime is not
practical using this scheme, which makes the scheme inflexible and the system underutilized.
To alleviate the shortcomings of the two aforementioned schemes, partitioned I/O caching
has been proposed. Variants of this technique dynamically estimate and allocate cache space
for each VM by estimating an efficient cache size for each VM [6, 27, 35]. They do so by
calculating the reuse distance of the workload, i.e., the maximum distance between two
accesses to an identical address [27, 38, 55] . Unfortunately, such I/O caching schemes only
focus on estimating cache size for VMs and neglect other key parameters, such as write
policy (i.e., how write requests are handled by the cache), request type (i.e., read or write
requests), and their corresponding impact on the workload reuse distance, which greatly
affects the performance-per-cost and endurance of the SSD cache, as we show in this work.
In this paper, we propose a new high-Endurance and Cost-efficient I/O caching (ECI-

Cache) scheme which can be used for virtualized platforms in large-scale data centers. ECI-
Cache aims to improve both the performance-per-cost and endurance of the SSD cache by
dynamically configuring 1) an efficient cache size to maximize the performance of the VMs
and 2) an effective write policy that improves the endurance and performance-per-cost of
each VM. To this end, we propose a metric called Useful Reuse Distance (URD), which
minimizes the cache space to allocate for each VM while maintaining the performance
of the VM. The main objective of URD is to reduce the allocated cache space for each
VM. The reduced cache space is obtained by computing workloads reuse distance based on
request type, without considering unnecessary write accesses (i.e., writes to a block without
any further read access). Employing URD in our proposed I/O caching scheme maximizes
the performance-per-cost and also enhances the endurance of the SSD cache by allocating
much smaller cache space compared to state-of-the-art cache partitioning schemes. We also
propose a detailed analysis of the effect of write policy on the performance and endurance of
an SSD cache, clearly demonstrating the negative impact of having the same write policy for
VMs with different access patterns (as used in previous studies) on the IO performance and
SSD endurance. To achieve a sufficiently high hit ratio, ECI-Cache dynamically partitions
the cache across VMs.
In the proposed scheme, we mainly focus on two approaches: 1) URD based per-VM cache

size estimation and 2) per-VM effective write policy assignment, via online monitoring and
analysis of IO requests for each VM. In the first approach, we allocate much smaller cache
space compared to previous studies for each VM, which results in improved performance-
per-cost. In the second approach, we assign an effective write policy for each VM in order
to improve the endurance of the I/O cache while minimizing the negative impact on perfor-
mance. The integration of these two approaches enables ECI-Cache to partition and manage
the SSD cache between VMs more effectively than prior mechanisms [6, 27, 35].
We have implemented ECI-Cache on QEMU (version 2.8.0) [39], an open source hypervi-

sor (on the CentOS 7 operating system, kernel version 3.10.0-327). We evaluate our scheme
on an HP ProLiant DL380 Generation 5 (G5) server [20] with four 146GB SAS 10K HP
HDDs [21] (in RAID-5 configuration), a 128GB Samsung 850 Pro SSD [44], 16GB DDR2
memory, and 8 x 1.6GHz Intel(R) Xeon CPUs. We run more than fifteen workloads from
the SNIA MSR traces [47] on VMs. Experimental results show that ECI-Cache 1) improves
performance by 17% and performance-per-cost by 30% compared to the state-of-the-art
cache partitioning scheme [27], 2) reduces the number of writes committed to the SSD by
65% compared to [27], thereby greatly improving the SSD lifetime.
To our knowledge, we make the following contributions.
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• This paper is the first to differentiate the concept of reuse distance based on the type
of each request. We propose a new metric, Useful Reuse Distance (URD), whose goal
is to reduce the cost of the SSD cache by allocating a smaller cache size for each VM.

• By conducting extensive workload analyses, we demonstrate the importance of dy-
namically adjusting the cache write policy on a per-VM basis, which no previous
I/O caching policy explicitly takes into account. We use these analyses to develop a
mechanism that can efficiently adjust both cache size and write policy on a per-VM
basis.

• We propose ECI-Cache, which consists of two key novel components: 1) dynamic
per-VM cache size estimation, and cache partitioning using the URD metric and 2)
per-VM write policy to improve both system performance-per-cost and SSD cache
lifetime.

• We implement ECI-Cache in QEMU, an open source hypervisor. Our extensive eval-
uations of ECI-Cache on a large number of diverse workloads show that ECI-Cache
significantly improves performance-per-cost over the best previous dynamic cache par-
titioning policy and reduces the number of writes to the SSD.

The rest of the paper is organized as follows. Sec. 2 discusses related work. In Sec. 3, we
provide an illustrative example and motivation. In Sec. 4, we propose the metric of URD. In
Sec. 5, we present our proposed technique. Sec. 6 provides experimental setup and results.
Finally, Sec. 7 concludes the paper.

2 RELATED WORK

Previous studies on I/O caching in virtualization platforms investigate 1) the location of
the cache or 2) the cache partitioning policy. The former set of works explores caching
techniques based on where the I/O cache resides, whereas the latter examines mechanisms
for sharing and partitioning of the cache across VMs. Based on the location of the SSD cache,
three main alternatives for I/O caching in virtualization platforms have been introduced,
as shown in Fig. 2. We next describe possible schemes for I/O caching and discuss their
advantages and shortcomings.

2.1 VM-based I/O Caching

In VM-based I/O caching (Fig. 2a), each VM in a virtualized platform has full control on a
portion of the SSD cache. In this scheme, separate SSD slots are allocated for each VM and
the cache management is conducted by VMs. Cache size adjustment, cache partitioning,
and sharing techniques cannot be applied in this scheme. In order to employ a VM-based
I/O caching scheme in a virtualized platform, caching schemes presented in [13, 28, 37, 42]
can be applied on VMs and improve the IO performance of individual VMs, which is likely
not efficient in virtualized platforms.

2.2 Storage system-based I/O Caching

In Storage system-based I/O caching (Fig. 2b), VMs and the hypervisor have no knowledge
of the SSD cache, which prohibits the advantages achieved by cache partitioning schemes.
Similar to VM-based I/O caching, previous caching techniques, such as [13, 28, 37, 42], can
be employed in storage systems, but such techniques cannot be managed in a virtualized
platform.
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Fig. 2. I/O caching using SSDs in virtualized platforms.

2.3 Hypervisor-based I/O Caching

In Hypervisor-based I/O caching (Fig. 2c), cache management is done by the hypervisor.
Since the hypervisor has full knowledge about workloads running on VMs, it can perform
efficient cache management and cache space partitioning across VMs. This type of I/O
caching scheme has been proposed frequently in previous studies [6, 27, 35]. These works
mainly focus on cache management, sharing, and partitioning across VMs. From the parti-
tioning perspective, Hypervisor-based I/O caching schemes can be divided into two groups:
global/static and dynamic cache partitioning. We next describe state-of-the-art hypervisor-
based I/O caching schemes.

2.3.1 Global Caching and Static Cache Partitioning. Examples of global caching or static
cache partitioning schemes include the EMC VFCache [16], NetApp Mercury [9], Fusion-io
ioTurbine [19], and vFRM [30]. In global caching, each VM can use up the entire SSD cache,
thereby potentially adversely affecting the performance of the other VMs [6]. In static cache
partitioning, SSD cache space is equally partitioned across VMs based on the number of
VMs in the platform, without taking into account the data access and reuse patterns of
each VM. Static cache partitioning is also unable to allocate cache space for newly-added
VMs during online operation.

2.3.2 Dynamic Cache Partitioning. Dynamic cache partitioning schemes alleviate the
shortcoming of global and static cache partitioning [3, 5, 6, 27, 35, 54]. These techniques
partition the SSD cache across VMs based on the cache space demand of each VM, and
they are aware of data access and reuse pattern of VMs. Argon [54] presents a storage
server that partitions the memory cache across services based on their access patterns. This
scheme allocates minimum cache space for each service to achieve a predefined fraction
of hit ratio namely R-Value. To estimate the required cache size for each service, Argon
employs an online cache simulation mechanism and finds the fraction of accesses that are
served by cache (namely I/O absorption ratio). Janus [3] partitions the flash tier between
workloads at the filesystem level. Janus maximizes the total read accesses served from the
flash tier by allocating the required space for each workload. The required space is estimated
based on the ratio of read operations of each workload. S-CAVE [6] is a hypervisor-based
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online I/O caching scheme that allocates cache space for each VM by dynamically estimat-
ing the working set size of workloads running on VMs. To minimize the possibility of data
loss, S-CAVE uses the Write-Through (WT) policy in cache configuration. vCacheShare
[35] is another hypervisor-based I/O caching scheme that dynamically partitions the SSD
cache space across VMs. This scheme considers locality and reuse intensity (i.e., bursti-
ness of cache hits) in order to estimate the required cache size for each VM. vCacheShare
reduces the number of writes in the SSD cache by using the Write Around policy where
write operations are always directed to the storage subsystem. Such scheme shows improved
performance only for read operations while it has no performance improvement for write
operations. Centaur [27], another online partitioning scheme for virtualized platforms, aims
to maximize the IO performance of each VM as well as meeting QoS targets in the system.
It employs Miss Ratio Curves (MRCs) to estimate an efficient cache space allocation for
each VM. Centaur does not consider the negative impact of write operations on SSD cache
lifetime in 1) cache size estimation, or 2) write policy assignment. Centaur employs the
Write-Back (WB) policy to maximize the IO performance without considering the impact
of the WB policy on the number of writes into the SSD. CloudCache [5] estimates each
VM’s cache size by considering Reuse Working Set Size (RWSS), which captures temporal
locality and also reduces the number of writes into the SSD cache. In addition, this scheme
employs a VM migration mechanism to handle the performance demands of VMs in the
Cloud.
To summarize, among previous studies, S-CAVE [6], vCacheShare [35], Centaur [27], and

CloudCache [5] are the closest to our proposal. However, they only consider cache space
partitioning and do not consider adaptive write policies. The cache size estimation scheme
presented in S-CAVE, which is based on working set size estimation fails in cache size
estimation for workloads with sequential access patterns and has become deprecated, as
shown in [35]. vCacheShare and CloudCache perform cache size estimation based on reuse
intensity. Such cache allocation schemes are based on assumptions that cannot be applied
to the I/O cache in the storage subsystem, as demonstrated in [27]. Reuse intensity based
schemes are only effective for workloads that are aligned with their size estimation schemes
and would not be accurate compared to reuse distance based schemes such as [27]. The state-
of-the-art scheme is Centaur, which works based on MRCs and reuse distance analysis. This
scheme does not consider 1) the impact of request type on reuse distance calculation and
2) the impact of write policy on either endurance or performance.

3 MOTIVATION AND ILLUSTRATIVE EXAMPLE

The main purpose of employing a high-performance cache layer is to reduce the number
of accesses to the disk subsystem. Theoretically, an ideal SSD cache layer would provide
access latency equal to the SSD device access latency. However, due to limited SSD size
and imperfect write policy, the observed average latency of accesses to the SSD cache is
much higher than the SSD device latency. For example, we find that the access latency of
the caching technique presented in [28] is 50X higher than the raw access latency of the
employed SSD device, as shown in Fig. 3.1

The major parameters affecting IO cache performance are cache size, write policy, and
replacement policy. In this work, we mainly study the effect of cache size and write policy on
the performance and endurance of an SSD cache. A commonly-used metric to compare the
performance of different cache configurations is cache hit ratio. To maximize the cache hit

1All numbers in Fig. 3 are based on the results reported in [13, 28].
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Fig. 3. HDD and SSD access latency vs. I/O caching [13, 28].

ratio, the cache size should be large enough to house the working set of the running workload.
Similar to size, write policy can also affect the performance of the cache particularly for write-
intensive workloads. There are three major write policies that are fundamentally different:
1) Write-Back (WB), 2) Write-Through (WT), and 3) Read-Only (RO). WB reduces the
number of accesses to the storage subsystem by buffering temporal writes in the SSD cache
and writing them back to the storage subsystem only after the buffered dirty blocks are
evicted. WB can improve the performance of both read and write operations, but it suffers
from low reliability since the SSD cache can become a single point of failure (i.e., buffered
writes can get lost before being propagated to the storage subsystem, if the SSD fails). WT
policy buffers write operations but also transfers them to the storage subsystem at the same
time. This policy improves the performance of only read operations but provides a higher
level of reliability by assuming that each written block is propagated immediately to the
storage system. RO caches only the read operations and sends write operations directly
to the storage subsystem without buffering them. Therefore, it is not able to improve the
performance of write operations but it keeps them reliable.
We conduct experiments to show the impact of cache size and cache write policy on IO

performance and SSD endurance. To this end, we perform several experiments on a system
with a 200GB HDD and 30GB SSD (our experimental setup is reported in Table 1). We
employ EnhanceIO [17] as an open source SSD caching scheme in the experiments. To
investigate the impact of write policy on performance and endurance, we run 30 workloads
from Filebench on a fixed-size SSD cache with both the WB and RO policies. We omit
the results of the WT policy, since WT has the same endurance as WB and provides less
performance than WB.

Table 1. Setup of the motivational experiments.

HW/SW Description

Server HP Proliant DL380 G5
CPU 8x 1.6GHz Intel(R) Xeon
Memory 16 GB DDR2, Configured Clock Speed: 1600 MHz
HDD 438GB: four SAS 10K HP HDDs in RAID5 (partition size = 200GB)
SSD 128GB Samsung 850 Pro (partition size = 30GB)

OS Centos 7 (Kernel version: 3.10.0-327)
Filesystem ext3 (Buffer cache is disabled) [52]

Fig. 4 shows the impact of write policy on both Bandwidth (i.e., the amount of data that
is transmitted for a workload in one second) and I/O Per Second (IOPS) of eight sample
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workloads (Fig. 4a through Fig. 4h). We make five major observations: 1) the SSD cache
has 2.4X performance improvement with the WB policy in the Fileserver workload where
the RO cache has only 1.6X improvement on the IO performance of this workload (Fig.
4a). 2) WB policy improves the IO performance of RandomRW and Varmail workloads,
both over no caching (Fig. 4b and Fig. 4c). 3) Webserver and Webproxy workloads achieve
good and similar performance with both the WB and RO write policies (Fig. 4d and Fig.
4f). 4) Employing the SSD cache has negative impact on the performance of the CopyFiles
workload (Fig. 4e). 5) The RO write policy can significantly improve the performance of
Mongo and SingleStreamRead workloads by 20% and 48%, respectively (Fig. 4g and Fig.
4h).
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Fig. 4. Impact of write policy on the performance of workloads (NC: No Cache, WB: Write Back, RO:
Read Only).

Our main experimental conclusions are as follows:

(1) In workloads such as Fileserver, Varmail, and SingleStreamRead, only a specific cache
configuration can improve IO performance. About 45% of the workloads prefer the
WB policy and about 33% of workloads prefer the RO policy. Hence, it is necessary
to employ a workload-aware write policy for the IO cache. Random-access and write-
intensive workloads prefer WB while random-access and read-intensive workloads can
be satisfied with the RO policy.

(2) In 20% of workloads, e.g., Webserver and Webproxy, both WB and RO write policies
result in similar improvements. Hence, we can employ RO instead of WB in order to
reduce the number of writes to the SSD cache. Such workloads that are random and
read-intensive do not take advantage of buffering writes in the SSD cache.

(3) In workloads such as Mongo and CopyFiles, the SSD cache provides little performance
improvement. Hence, one can allocate SSD cache space to other workloads that can
benefit more from the available cache space. One can prevent the allocation of cache
space for the workloads that do not benefit from allocated cache, and hence reduce
the number of unnecessary writes into the SSD cache.

4 USEFUL REUSE DISTANCE

Traditional Reuse Distance (TRD) schemes [7, 14, 15, 18, 34, 38, 45, 55, 56] work based on
the addresses of requests without considering the types of the requests. We provide examples
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demonstrating the benefit of considering the request type of the workloads in the calculation
of reuse distance. The main objective of this analysis is to present the metric of Useful Reuse
Distance (URD), which enables assigning smaller amounts of cache space to the VMs while
preserving I/O performance.
We examine a sample workload (shown in Fig. 5) and show how reuse distance analysis

assigns cache size for the workload in two cases: 1) without considering request type (TRD)
and 2) considering request type (URD). In the sample workload given in Fig. 5a, the maxi-
mum reuse distance is due to the access of Req7 to the second sector which was previously
(five requests before) accessed by Req2. Hence, the maximum TRD of the workload is equal
to 4, and according to TRD, we should assign cache space equal to 5 blocks in order to
maximize the hit ratio of this workload. Fig. 5a also shows the contents of the allocated
cache to this workload based on TRD. It can be seen that when we allocate cache space
based on TRD, we reserve one block of cache (Block 2) to keep data that will be written
(modified) by the next request (Req7) without any read access to the block.

REQ|TYP| SEC

1 | W | 1
2 | W | 2
3 | R | 1
4 | R | 3
5 | R | 5
6 | R | 6
7 | W | 2

------------
CB   S
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2     2
3     3
4     5
5     6
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D
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Fig. 5. Comparison of cache size allocation (a) without and (b) with considering request type (REQ:
Request, TYP: Type, SEC: Sector, W: Write, R: Read, and CB: Cache Block).

Here we classify the sequence of accesses in four groups based on their type (illustrated
in Fig. 6): 1) Read After Read (RAR), 2) Write After Read (WAR), 3) Read After Write
(RAW), and 4) Write After Write (WAW). We show how data blocks of such accesses are
stored in both the WB and WT caches (i.e., allocate on write). Fig. 7 shows the operation
of the cache for both read and write requests [23]. The operation of cache is defined for
two cases: 1) for read accesses, if the data is found in the cache we read data from cache.
Otherwise, the data is read from the disk subsystem and is stored in the cache for further
access. 2) Write operations are directly written to the cache and may modify the previously
written data in the cache. We define cache hit only for read requests.

(1) RAR: In the first read access, a cache miss fetches data from HDD to the cache. The
second access reads the data from the cache. In this case, caching the data block of
the first access improves the hit ratio at the cost of imposing one write access to the
SSD.

(2) WAR: The first read access leads to fetching the data from HDD to the cache. The
second access modifies the data in the cache without any read access to this block. In
this case, caching the data block of the first read access does not improve the hit ratio
but it comes at the cost of two writes into the SSD.
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Fig. 7. Flowchart of I/O cache access for a (a) Read or (b) Write.

(3) RAW: The first access writes the data to the cache. The second access reads the data
from the cache. In this case, caching the data block of the first access increases the
hit ratio of the cache at the cost of imposing one write access into the SSD.

(4) WAW: The first access writes the data to the cache. The second access modifies the
data without any read access. In this case, caching the data block of the first access
does not improve the hit ratio but comes at the cost of two writes to the cache.

We now show how we can allocate a smaller cache size to the sample workload (shown
in Fig. 5b) by distinguishing between the four different types of access patterns we just
described. We call this scheme Useful Reuse Distance (URD) as it takes into account the
request type in calculating the reuse distance of the workload. URD only considers accesses
to the referenced data. It eliminates WAW and WAR access patterns from the reuse dis-
tance calculation. It considers only the maximum reuse distance of RAR and RAW access
patterns in reuse distance calculation. The maximum URD of the sample workload (Fig. 5b)
is equal to 1, due to the read access of Req3 to the first sector of disk which was previously
(two request before) written by Req1. In this case, we assign cache size equal to only two
blocks. Fig. 5b shows the contents of the allocated cache space based on URD for the sample
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workload. It can be seen that by employing the concept of URD, we achieve hit ratio similar
to the TRD scheme while reducing the allocated cache size.
To summarize, in order to show how URD is able to allocate a smaller cache space

compared to TRD and at the same time also achieve a similar hit ratio, we classify the
workloads into two groups:

(1) Workloads where RAR and RAW (RA*) accesses are involved in the maximum reuse
distance calculation.

(2) Workloads where WAR and WAW (WA*) accesses are involved in the maximum reuse
distance calculation.

These workloads are characterized with the following two equations, respectively.2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 : RD(WA∗) ≤ RD(RA∗) → TRD ∝ RD(RA∗),
URD ∝ RD(RA∗) → TRD = URD

2 : RD(WA∗) > RD(RA∗) → TRD ∝ RD(WA∗),
URD ∝ RD(RA∗) → TRD > URD

(1)

In the workloads of the first group (Eq. 1: part 1), both TRD and URD work similarly
in cache size estimation. On the other hand, in the workloads of the second group (Eq.
1: part 2), the URD of the workload is smaller than TRD and hence URD allocates a
smaller cache size compared to TRD. This is because URD considers only the RA* accesses.
The maximum reuse distance of RA* requests is smaller than the maximum reuse distance
of WA* requests for the workloads in the second group and hence URD provides smaller
maximum reuse distance and leads to the allocation of a smaller cache space. In this case,
URD achieves a similar hit ratio while allocating a smaller cache space compared to TRD.

5 ECI-CACHE ARCHITECTURE

In this section, we describe the architecture of the ECI-Cache. ECI-Cache 1) collects and
analyzes the access patterns of the VMs and 2) allocates an efficient and effective cache size
and write policy to each VM. Fig. 8 provides an overview of the ECI-Cache architecture in
the hypervisor of a virtualization platform. As shown in this figure, ECI-Cache consists of
three major components: (1) Monitor, (2) Analyzer, and (3) Actuator. ECI-Cache resides
in the path of IO requests coming from VMs to the storage subsystem. Monitor captures
and collects information about the IO behavior of each VM. Analyzer decides the cache
size and write policy by characterizing the IO behavior of the corresponding VM. Actuator
realizes the decisions made by Analyzer by allocating an efficient and effective cache space
and write policy for each VM in the SSD cache. We describe each component in more detail:

(1) Monitor receives all the IO requests coming from VMs and extracts important infor-
mation such as VM Identification Number (VM-ID), request type, destination address,
and request size by using blktrace, a block layer IO tracing tool [8] that is available
in the Linux kernel (version 2.6.16 and upper). Blktrace receives event traces from
the kernel and records the IO information. We modified the source code of blktrace
to extract the owner of each request (i.e., the VM that sends the request) at the
hypervisor level. Such modification helps us to classify the requests and discover the
access patterns of the running workloads in different VMs. The extracted information
is passed to Analyzer.

2RD: Reuse Distance.
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(2) Analyzer decides 1) the target destination of a given IO request, 2) an efficient cache
size for each VM, and 3) the write policy of the I/O cache for each VM, based on
1) the information it receives from Monitor and 2) a database it employs, called VM
Info. Analyzer keeps information about each VM, such as cache size, write policy,
workload characteristics, and the number of VMs running in the system in the VM
Info database.

(3) Actuator is responsible for realizing the decisions made by Analyzer. It allocates the
decided cache space for each VM, configures the decided write policy, and also routes
the IO requests to the SSD cache or the storage subsystem. Actuator keeps logs for
blocks stored in either the SSD cache or the storage subsystem in a table (namely
Map Table). This table is used for responding to future requests.

Typically, in a virtualization platform, there are several VMs running various workloads
with different IO behavior. The hypervisor is responsible for partitioning the cache space
efficiently between VMs. In workloads with a sequential access pattern, there is little locality
of reference and hence buffering data to capture future reuse demonstrates very poor hit
ratio (Fig. 9a). In workloads with a random access pattern, the probability of referencing
the blocks that are accessed previously is significantly greater than that in workloads with a
sequential access pattern and hence buffering data with a random access pattern improves
the hit ratio (Fig. 9b). Hence, in our proposed architecture, cache space will be allocated to
only VMs with random read or write access patterns. Sec. 5.1 describes our proposed algo-
rithm for cache space partitioning across VMs via online characterization of the workloads.
Sec 5.2 describes the write policy assignment to each VM.

5.1 Efficient Cache Size Estimation

We propose an ECI-Cache size allocation algorithm, which aims to allocate an efficient
cache size for each VM based on the reuse distances of the running workloads. Previously,
in Sec. 4, we proposed the metric of URD and provided an example that showed the effect of
considering request type on 1) the reuse distance of a workload and 2) the estimated cache
size. We also demonstrated that employing URD instead of TRD in cache size estimation
preserves the performance of the workload while reducing the allocated cache size. Such
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Fig. 9. Cache hits in sequential and random access patterns.

a scheme allocates a much smaller cache space to the workloads and hence improves the
performance-per-cost of each VM. It also reduces the number of unnecessary writes (due to
WAW and WAR operations) into the SSD cache, thereby improving SSD lifetime.

Periodically, ECI-Cache calculates the URD of the running workloads in VMs and then
estimates an efficient cache size for each VM. To provide the minimum latency for all VMs,
we employ an optimization algorithm that meets the conditions of Eq. 2. In this equation, ci
is the allocated cache space for each VMi, C is the total SSD cache space, N is the number
of running VMs, and hi(ci) denotes the achieved hit ratio for the running workload on VMi

when we allocate cache space equal to ci. In addition, Thdd and Tssd indicate the average
read/write access latency to the HDD and the SSD, respectively.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LatencyVMi = hi(ci)× Tssd + (1− hi(ci))× Thdd

Objective: Minimize[
∑N

i=1 LatencyVMi]

Constraint1:
∑N

i=1 ci ≤ C

Constraint2: 0 ≤ ci ≤ curdi

(2)

According to the constraints in Eq. 2, ECI-Cache partitions the cache space in a way
that aims to minimize the aggregate latency of all VMs. Since allocating cache space for
workloads with sequential access patterns achieves very poor hit ratio, ECI-Cache allocates
cache space for VMs with random access patterns that have a high degree of access locality.
ECI-Cache estimates the true amount of cache space for each VM based on URD. The total
SSD cache space should be greater than or equal to the sum of the cache sizes of all N VMs.
Hence, we have two possible cases for the allocated cache size: (1) the sum of estimated
cache sizes for all VMs using URD is less than the total SSD cache space or (2) the sum of
estimated cache sizes is greater than the total SSD cache space. In the first case (i.e., when
the SSD cache space is not limited), ECI-Cache would allocate the exact estimated cache
space for each VM and thus maximize the overall hit ratio. In the second case (i.e., when
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the SSD cache space is limited), since we have shortage of cache space, it is necessary to
recalculate the cache size for each VM in order to fit each VM into the existing cache space.

Algorithm 1 shows how ECI-Cache estimates and allocates cache space in a virtualized
platform with N VMs (Algorithm 4 in the Appendix provides a more detailed version of
Algorithm 1). Initially, a previously defined minimum cache size (cimin) is allocated to each
VM.3 At specific time intervals (∆t), we separately extract the IO traces of the running
workloads on the VMs into text files (line 1 and line 2). The information included in the
IO traces for each request are: 1) the destination address, 2) size, 3) type, and 4) VMID of
the request. This information is extracted by the Monitor part of the ECI-Cache.
In the next step, we use the collected traces to calculate the URD of the workloads

using the calculateURD function (line 4). In the calculateURDbasedSize function (line 5),
based on the calculated reuse distances, we find the required cache space for each VM that
maximizes the hit ratio. We check the feasibility of the estimated cache sizes to see if the
sum of estimated cache sizes (csum which is calculated in line 6) is less than the total SSD
cache capacity (line 8). When the condition in line 8 is met and the sum of estimated cache
spaces for all VMs is less than or equal to the total SSD cache capacity, we call the cache
space allocation “feasible”; otherwise (when the condition in line 11 is met) we call the
allocation “infeasible”. In case of in-feasibility (in line 13), we need to recalculate the cache
space allocation of each VM such that the SSD cache capacity is not exceeded. To do so,
we run the calculateEffSize function that employs an optimized minimization algorithm
(“fmincon”) [32] to find the most efficient set of cache space allocations that minimizes
the aggregate latency of all VMs under the constraint that the total allocated cache space
is less than the SSD cache capacity.4 The input of the minimization algorithm is (1) the
existing SSD cache capacity, (2) the hit ratio function of each VM (which will be described
in Algorithm 2) based on allocated cache space (H(c)) that has been extracted by analyzing
the reuse distances of the workloads, and (3) the estimated cache sizes by the algorithm
which cannot be fit into the existing SSD cache capacity. Finally, in line 15 we allocate
efficient cache spaces for each VM.
Algorithm 2 shows the structure of the hit ratio function. h(ci) provides the hit ratio

that can be obtained, if we assign a specific cache space (ci) to VMi. This function is
extracted from the output of the calculateURD function (described in Algorithm 1). In
the calculateURD function, we extract the ratio of accesses with useful reuse distance N
(URDN ). Then, for each ci (ci = URDN×cacheBlkSize), hi(ci) is equal to ratio of accesses
with useful reuse distance N . The specific cache space ci is calculated based on the different
reuse distances whose hit ratio is the ratio of corresponding reuse distances. In each time
interval, in case of infeasibility, we update the hit ratio function of each VM and feed it
to the minimization algorithm. The minimization algorithm uses the hit ratio function of
running VMs to minimize the sum of latency of all VMs, as calculated using Eq. 2.

5.2 Write Policy Estimation

In order to allocate the most efficient write policy for each VM, ECI-Cache analyzes the
access patterns and also the request types of the running workloads on the VMs. We choose
between RO and WB policies for each VM. The key idea is to use 1) the RO policy for VMs
with write operations without any further read access and 2) the WB policy for VMs with
referenced write operations (i.e., write operations with further read access). To minimize

3In the experiments, cimin is set to 1, 000 blocks.
4To this end, we use the “fmincon” function from the MATLAB Optimization toolbox [32].
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ALGORITHM 1: ECI-Cache size allocation algorithm.

/* Inputs: Number of VMs: (N), SSD cache size: (C), HDD Delay: (THDD), SSD Delay: (TSSD) */

/* Output: Efficient cache size for each VM: (ceff [1..N ]) */

1 Sleep for ∆t
2 Extract the traces of the workloads running on the VMs including 1) destination address, 2) request size, and 3)

request type
3 for i = 1 to N do
4 URD[i] = calculateURD(VM [i])
5 sizeurd[i] = calculateURDbasedSize(URD[i])
6 csum+ = sizeurd[i]
7 end

/* Check the feasibility of size estimation and minimize overall latency for estimated sizeurd[1..N ] */

8 if csum ≤ C then
9 ceff [1..N ] = sizeurd[1..N ]

10 end
11 else if csum > C then
12 Create hit ratio function of VMs (Hi(c)) based on reuse distance of the workloads.
13 ceff [1..N ] = calculateEffSize(sizeurd[1..N ], C)
14 end
15 allocate(ceff [1..N ], V M [1..N ])

/*
Functions Declaration:
calculateURD */

16 Function calculateURD(VM) is
/* This function calls PARDA [38] which is modified to calculate URD (reuse distance only for RAR and

RAW requests.) */

17 return URD
18 end
19 /*

calculateURDbasedSize */

20 Function calculateURDbasedSize(URD) is
21 sizeurd = URD × cacheBlkSize
22 return sizeurd

23 end
24 /*

calculateEffSize */

25 Function calculateEffSize(sizeurd[1..N ], C) is
26 initialSize = {cmin, ..., cmin}
27 lowerBound = {cmin, ..., cmin}
28 upperBound = {sizeurd[1], ..., sizeurd[N ]}
29 weightVM = {1, ..., 1}

/* Here we use fmincon function from MATLAB Optimization toolbox. */

30 ceff [1..N ] = fmincon(ObjectiveFunction, initialSize, weightVM,Ctot, {}, {}
, lowerBound, upperBound)

31 return ceff [1..N ]
32 end
33 /*

ObjectiveFunction */

34 Function ObjectiveFunction() is
35 for i = 1 to N do
36 h[i] = Hi(c[i])
37 hsum+ = h[i]
38 csum+ = c[i]
39 end
40 diff = C − csum
41 Obj = diff + (hsum) × TSSD + (N − hsum) × THDD

42 return Obj
43 end

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 9. Publication date: March 2018.



9:16 S. Ahmadian et al.

ALGORITHM 2: The structure of hit ratio function.
1 Function Hi(c) is
2 if 0 ≤ c < m1 then
3 h = h1

4 end
5 else if m1 ≤ c < m2 then
6 h = h2

7 end
8 ...
9 else if mk−1 ≤ c < mk then

10 h = hk

11 end
12 return h
13 end

the number of unnecessary writes, we assign the RO policy to the caches of VMs with read-
intensive access patterns (including RAR and RAW accesses). The RO policy improves the
performance of read operations and increases the lifetime of the SSD. In addition, such a
scheme is more reliable since it does not buffer writes in the cache.
As mentioned previously in Sec. 5, Analyzer is responsible for the write policy assignment

for each VM and it does so periodically (every ∆t). Analyzer checks the ratio of WAW and
WAR operations (namely, writeRatio). If the writeRatio of the running workload exceeds
a defined threshold, we change the write policy to RO, to avoid storing a large number of
written blocks in the cache. This is due to two reasons: 1) such a workload includes a large
amount of writes and holding such writes in the SSD cache would likely not have a positive
impact on the hit ratio, 2) caching such a large amount of writes has a negative impact on
the endurance of the SSD. We select the WB cache policy when the running workload on a
VM includes a large fraction of RAW accesses. In addition, we assign the RO policy to the
caches with a larger fraction of WAW and WAR accesses.
Algorithm 3 shows how ECI-Cache assigns an efficient write policy for each VM’s cache

space. Initially, we assign the WB policy for a VM’s cache space. Then, periodically, we
analyze the behavior of the running workload and re-assess the write policy. In line 3 of
Algorithm 3, after a period of time (∆t), we calculate the ratio of WAW and WAR requests
(writeRatio) for VMi (line 4). In line 5, we check whether the ratio of WAW and WAR
requests is greater than a threshold (namely wThreshold) or not. If the ratio of such requests
is greater than wThreshold, we assign the RO policy for VMi (in line 6); otherwise the
policy remains as WB.

ALGORITHM 3: ECI-Cache write policy assignment algorithm.

/* Inputs: Number of VMs: (N) */

/* Output: Efficient cache policy for each VM: (Pieff
) */

1 set(Pieff
, V Mi) = WB /* Initialization */

2 for i = 1 to N do
3 Sleep for ∆t

4 writeRatio =
getNumOfWAW (V Mi)+getNumOfWAR(V Mi)

getNumOfReq(V Mi)

5 if writeRatio ≥ wThreshold then
6 set(Pieff

, V Mi) = RO

7 end
8 end
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6 EXPERIMENTAL RESULTS

In this section, we provide comprehensive experiments to evaluate the effectiveness of the
ECI-Cache.

6.1 Experimental Setup

To evaluate our proposed scheme, we conduct experiments on a real test platform, an HP
ProLiant DL380 Generation 5 (G5) server [20] with four 146GB SAS 10K HP HDDs [21] (in
RAID-5 configuration), a 128GB Samsung 850 Pro SSD5 [44] used as the SSD cache, 16GB
DDR2 memory from Hynix Semiconductor [46], and 8 1.6GHz Intel(R) Xeon CPUs [24].
We run the QEMU hypervisor on the Centos 7 operating system (kernel version 3.10.0-327)
and create different VMs running Ubuntu 15.04 and Centos 7 operating systems on the
hypervisor. The configuration of the device layer is in the default mode where the request
merge option in the device layer is enabled for a 128-entry device queue size. We have
integrated ECI-Cache with QEMU to enable dynamic partitioning of the SSD cache and
allocation of an efficient cache space and write policy for each VM.

6.2 Workloads

We use MSR traces from SNIA [47], comprising more than fifteen workloads, as real workload
traces in our experiments. We run Ubuntu 15.04 and Centos 7 operating systems on the
VMs and allocate two virtual CPUs, 1GB memory, and 25GB of hard disk for each VM.
The experiments are performed with 16 VMs. Table 2 shows the workloads run on each VM.
The SSD cache is shared between VMs. ECI-Cache estimates the most efficient cache size
for each VM and partitions the SSD cache space between the VMs based on the running
workload’s IO pattern and request type. We have also implemented the state-of-the-art
IO caching scheme for virtualized platforms, Centaur [27], on our test platform. We run
the same experiments with Centaur. Similar to ECI-Cache, Centaur works based on reuse
distance but it does not consider request type in reuse distance calculation. In addition, it
does not have any control on the write policy of the SSD cache for each VM.

Table 2. Information of running workloads on the VMs.
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6.3 Cache Allocation to Multiple VMs

To show how ECI-Cache affects performance, performance-per-cost, and allocated cache
space to VMs compared to Centaur, we conduct experiments in two conditions: 1) when
the SSD cache capacity is limited, i.e., when the total SSD cache size is less than the sum

5The capacity of selected SSD is larger than the sum of efficient cache spaces for the running VMs. Thus,
there is no SSD cache capacity shortage in the experiments. As a result, employing an SSD with a larger
size would not provide any improvement in the performance of VMs.
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of the estimated cache spaces for the VMs. In this case, the cache size estimation by ECI-
Cache and Centaur may become infeasible and 2) when the SSD cache capacity is unlimited,
i.e., the cache has enough space to allocate the required and efficient cache space for each
VM.6 In the experiments, VMs are run concurrently and cache space is partitioned across
VMs for both ECI-Cache and Centaur schemes (we perform the same, yet separate and
independent experiments for both schemes and then compare the results).
The experiment is performed on 16 running VMs. An initial cache space equal to 10, 000

cache blocks (block size is equal to 8KB) with WB policy is allocated to each VM. The
total SSD cache capacity is 3 million blocks. Cache space is calculated in 10-minute time
intervals (∆t) for both ECI-Cache and Centaur. We select 10-min time intervals to reduce
the time overhead of the URD calculation to less than 5% (this trade-off has been obtained
based on the reported URD calculation overheads in Table 3 in Appendix B). Reducing the
length of the time interval provides more accurate estimations but it also increases the time
overhead of the URD calculation.
Fig. 10a and Fig. 10b show how Centaur and ECI-Cache allocate cache spaces for the VMs

in the time interval from t = 950 min to t = 1, 700 min of the experiment when the SSD
cache capacity is limited to 3 million blocks. We make two major observations: 1) Centaur
becomes infeasible and reduces the allocated cache spaces of the VMs to fit in the existing
SSD capacity and 2) ECI-Cache never becomes infeasible since the sum of estimated cache
spaces for the VMs is less than existing SSD capacity. This is because Centaur estimates
a larger cache space for each VM because it does not consider the request type while ECI-
Cache estimates much smaller cache space because it does consider the request type. When
the estimated cache space becomes infeasible (in Centaur), Centaur employs an optimization
algorithm to find efficient cache sizes which can be fit in the existing SSD cache capacity. To
this end, Centaur allocates smaller cache space to each VM and hence achieves a smaller hit
ratio than ECI-Cache. In these experiments, in-feasibility does not happen for ECI-Cache.
However, when ECI-Cache becomes infeasible, Centaur would be infeasible, too. In such
cases, both schemes should apply optimization algorithms to reduce the estimated cache
spaces in order to fit in the existing SSD cache.7 We conclude that in infeasible cases,
ECI-Cache provides greater hit ratio and better performance than Centaur.
Fig. 11 shows the details of allocated cache sizes for each individual VM by both Centaur

and ECI-Cache. In addition, this figure shows the IO latency of the VMs for both schemes.
During the experiment, the running workloads on the VMs finish one by one (because differ-
ent workloads have different runtimes) and since VMs with the finished workload generates
no more IO requests, ECI-Cache excludes those VMs from cache space partitioning. During
the course of the experiment, we retrieve the allocated cache space of such VMs. In order to
provide more detail, we present the results of each VM separately. The infeasible areas that
lead to latency degradation in Centaur are shown by dashed circles around latency lines.
We observe that in infeasible states, i.e., when SSD cache capacity is limited, ECI-Cache
improves performance and performance-per-cost by 17.08% and 30% compared to Centaur.

6The experiments of the second case are provided in Appendix A.
7In Section 4, we showed that the estimated cache space based on TRD (Centaur) would be greater than
or equal to the estimated cache space by URD (ECI-Cache), and hence Centaur would reduce the cache
size of each VM more than ECI-Cache would. In this case, the performance degradation in Centaur would
be greater than performance degradation in ECI-Cache.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 9. Publication date: March 2018.



ECI-Cache: A High-Endurance and Cost-Efficient
I/O Caching Scheme for Virtualized Platforms 9:19

0 

500k

1M

2M

2M

2M

3M

4M

 950
 1000

 1050
 1100

 1150
 1200

 1250
 1300

 1350
 1400

 1450
 1500

 1550
 1600

 1650
 1700

C
ac
he
 S
iz
e 
(8
K
B
 b
lo
ck
s)

Time (min)

  mds_1
  rsrch_2
  usr_0
  web_0

  src2_0
  prn_1
  src1_2
  rsrch_0

  prxy_0
  proj_0
  mds_0
  hm_1

  ts_0
  stg_1
  web_1
wdev_0

t=1,020min t=1,630minMax = 3M blocks

(a)

0 

500k

1M

2M

2M

2M

3M

4M

 950
 1000

 1050
 1100

 1150
 1200

 1250
 1300

 1350
 1400

 1450
 1500

 1550
 1600

 1650
 1700

C
ac
he
 S
iz
e 
(8
K
B
 b
lo
ck
s)

Time (min)

  mds_1
  rsrch_2
  usr_0
  web_0

  src2_0
  prn_1
  src1_2
  rsrch_0

  prxy_0
  proj_0
  mds_0
  hm_1

  ts_0
  stg_1
  web_1
wdev_0

t=1,520min
Max = 2.7M blocks

(b)

Fig. 10. Cache allocation for the VMs in infeasible state by (a) Centaur and (b) ECI-Cache.
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Fig. 11. Allocated cache space of each VM and corresponding latency in infeasible state with limited
SSD cache capacity (ECI-Cache vs. Centaur).
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6.4 Write Policy Assignment

To show how ECI-Cache assigns an efficient write policy for each VM, we conduct exper-
iments based on Algorithm 3. We characterize incoming requests from different VMs and
calculate the ratio of WAW and WAR operations for the running VMs. Then, we assign an
efficient write policy for the VM’s cache. In the experiments, we set the value of wThreshold
to between 0.2 and 0.9 and achieve different results based on the value of wThreshold. Note
that we assign the RO policy to a VM cache if the ratio of combined WAW and WAR re-
quests over all requests is greater than or equal to wThreshold.
Fig. 12 shows the ratio of different types of the requests in the running workloads. In

addition, Fig. 13 shows the number of WAW, WAR, RAR, and RAW accesses for the
workloads of the running VMs, which are sampled in 10-minute intervals. Since the first
access (either read or write request) to an arbitrary address within a sequence of I/O
requests cannot be classified as either WAW, WAR, RAR, and RAW, we denoted the first
read and write access to an address as Cold Read (CR) and Cold Write (CW), respectively.
Here we set wThreshold = 0.5.
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Fig. 12. Ratio of different types of requests in the workloads.

It can be seen that in the first 70-minute interval of web 1 (running on VM1 as shown in
Fig. 13b and Fig. 12), neither WAW nor WAR accesses exist and ECI-Cache assigns the WB
policy for the allocated cache. Then at t = 100 min, WAW operations become dominant
and the RO policy is assigned to the cache. In VM0, with the running workload of wdev 0,
after about 50 minutes, we recognize that 77% of the requests are WAW and the remaining
are mostly RAR (shown in Fig. 13a and Fig. 12) and thus at t = 50 min, the RO policy
is assigned to the cache of VM0 by ECI-Cache. As shown in Fig. 13e and Fig. 12, hm 1
running on VM4 consists of mostly RAR operations (more than 92%) without any WAR
and WAW accesses and thus the RO policy is assigned to this VM. In time intervals between
t = 0 to t = 500 min and t = 610 min to t = 1200 min, more than 86% of the requests of
proj 0 running on VM6 are CW and WAW operations, and thus ECI-Cache assigns the RO
policy to this VM. In the remaining interval (t = 500 min to t = 610 min), the WB policy
is assigned to this VM. ECI-Cache assigns the RO policy for VMs such as prxy 0 and web 0
that have a large number of WAW and WAR operations. Doing so minimizes the number
of unnecessary writes into the cache in these workloads.
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Fig. 13. ECI-Cache write policy assignment to the VMs.

6.5 Performance and Performance-Per-Cost Improvement

The results of previous experiments on the proposed test platform indicate a significant
performance and performance-per-cost (i.e., performance per allocated cache space) im-
provement for the running workloads on the VMs, as quantified in Fig. 14. We observed
that ECI-Cache is able to estimate a smaller cache space for each VM than Centaur, without
any negative impact on performance. In other words, ECI-Cache achieves similar hit ratio
while allocating smaller cache space and hence improves performance-per-cost. In addition,
ECI-Cache achieves higher performance compared to Centaur in infeasible cases for each
VM. Cache size estimation in the proposed scheme is based on the URD metric and thus
ECI-Cache allocates much smaller cache space to the VMs compared to Centaur. Centaur
estimates cache space based on TRD, which does not consider the request type, leading to
a higher cache size estimation for each VM.
Fig. 14 shows the achieved performance and performance-per-cost of the VMs when we

use the Centaur and ECI-Cache schemes. We observe that allocating cache space based on
ECI-Cache for each VM improves the performance and performance-per-cost compared to
Centaur in all workloads.
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Fig. 14. Performance and performance-per-cost achieved by ECI-Cache and Centaur.

Fig. 15 shows the cumulative latency of the running VMs with Centaur vs. ECI-Cache
in infeasible states (i.e., when the total SSD cache capacity is limited). In the time interval
shown in Fig. 15, ECI-Cache achieves a higher hit ratio than Centaur. Therefore, in infeasible
states ECI-Cache reduces the latency of the workloads by 17%, on average. We conclude
that ECI-Cache improves performance and performance-per-cost for the running VMs by
17.08% and 30%, by intelligently reducing the allocated cache space for each VM.
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Fig. 15. Cumulative latency of VMs with ECI-Cache and Centaur in infeasible states.

6.6 Endurance Improvement

To show the endurance improvement of ECI-Cache, we perform experiments by applying
our write policy assignment algorithm and show the impact of the proposed scheme on the
number of writes and also the performance of the VMs. Endurance of the SSD is affected
by the number of writes committed to it. Write operations on the SSD impose NAND
flash memory writes and increase the P/E-cycle count [10–12, 36, 43, 50]. ECI-Cache has a
positive impact on the endurance of the SSD because it reduces the number of committed
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writes to the SSD. While ECI-Cache can effectively manage the committed writes to the
SSD, it has no control on the writes initiated by the garbage collection and wear-leveling
algorithms used within the SSD. Hence, we report endurance improvement of the SSD cache
by using the reduced number of writes as a metric. A smaller number of writes is expected
to lead to better endurance. Similar metrics are used in previous system-level studies, such
as [22, 29, 31, 40]. Note that the total number of writes for each workload (reported in the
experiments) is calculated by Eq. 3 which includes writes from the disk subsystem to the
SSD and also the writes from the CPU to the SSD:

Total Writes =
∑

(CR+ CW +WAR+WAW ) (3)

where CR (Cold Read) is the first read access to an address and CW (Cold Write) is the
first write access to an address. Fig. 16 shows the number of writes into the SSD cache and
the allocated cache space with Centaur and ECI-Cache. As this figure shows, ECI-Cache
assigns a more efficient write policy for each VM as compared to Centaur. We re-conducted
experiments of Sec. 6.4 and the results demonstrate that by using the RO policy, we can
reduce the number of writes by 44% compared to the caches using the WB policy. When
ECI-Cache applies the RO policy on the VMs, only writes due to CRs (Cold Reads) will
be written on the cache. Applying the RO policy on the VMs has a negative impact on
the hit ratio of RAW operations (by 1.5%). As it can be seen in Fig. 16, applying ECI-
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Fig. 16. Writes into the SSD cache and allocated cache space to the VMs by Centaur and ECI-Cache.

Cache on the VM running hm 1 has no impact on the number of writes into the cache.
This workload mostly consists of RAR and RAW operations where it is necessary to cache
referenced data by assigning the WB policy. It is important to note that as presented in
Sec. 5.1 (shown in Fig. 14), ECI-Cache allocates about 50% smaller cache space to this
VM, which is calculated based on the reuse distance of RAR and RAW operations by using
URD. Similarly, for the VMs running stg 1, mds 1, and prn 1, ECI-Cache allocates much
less cache space based on the calculated URD for RAR and RAW operations and assigns
the WB policy. Hence, ECI-Cache has no impact on the number of writes into the SSD in
such VMs. For the remaining VMs running workloads such as mds 0, ECI-Cache reduces
the number of writes by 80% and the allocated cache space by 25%. ECI-Cache achieves
18% cache size reduction by 90% reduction in number of writes for ts 0. For proj 0, cache
size and the number of writes is reduced by 22% and 46%, respectively. ECI-Cache reduces
the number of writes for prxy 0, wdev 0, rsrch 0, src2 0, and src1 2 by 90%, 85%, 87%, 85%,
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and 88%, respectively. We conclude that ECI-Cache assigns an efficient write policy for each
VM and thereby reduces the number of writes into the SSD cache by 65% on average across
all VMs.

7 CONCLUSION

In this paper, we presented the ECI-Cache, a new hypervisor-based I/O caching scheme
for virtualized platforms. ECI-Cache maximizes the performance-per-cost of the I/O cache
by 1) dynamically partitioning it between VMs, 2) allocating a small and efficient cache
size to each VM, and 3) assigning a workload characteristic-aware cache write policy to
each VM. The proposed scheme also enhances the endurance of the SSD I/O cache by
reducing the number of writes performed by each VM to the SSD. ECI-Cache uses a new
online partitioning algorithm to estimate an efficient cache size for each VM. To do so, ECI-
Cache characterizes the running workloads on the VMs and makes two key decisions for
each VM. First, ECI-Cache allocates cache space for each VM based on the Useful Reuse
Distance (URD) metric, which considers only the Read After Read (RAR) and Read After
Write (RAW) operations in reuse distance calculation. This metric reduces the cost of the
allocated cache space for each VM by assigning a smaller cache size because it does not
consider Write After Read (WAR) and Write After Write (WAW) accesses to a block to be
useful for caching purposes. Second, ECI-Cache assigns an efficient write policy to each VM
by considering the ratio of WAR and WAW operations of the VM’s workload. ECI-Cache
assigns the Write Back (WB) policy for a VM with a large amount of re-referenced data
due to RAW and RAR operations and the Read Only (RO) write policy for a VM with a
large amount of unreferenced (i.e., not re-referenced) writes due to WAR and WAW accesses.
By allocating an efficient cache size and assigning an intelligent cache write policy for each
VM, ECI-Cache 1) improves both performance and performance-per-cost (by 17% and 30%,
respectively, compared to the state-of-the-art [27]) and 2) enhances the endurance of the
SSD by greatly reducing the number of writes (by 65%). We conclude that ECI-Cache is
an effective method for managing the SSD cache in virtualized platforms.
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APPENDIX A CACHE ALLOCATION IN FEASIBLE STATE

In this section, we show how ECI-Cache and Centaur allocate cache space for the VMs in
feasible state. We conduct experiments by applying both schemes in the hypervisor when
the SSD cache capacity is unlimited. The experiments are performed on 16 running VMs
with an initial cache space equal to 10, 000 cache blocks for each VM (block size is equal
to 8KB) and using the WB policy for each VM’s cache space. Fig. 17 shows the allocated
cache space by ECI-Cache and Centaur scheme for the VMs separately. In addition, this
figure shows the latency of each VM.
We observed that for write-intensive workloads with a large amount of unreferenced (i.e.,

not re-referenced) data, such as stg 1 in VM2, ECI-Cache allocates significantly smaller
cache space (about 14, 000 cache blocks) for caching referenced data while Centaur allocates
about 1000X larger cache space to that VM. The allocated cache space by ECI-Cache for
VM5, VM6, VM7, and VM12 in some cases becomes equal to the allocated cache space
by Centaur (as shown in Fig. 11f, Fig. 11g, Fig. 11h, and Fig. 11m, respectively). This
is because the maximum reuse distance of the workloads is mainly affected by RAR and
RAW requests. In Fig. 11f, at t = 600 min, there is a hit ratio drop which is recovered
by increasing the allocated cache space by both ECI-Cache and Centaur. It can be seen
that the allocated cache space by ECI-Cache is much smaller than the allocated space by
Centaur. In addition, there is a hit ratio drop in VM1 at the first 50-minute interval where
increasing the cache space using the Centaur scheme does not have any positive impact on
the hit ratio. This is due to the lack of locality in references of the requests, which mostly
include WAR and WAW operations. It can be seen that ECI-Cache does not increase the
cache space at this time. At t = 60 min, ECI-Cache increases the allocated cache space,
which results in improving the hit ratio. ECI-Cache allocates the minimum cache space
for rsrch 2 which is running on VM14 while Centaur allocates a much larger cache space
(more than 50, 000X) than ECI-Cache. This is because this workload mostly consists of
WAR and WAW operations with poor locality of reference. Hence, ECI-Cache achieves the
same hit ratio by allocating much smaller cache space to this workload. We conclude that in
feasible state, both ECI-Cache and Centaur achieve the same performance while ECI-Cache
allocates much smaller cache space for the VMs compared to Centaur.
Fig. 18a and Fig. 18b show cache space allocation for the VMs in the time interval

from t = 950 min to t = 1, 700 min by Centaur and ECI-Cache, respectively. It can be
seen that in all time intervals, ECI-Cache allocates much smaller cache space to the VMs
compared to Centaur. We observe that in feasible state (i.e., unlimited SSD cache), ECI-
Cache allocates much smaller cache space (29.45%, on average) than Centaur and hence
reduces performance-per-cost significantly.

APPENDIX B URD OVERHEAD AND TIME INTERVAL TRADE-OFF

In this section, we report the average delay of calculating URD for the workloads running on
the VMs in our experiments. We select the intervals of URD calculation in the experiments
in order to limit the time overhead of URD calculation (the time that we should wait
until URD is calculated). Table 3 reports the average time it takes to calculate URD for
each workload. As reported in the table, the maximum time it takes to calculate URD is
about 22.67 seconds, which is reported for the prn 1 workload. In addition, the average time
overhead of the URD calculation for all workloads is about 4.82 seconds. We selected 10
min time intervals which is calculated based on maximum URD calculation delay to reduce
the time overhead of URD calculation to less than 5% in our experiments.
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Fig. 17. Allocated cache space of each VM and corresponding latency in feasible state with unlimited
SSD cache capacity (ECI-Cache vs. Centaur).
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Fig. 18. Cache allocation for the VMs in feasible state by (a) Centaur and (b) ECI-Cache.
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Table 3. Time overhead of URD calculation in the running VMs.
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APPENDIX C WORST-CASE ANALYSIS

In this section, we provide three examples that illustrate corner cases where ECI-Cache fails
in cache size estimation, and as a result, does not have a positive impact on performance
improvement. We find that these cases are uncommon in the workloads we examine.

Case 1. Sequential-Random workload : The workload has two intervals: 1) sequential accesses
followed by 2) random and repetitive requests (i.e., requests to the previously-accessed
addresses). In the first interval, ECI-Cache does not allocate cache space for the workload
while the requests in the second interval are random accesses to the previously (not buffered)
accesses. Thus, in the first interval, ECI-Cache underestimates the allocated cache size for
the workload. Fig. 19a shows an example of such workloads. We elaborate on how ECI-Cache
works in each interval for the example workload:

(1) At the end of the first interval (i.e., when ECI-Cache recalculates URD and cache
size), the URD of the workload is equal to 0. Hence, no cache space is allocated to
this VM.

(2) In the second interval, the workload accesses become random with repetitive addresses
where all requests are provided by the HDD and none of them are buffered in the cache
(since no cache space is allocated to this VM).

(3) At the end of the second interval, the maximum URD of the workload is equal to
three and hence ECI-Cache allocates cache space equal to four blocks for this VM.

(4) In the last interval, the workload issues two accesses to the storage subsystem but
neither of them can be supplied by the cache (since the cache has no valid data) and
the requests are buffered in the cache without any performance improvement.

We find that allocating cache space in such a manner (i.e., only at the end of the second
interval) cannot improve the performance of requests of the last interval in this workload.
In this case, the Centaur scheme works similar to ECI-Cache.

Case 2. Random-Sequential workload : In this case, in the first interval, the workload issues
random accesses to the storage subsystem and ECI-Cache allocates cache space based on the
URD of the requests. In the second interval, the accesses of the workload become sequential
without any access to previously-buffered requests. ECI-Cache overestimates the allocated
cache space for the workload. Fig. 19b shows an example workload for this case. We show
how ECI-Cache overestimates the cache space for this example workload:

(1) In the first interval, the workload is random with locality of accesses and at the end of
interval. The maximum URD is equal to two. Hence, at the end of the interval, three
cache blocks are allocated to this VM.
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Fig. 19. Corner cases where ECI-Cache fails in size estimation (TYP: Type, SEC: Sector, W: Write, R:
Read, Buff.: Buffer, and Mod.: Modify).

(2) In the second interval, requests become sequential writes and are buffered in the
allocated cache space.

(3) At the end of the second interval, the maximum URD of the workload is equal to two
and hence ECI-Cache allocates three cache blocks for this workload.

(4) In the last interval, repetitive requests (that are the same as requests of the first
interval) cannot be supplied by the cache since the entire cache space is used up by
the accesses of the second interval (sequential writes).

We observe that although enough cache space is allocated for the VM, ECI-Cache cannot
improve the performance of the workload compared to the HDD-based system due to the
access behavior. In this case, Centaur works similar to ECI-Cache.

Case 3. Semi-Sequential workload : Such a workload includes similar sequential accesses in
different intervals, which creates a large maximum URD without any locality of reference.
In this case, ECI-Cache allocates a large cache space for the VM. Further requests use up
the entire cache space without any read hit from allocated cache. Fig. 19c shows an example
workload. We elaborate on how ECI-Cache allocates cache size for this example workload:

(1) At the end of the first interval, the maximum URD of the workload is 0 and no cache
space is allocated to this VM.

(2) In the second interval, all accesses of the first interval are repeated and are provided
by the HDD. Since we have no cache space, none of them are buffered in the cache.

(3) At the end of the second interval, the maximum URD of the workload is equal to
three and ECI-Cache allocates four blocks to this VM.

(4) In the third interval, the workload issues read accesses to the storage subsystem and
all of them are provided by the HDD (since the allocated cache has no valid data). In
this case, these requests are buffered in the cache (all cache blocks are used).
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(5) In the last interval, since cache space is used up by accesses of the third interval, the
future requests that are identical to requests of the second interval miss in the cache
and are supplied by the HDD.

In this example, we observe that ECI-Cache allocates large cache space to the VM and
buffers unnecessary data without any improvement in performance. We can resolve this
problem by changing the length of the intervals.

APPENDIX D CONVEX OPTIMIZATION

In the following, we show why the objective function of the proposed algorithm (Eq. 4) is
convex and then show how we solve the function using the MATLAB optimization toolbox.
To do so, we first show that the objective function is convex. Then we show that the objective
function and its constraints are in canonical form of convex.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LatencyVMi = hi(ci)× Tssd + (1− hi(ci))× Thdd

Objective: Minimize[
∑N

i=1 LatencyVMi]

Constraint1:
∑N

i=1 ci ≤ C

Constraint2: 0 ≤ ci ≤ curdi

(4)

LatencyVMi is a linear function and is convex. The objective function is the sum of
LatencyVMi functions because the sum of convex functions is convex. We express the
first constraint of the objective function (constraint 1) as follows (I is a unity matrix of N
by N):

Constraint1:
N∑

i=1

ci ≤ C −→ I ×

⎡

⎢⎢⎣

c0
..
..

cN−1

⎤

⎥⎥⎦ ≤ C (5)

We express the second constraint (constraint 2) as:

Constraint2: 0 ≤ ci ≤ curdi −→ I ×

⎡

⎢⎢⎣

c0
..
..

cN−1

⎤

⎥⎥⎦ ≤

⎡

⎢⎢⎣

curd0

..

..
curdN−1

⎤

⎥⎥⎦ and − I ×

⎡

⎢⎢⎣

c0
..
..

cN−1

⎤

⎥⎥⎦ ≤

⎡

⎢⎢⎣

0
..
..
0

⎤

⎥⎥⎦ (6)

Then, we have:

⎡

⎣

[
1 ... 1

]

I
−I

⎤

⎦×

⎡

⎢⎢⎣

c0
..
..

cN−1

⎤

⎥⎥⎦ ≼

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C⎡

⎢⎢⎣

c0
..
..

cN−1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
..
..
0

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Eq. 7 is the canonical form of convex and hence the objective function with constraints is
convex. We employ MATLAB optimization toolboxes to minimize the objective function.
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APPENDIX E DETAILS OF ECI-CACHE SIZE ESTIMATION ALGORITHM

In this section, we present Algorithm 4, which provides the details of Algorithm 1. Table 4
summarizes the key notational elements used in Algorithm 1 and Algorithm 4.
The main objective of Algorithm 4 (similar to Algorithm 1) is to find the most appropriate

cache sizes for the running VMs such that the system is able to meet the following conditions:
1) Sum of allocated cache spaces for all VMs is less than or equal to the total SSD cache
capacity. 2) Aggregate latency of all VMs is minimum. 3) Allocated cache space for each
VM is less than or equal to the estimated cache space by URD. This objective is obtained by
the calculateEffSize function via the use of the ObjectiveFunction. ObjectiveFunction
minimizes diff which is the difference between sum of allocated cache spaces for the VMs
(csum) and the SSD cache capacity (C) (i.e., assigns the maximum cache space for each
VM). In addition, ObjectiveFunction minimizes the aggregate latency of the running VMs.

Table 4. Description of notation used in Algorithm 1 and Algorithm 4.

Variables
Notation Description

N Number of running VMs.
C SSD cache capacity.
THDD HDD delay (i.e., HDD service time).
TSSD SSD delay (i.e., SSD service time).
Ceff [i] Efficient cache size allocated for each VMi.
URDi Useful Reuse Distance (URD) for VMi, which is the output of calculateURD() function.
SizeURD [i] Initial efficient cache size suggested by URD for VMi.
csum Sum of initial efficient cache sizes (i.e., sum of SizeURD [i] of all running VMs).
cacheBlkSize Size of cache blocks (equal to 8KB in our experiments).
initialSize Array of initial cache sizes allocated to each VM.
lowerBound Array of minimum cache sizes that can be assigned to the VMs.

upperBound
Array of efficient cache sizes suggested by URD.
The efficient cache sizes by ECI-Cache for each VM is less than or equal to the suggested
cache sizes by URD.

weightVM Weight of VMs.
h[i] Hit ratio of VMi.
hsum Sum of hit ratio of VMs.
diff Difference between total SSD cache capacity and estimated cache sizes by ECI-Cache.
Obj The objective variable.

Functions

calculateURD
Input: VM
Output: Useful Reuse Distance (URD) of each VM.

calculateURDbasedSize
Input: URD
Output: efficient cache size suggested by URD (sizeURD)

calculateEffSize

Input: sizeURD [1..N ], C
// This function is called only in infeasible states where the existing SSD cache size is
less than required cache sizes by VMs.
Output: efficient cache size for each VM (ceff [i])

objectiveFunction
Input: —
// This function is used within the calculateEffSize function.
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ALGORITHM 4: ECI-Cache size allocation algorithm (in more details).
/* Inputs: Number of VMs: (N), SSD cache size: (C), HDD Delay: (THDD), SSD Delay: (TSSD) */

/* Output: Efficient cache size for each VM: (ceff [1..N ]) */

1 Sleep for ∆t

2 Extract the traces of the workloads running on the VMs including 1) destination address, 2) request size, and 3) request

type

/* Here we estimate the efficient cache space for each VM by calculating URD of the running workloads. */

3 for i = 1 to N do
4 URD[i] = calculateURD(V M [i]) /* Here we find URD for each VM. */

5 sizeurd[i] = calculateURDbasedSize(URD[i]) /* Here we calculate the estimated cache size for each VM based on its

URD. */

6 csum+ = sizeurd[i] /* We keep the sum of estimated sizes in csum. */

7 end

/* In the following we check the feasibility of size estimation and minimize overall latency for estimated sizeurd[1..N ] */

8 if csum ≤ C then
/* If this condition is met, our estimation is feasible */

9 ceff [1..N ] = sizeurd[1..N ] /* We assign the estimated sizes to the efficient sizes. */

10 end

11 else if csum > C then
/* If this condition is met, the estimation is infeasible. */

12 Update hit ratio function of VMs (Hi(c)) based on updated reuse distance of the workloads. /* The structure of hit

ratio function is provided in Algorithm 2. */

13 ceff [1..N ] = calculateEffSize(sizeurd[1..N ], C) /* We call calculateEffSize to find the efficient sizes that fit

in total SSD cache space. */

14 end

15 allocate(ceff [1..N ], V M [1..N ]) /* This function allocates the calculated efficient cache spaces for each VM. */

/*
Function Declarations:
calculateURD */

16 Function calculateURD(V M) is
/* The purpose of this function is to find the URD of the running workload on V M. This function calls PARDA [38],

which is modified to calculate URD (reuse distance only for RAR and RAW requests). */

17 return URD

18 end

/*

calculateURDbasedSize */

19 Function calculateURDbasedSize(URD) is
/* The purpose of this function is to calculate URD based cache size of each VM. */

20 sizeurd = URD × cacheBlkSize

21 return sizeurd
22 end

/*

calculateEffSize */

23 Function calculateEffSize(sizeurd[1..N ], C) is
/* This function is called in infeasible states and aims to minimize the overall latency (sum of VMs latencies). */

24 initialSize = {cmin, ..., cmin}/* We set cmin as the initial cache space for each VM. */

25 lowerBound = {cmin, ..., cmin} /* Here we set the minimum cache space for each VM equal to cmin */

26 upperBound = {sizeurd[1], ..., sizeurd[N ]} /* Here the maximum cache space for each VM is set. */

27 weightV M = {1, ..., 1} /* We assume that the VMs are weighted identically. */

/* All abovementioned variables are the inputs of the fmincon function. We pass ObjectiveFunction to this

function. */

28 ceff [1..N ] = fmincon(ObjectiveFunction, initialSize, weightV M,Ctot, {}, {}, lowerBound, upperBound)

29 return ceff [1..N ]

30 end

/*

ObjectiveFunction */

31 Function ObjectiveFunction() is
/* This function is called until the condition of Eq. 2 is met by the estimated cache sizes (c[1..N ]). */

32 for i = 1 to N do
33 h[i] = Hi(c[i]) /* Here we calculate the hit ratio of each VM for c[i] input. This function is updated in ∆t

intervals. */

34 hsum+ = h[i] /* hsum variable keeps the sum of hit ratios of the VMs */

35 csum+ = c[i] /* csum variable keeps the sum of cache sizes of the VMs */

36 end

37 diff = C − csum /* diff variable is used in maximizing the total estimated cache sizes */

38 Obj = diff + (hsum) × TSSD + (N − hsum) × THDD /* Objective: Maximizing estimated sizes and minimizing sum of

VM latencies. */

39 return Obj

40 end
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