
1

An Efficient SRAM-based Reconfigurable Architecture for Embedded
Processors

Sajjad Tamimi, Zahra Ebrahimi, Behnam Khaleghi, Hossein Asadi, senior Member, IEEE

Abstract—Nowadays, embedded processors are widely used in wide
range of domains from low-power to safety-critical applications. By
providing prominent features such as variant peripheral support and
flexibility to partial or major design modifications, Field-Programmable
Gate Arrays (FPGAs) are commonly used to implement either an entire
embedded system or a Hardware Description Language (HDL)-based
processor, known as soft-core processor. FPGA-based designs, however,
suffer from high power consumption, large die area, and low perfor-
mance that hinders common use of soft-core processors in low-power
embedded systems. In this paper, we present an efficient reconfigurable
architecture to implement soft-core embedded processors in SRAM-based
FPGAs by using characteristics such as low utilization and fragmented
accessibility of comprising units. To this end, we integrate the low
utilized functional units into efficiently designed Look-Up Table (LUT)
based Reconfigurable Units (RUs). To further improve the efficiency of
the proposed architecture, we used a set of efficient Configurable Hard
Logics (CHLs) that implement frequent Boolean functions while the other
functions will still be employed by LUTs. We have evaluated effectiveness
of the proposed architecture by implementing the Berkeley RISC-V
processor and running MiBench benchmarks. We have also examined
the applicability of the proposed architecture on an alternative open-
source processor (i.e., LEON2) and a Digital Signal Processing (DSP) core.
Experimental results show that the proposed architecture as compared to
the conventional LUT-based soft-core processors improves area footprint,
static power, energy consumption, and total execution time by 30.7%,
32.5%, 36.9%, and 6.3%, respectively.

I. INTRODUCTION
Embedded systems are used in broad range of applications from

indoor utensils to medical appliances and safety-critical applications.
The hardware infrastructure of these systems typically consists of an
embedded processor as the core and different peripherals specified
for the target application [1], [2]. An embedded processor can be
implemented as two commonly used platforms, i.e., either hard- or
soft-core. Hard-core processors have received great attention due to
the high abstraction level they provide to both developers and users
[3], [4]. However, commercially off-the-shelf hard-core processors
cannot fulfill design requirements when processor customizations
such as Instruction Set Architecture (ISA) update is demanded by the
customers. In addition, these processors typically provide specific and
limited peripheral support that may not fit appropriately to a variety
of embedded applications. Moreover, there is always likelihood
of obsolescence of a hard-core processor which complicates the
migration of the overlying embedded system to newer technologies
and leads to expensive and even infeasible design update.

An alternative approach to implement embedded processors is
using reconfigurable devices such as Field-Programmable Gate Ar-
rays (FPGAs) which is referred to as soft-core. A typical soft-core
processor, as illustrated in Fig. 1, can be reconfigured on an individual
FPGA device during system runtime. The main privilege of soft-core
over hard-core counterpart is its intrinsic flexibility to reconfigure
itself with workload variations to provide higher level of parallelism
which results in (a) shorter time-to-market, (b) inexpensive design
update with upcoming technologies, (c) continuous adoption with ad-
vancements in SRAM-based FPGAs, and (d) flexibility to implement
diverse range of applications. FPGAs, however, are conventionally
equipped with abundant logic and routing resources to target general
applications which results in high power consumption, large silicon
die area, and low performance compared with Application Specific
Integrated Circuit (ASIC) counterparts [5]. These intrinsic charac-
teristics of FPGAs are in contrary with fundamental requisites of
embedded systems [6].

Reconfigures to: 

t1Reconfig. time

RISC-VLEON2 LEON3

t2 t3

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Glue Logic

M

M

M

M

M

M

M

M

Select

Execution

Decode
Fetch

Write Back

Soft-Core Processor

Logic
Block

Logic
Block

M

M

M

M

M

Fig. 1. Online reconfiguration to various soft-core processors

With the limitations of hard-core processors along with infeasibility
of fabricating dedicated processors due to limitations in time and/or
cost in one hand, and prominent features of FPGAs in the other hand,
designers have ever-increasing tendency to use soft-core processors in
embedded systems. Various open-source soft-core processors [7]–[12]
have been widely used for academic and commercial purposes. Such
soft-cores are developed based on full description of a processor from
scratch using Hardware Description Language (HDL) [13], modifi-
cation of pre-tested Intellectual Property (IP) cores (e.g., MicroBlaze
and Nios II), or pre-characterized cores that are developed by higher
abstraction level tools (e.g., SPREE [14] and Chisel [15]).

A major challenge of embedded soft-core processors is functional
units with low utilization and/or fragmented accesses, e.g., floating
point multiplier and divider. Such units are accessed sporadically
for a short period of time and remain idle for significant amount
of time. The large period of idle time can lead to significant static
power dissipation which is a key design constraint in battery-powered
mobile devices. In particular, with the downscaling of the transistor
feature size and threshold voltage in smaller technology nodes, the
role of static power has become more pronounced [16], leading to the
era of Dark Silicon [17]. Furthermore, these low utilized units suffer
from larger area (i.e., transistor count), which is another testimony
for the ever-increasing static power in embedded systems.

To improve the power consumption of embedded processors,
previous studies have suggested to replace the low utilized units
with non-volatile reconfigurable units which can be reconfigured
whenever an access to an unavailable unit is issued [18], [19]. Such
a design suffers from area overhead caused by replacing the static
CMOS units with Look-Up Table (LUT)-based equivalents. Several
previous studies have also considered the use of reconfigurable
architectures in conjunction with [20]–[23] or within the FPGA-based
processors [18], [19], [24], [25] mainly to speed up the computations.
Nevertheless, these architectures have two main drawbacks. First, the
suggested reconfigurable architectures are designed only for a specific
application domain and are not generic. Second, the suggested recon-
figurable architectures which have been used within these platforms

2

are power inefficient. These shortcomings obstruct the use of such
architectures in the majority of embedded systems.

In this paper, we propose an area and power efficient reconfigurable
architecture for soft-core embedded processors by exploiting the low
utilization and fragmented accesses of functional units. The proposed
architecture is motivated by large area and high power consumption of
the low-utilized functional units in SRAM-based soft-core processors.
Such an architecture, however, necessitates a comprehensive profiling
to determine the accessibility of processor functional units across
a wide range of applications to (a) specify which functional units
should be replaced with reconfigurable component and (b) determine
how to efficiently integrate these units. For this purpose, we first
profile a wide range of benchmarks to determine infrequently-used
and fragmentally-accessed units that are the major contributor of
the logic static power, and hence, are promising candidates to be
merged in an individual Reconfigurable Unit (RU). Afterwards, to
further improve the area and power efficiency of the proposed RU,
we propose an algorithm to efficiently integrate these components as
shared RUs. The proposed algorithm aims to minimize the number
of configuration cells and logic resources in the RU by exploiting
the similarities along with the non-uniform distribution of Boolean
functions in the components. These homomorphic-structure functions
are implemented as a set of small area-size Configurable Hard Logics
(CHLs). To our knowledge, this is the first study that, in a fine-grained
manner, improves the area and static power efficiency of FPGA-based
soft-core processors using the concept of spatiality in component
utilization. The proposed architecture can be employed in tandem
with other methods that intend to architecturally improve the soft-
core processors, e.g., multi-threading [26], power gating [27]–[29],
or ISA customization [30], as they are orthogonal to our proposed
architecture.

To evaluate the efficiency of the proposed architecture, we first
execute MiBench benchmarks [31] on Berkeley open-source RISC-
V processor [8] to obtain the access patterns and utilization rate
of the RISC-V units. Afterwards, using an in-house script, we
identified the candidate units to be integrated in an optimal number
of RUs. Berkeley ABC [32] and Altera Quartus [33] are exploited
for synthesizing the selected units and integrating into a shared RU.
Thereafter, latest version of COFFE [34] is exploited to generate
efficient transistor sizing used in HSPICE. Finally, we use Verilog-
To-Routing (VTR) 7.0 [35] fed with the parameters obtained from
HSPICE and Design Compiler to place and route the processors and
obtain the design characteristics. Furthermore, we examine generality
of the proposed architecture on an alternative open-source processor
(LEON2), as well. Experimental results demonstrate that our pro-
posed architecture improves the area, static power, energy, critical
path delay, and total execution time of RISC-V by 30.7%, 32.5%,
36.9%, 9.2%, and 6.3%, respectively, compared to the conventional
modular LUT-based soft-core processors. Examining the applicability
of the proposed architecture on LEON2 revealed that the area, static
power consumption, and energy of LEON2 is enhanced by 23.1%,
23.2%, and 23.2%, respectively.
The novel contributions of this work are as follows:
• We present a comprehensive design space exploration among

prevalent infrastructures for datapath computational units of a
processor to discriminate the proper infrastructure for embedded
systems. This suggests integration of low utilized and fragmentally-
accessed components into shared RUs.

• For the first time, we propose a metric to efficient integration
of units in elaborately designed RUs based on component area,
utilization ratio, and configuration time.

• By comprehensive characterization of most frequent and
homomorphic-structure functions, we propose an area and power

efficient synthesis algorithm which exploits efficient CHLs for im-
plementing significant portion of functions in the proposed RUs. To
the best of our knowledge, this is the first effort which investigates
the applicability of CHLs in either soft or hard processors.

• We investigate the generality of the proposed architecture on an
alternative embedded processor (LEON2) as well. In addition, to
examine the insensitivity of shared RU, we use both academic and
commercial synthesis tools.

The rest of this paper is as follows. The related work is reviewed
in Section II. The motivation behind the proposed architecture is
explained in Section III. We articulate the proposed architecture
in Section IV. Details of the experimental setup and results are
elaborated in Section V. Finally, Section VII concludes the paper.

II. RELATED WORK

Different approaches have been proposed to reduce the area and
power of soft-core processors as well as to increase their performance,
which can be classified in two categories. Approaches in the first
category employ three techniques, (a) static or (b) dynamic power
gating of components of execution stage [27]–[29], [36], and (c) dual
threshold voltage to reduce power. Static power gating is applied
offline at the configuration time. Therefore, the power efficiency
of this technique is restricted to permanently-off components which
depends on the target application. Dynamic power gating is applied
online, i.e., during the application runtime, so it may have higher
opportunity for power reduction. In practice, however, dynamic power
gating encounters several shortcomings that hinders practicality of
this technique. We will discuss advantages of the proposed architec-
ture over dynamic power gating method in Section V.

As the second category, using reconfigurable devices to imple-
ment contemporary processors is proposed. Previous studies in this
category can be classified as coarse-grained and fine-grained ar-
chitectures. The former allows bit-level operations, while the latter
enables relatively more complicated operations. In the coarse-grained
architectures [20]–[23], the reconfigurable devices are used as co-
processor to speed up computations and enhance the parallelism
degree and energy efficiency by loop unrolling. The role of com-
piling algorithms, i.e., hardware-software partitioning, considering
today’s complex many-core architectures and multi-programming
can adversely affect the efficiency of such architectures [37]. Thus,
aforementioned architectures impose considerable area overhead of
profiler and departure compilers from their straightforward flow
to support branch prediction which may not always be correct in
interactive and time-dependent embedded applications [23].

In fine-grained architectures, one or several types of instructions
are selected to be executed on the reconfigurable platform. The main
challenge in such architectures is choosing computation-intensive in-
structions. In this regard, CHIMAERA [24] has proposed integrating
an array of Reconfigurable Functional Units (RFUs) into the pipeline
of a superscalar processor which are capable of performing 9-input
functions. The authors also proposed a C compiler that attempts
to map the instructions into RFUs [24]. The OneChip architecture
that integrates an RFU into the pipeline of a superscalar RISC
processor has been proposed in [25]. The RFU is implemented in
parallel with Execute and Memory Access stages and includes one
or more FPGA devices and a controller. Thus, it can be internally
pipelined and/or parallelized. In addition to significant area and power
overheads imposed by multiple reconfiguration memories and addi-
tional circuitries, design complexity (e.g., modifying the compiler)
is another drawback of the OneChip architecture. A heterogeneous
architecture exploiting RFUs based on Spin-Transfer Torque Random
Access Memory (STT-RAM) LUTs for the hard-core general-purpose

3

TABLE I
SUMMARY OF EXPLOITING RECONFIGURABLE FABRICS IN PROCESSORS

Granularity Modification Structure (Topology) Improvement/Design Overhead

MorphoSys [20] Coarse-grained Not mentioned 8x8 array of 32-bit ALU/multiplier, register file,
modified TinyRISC processor, and memory unit

✓ Performance
5 No compiler support, no area and power evaluation

ADRES [21] Coarse-grained Developing specific
compiler framework

VLIW processor with reconfigurable
matrix and register file

✓ Performance 5 Large configuration overhead,
limited benchmarks, no area and power evaluation

PipeRench [22] Coarse-grained Developing specific
compiler framework

Array of Processing Elements (PEs) contains 8-bit
ALU (LUT and carry chain) and register file

✓ Reconfiguration time
5 Performance (PEs communicate through global I/O),
large bitstream, no area and power evaluation

Warp [23] Coarse-grained Not mentioned ARM7 microprocessor with a FPGA contains
32 bit MAC, loop control hardware, and data address

✓ Performance and energy due to loop unrolling
5 3-4X area overhead

CHIMAERA [24] Fine-grained Modified GCC compiler
Dynamically scheduled out of order superscalar
processor contains 32 rows of 4-LUTs, carry chain,
shadow register file, cache, and control unit

✓ Performance
5 No area and power evaluation

OneChip [25] Fine-grained Developing specific
simulator framework

Superscalar pipeline,processor integrated,with RFU
(parallel to EXE and MEM stages)

✓ Performance
5 No power evaluation

[18], [19] Fine-grained Reconfiguration and
task migration algorithm

Replacement of ASIC-based low utilized functional
units with STT-RAM 3-LUTs in IBM PowerPC

✓ Performance and power
5 Area overhead

Proposed Fine-grained No modification required Integrating low utilized units in shared reconfigurable
units in embedded processors (RISC-V and LEON2)

✓ Area, power, performance, and energy
5 Reconfiguration overhead (slight)

processors has been proposed in [18]. The proposed RFUs attempt
to mitigate unavailability of functional units using either static or dy-
namic adaptive algorithms for reconfiguration. In the static algorithm,
during a learning phase, idle functional units are identified, and are
reconfigured to most active units to provide higher availability. In the
dynamic algorithm, the reconfiguration decision is made periodically
while at the beginning of each interval, idle units are replaced with
the active ones. Although 18% improvement in performance has
been reported, considerable area and power overhead is expected
due to larger area and higher power consumption of a reconfigurable
functional unit compared with custom ASIC or standard cell based
components. More importantly, substantial modifications in both
compiler and processor architecture, especially bus lines and datapath,
are required which are neglected in this study. A similar approach
along with thermal-aware reconfiguration of functional units has
been proposed in [19], wherein computations of thermally hotspot
functional units are migrated to cooler units in order to balance the
temperature distribution. Aforementioned drawbacks for [18] stand
here, as well. The summary of previous studies is reported in Table
I.

III. MOTIVATION

The main prerequisite to integrate several functional units into a
single shared RU is low utilization and fragmented access of each
unit. Low utilization is a crucial constraint since implementing even
few high utilized components as a single RU is inefficient as frequent
access to such components leads to substantial execution time and
power penalties. Fragmented accesses is another important criterion
which facilitates integration of several functional components into a
single RU. To comprehend this, assume two components C1 and C2

both having 50 percent utilizations. Accordingly, two access patterns
to these components could be either as:

(a) {C1, C1, C1, C1 → C2, C2, C2, C2 → C1, C1, C1, C1 →
... → C2, C2, C2, C2}
(b) {C1 → C2 → C1 → C2 → ... → C1 → C2}
wherein an arrow (→) denotes a need to reconfiguration. While both
scenarios result in the same utilization rate, obviously, the former
requires fewer number of reconfigurations.

A. RISC-V Processor
We have examined these conditions by running MiBench bench-

marks on RISC-V processor. RISC-V is a 64-bit in-order, open-
source embedded processor suited for FPGA devices [38], [39] which
consists of six pipeline stages, wherein its execution stage is equipped
with both integer and floating point units, as summarized in Table
II. Fig. 2 illustrates RISC-V components proportional to their area
footprint on the silicon die. As shown in this figure, functional units

Uncore

Mem/IO
 Converter

Error Slave

Queue

Host
Target

Interface

Outer
Memory
System

Interrupt
Manager

Slow IO

RISC-V

dcache

ALU

Integer Unit

icache

Page Table Word Cache Controller

Rocket Tile

IU-
MUL/DIV

Control & Status
Registers (CSR)

FP-FP2INT

FP-Single
[MUL/ADD/SUB]

FPU Unit

FP-Double
[MUL/ADD/SUB]

FP-DIV/SQRT

FP-INT2FP

FP-FP2FPDecoder

Instruction Fetch

W
rite B

ack

Instruction Decode

DMA

Memory
Controller

Low Utilization High Utilization Not Considered Memories

Fig. 2. RISC-V processor (area of each block is normalized to the chip area)

TABLE II
COMPONENTS UTILIZATION AND AREA COMPARISON IN RISC-V

Computational Units
in Processor Core Operation Descriptions

4-LUTs
(Area ratio

without Memories)
Utilization

Integer
Unit

ALU Integer Addition and Subtraction 1150 (2.4%) 44.8%
IU-MUL/DIV Integer Multiplication and Division 4573 (9.5%) 1.8%

Fl
oa

tin
g

Po
in

t
U

ni
t

(I
E

E
75

4
20

08
st

an
da

rd
)

FP-Double
[MUL/ADD/SUB]

Double Precision Multiplication,
Addition, and Subtraction 10918 (22.9%) 0.16%

FP-INT2FP
32/64-bit Integer Numbers to

Single/Double Precision Floating
Point Format Conversion

741 (1.5%) 0.09%

FP-FP2INT
Single/Double Precision Floating

Point Numbers to 32/64-bit
Integer Format Conversion

2330 (4.3%) 0.03%

FP-FP2FP NaN (not a number) values to
an acceptable numbers Conversion 2074 (19.4%) 0.02%

FP-Single
[MUL/ADD/SUB]

Single Precision Multiplication,
Addition, and Subtraction 3152 (6.58%) 0.01%

FP-DIV/SQRT Single/Double Precision Division
and Square Root Operations 9269 (4.9%) 0.001%

Other
Pipeline
Stages

Fetch Instruction Fetch Unit 11140 (23.3%) -
Decode Instruction Decode Unit 1974 (4.1%) -

Write Back Write Back Unit 571 (1.2%) -

occupy substantial portion (more than 44%) of total processor area
(including caches). Area of caches and memory cells are calculated
using CACTI (version 6.5) [40]. We modelled default RISC-V cache
configuration in CACTI for both of I-cache and D-cache which both
have 16 KB size with 16-bytes block size, 4-way associate, 32-bit
input/output address and data bus, and tag size of 20 for I-cache and
22 for D-cache. Other parts of the processor such as fetch, decode,

4

Fig. 3. Utilization rate of RISC-V components running MiBench benchmarks

Fig. 4. Average inter-component switching ratio in the proposed RUs

FP-FP2INT

FP-FP2FP

FP-INT2FP

500
Instruction

Busy Unit

Idle Unit

Instructions

Idle Unit

Fig. 5. Access pattern to low-utilized functional units in RISC-V processor

write-back stage, and peripheral units are illustrated by shaded blocks.
Diamond blocks are memories such as registers and caches.

B. Resource Utilization and Access Patterns

The utilization rate of RISC-V functional units over 3.4 × 109

instructions for MiBench benchmark is illustrated in Fig. 3. As shown
in this figure, the highest accessed unit (i.e., IU-MUL/DIV) has been
utilized only for 0.8% on average in all benchmarks. Therefore, the
first condition, i.e., low utilization, is fulfilled. It should be noted that
the Arithmetic Logic Unit (ALU) which has utilization rate greater
than 43.3% is excluded from the results. The ALU is frequently used
by other pipeline stages, e.g., instruction and decode stage.

Fragmented accesses to the low-utilized units in processor data
path can alleviate the reconfiguration overhead and, subsequently, the
execution time. To specifically clarify the importance of fragmented
accessibility, we use the Switching Rate (SR) parameter (i.e., number
of inter-unit switching to the total instructions) between components
for each benchmark1. For example, if accesses to three units are
{C1, C1 → C2 → C3, C3, C3 → C2}, then SR is 3

7
where 3

is the number of inter-unit switching and 7 is the total number of
instructions. The results reported in Fig. 4 show that, on average,
SR is 4.9 × 10−3 in MiBench benchmarks, which indicates one
switching per 204 instructions (i.e., 1

0.0049
). This value would become

one switching per 535 instructions if FFT benchmark is excluded.
Notice that some benchmarks utilize only a unique component

during the whole execution time. For example, jpeg benchmark only
utilizes MUL-DIV unit as it can be observed in Fig. 3. Thus, SR
for such benchmarks is zero. This observation has further motivated

1We take the average in the benchmarks having multiple subs.

us to propose one individual RU instead of several under-utilized
units that may never be used in most applications. As an example,
Fig. 5 illustrates the fragmented accessibility of three functional units
within FPU running the FFT benchmark which has the highest SR.
As shown in this figure, for a long sequence of instructions, one of
the units in the FPU unit is busy while the other two components are
idle. This motivates the concept of shared reconfigurable unit from
two perspectives. First, since at most one of the internal units in
the FPU unit is accessed each time, integrating these internal units
is conceivable. Second, the large idle time of unused units imposes
significant leakage power, particularly considering their large area.

IV. EFFICIENT SRAM-BASED RECONFIGURABLE

ARCHITECTURE

Here, we first explore the design space for possible implementa-
tion of functional units inside a processor and discuss advantages
and limitations of each design style. Afterwards, we elaborate our
proposed architecture.

A. Design-Space Exploration

Based on the underlying infrastructure, i.e., ASIC or ReConfig-
urable (RC), the implementation structures for functional units can
be classified in four categories which are demonstrated in Fig. 6. We
will compare these design concepts against the proposed architecture
with respect to area and performance.

ASIC/module and RC/module: These architectural design styles
(shown in Fig. 6.b and Fig. 6.d, respectively) are the conventional
architectures for implementing hard-core and soft-core processors.
One major drawback of these design approaches is that the access
pattern to the target module has not been well-considered. As it will
be discussed later, there are infrequently-accessed modules within
embedded processors that dedicating separate units for each of them
is inefficient in terms of area and power. It has been reported
that area and performance gap of ASIC/module and RC/module
implementations of total processor core are 17-27x and 18-26x,
respectively. A detailed comparison of processor main building blocks
with respect to area and delay has also been presented in [41].

ASIC/inst: Designing a specific module per each instruction, as
shown in Fig. 6.a, can significantly speed up the logic operations by
making them dedicated, hence, small and efficient. Nevertheless, its
main drawbacks such as complicated control unit and large address
buses cause significant area and power, which limits performance
gain, and makes it impractical to implement all instructions.

RC/all: In this implementation, a single reconfigurable unit is ded-
icated to all instructions which is represented in Fig. 6.c. This design
style incurs significant reconfiguration overhead since it requires to be
reconfigured once a new instruction needs to be executed. Area (i.e.,
the number of LUTs) in such an architecture is determined by area
of the largest module. Beside large execution time of applications,
the potential area efficiency of such architecture will be shaded if
the design comprises a set of small and frequently used modules and
large but infrequently used ones.

5

...
` SC

component
#1

` SC
component

#2

` SC
component

#N

Instruction
type 1

Instruction
type 2

Instruction
type N

...
` SC

component
#1

` SC
component

#2

Instruction
type 3

Instruction
type 1

Instruction
type 2

` SC
component

#M

Instruction
type N-1

Instruction
type N

Single LUT
Component

...
Instruction

type 1
Instruction

type 2
Instruction

type N

LUT
Component

#1

LUT
Component

#2

LUT
Component

#M

...

Instruction
type 3

Instruction
type 1

Instruction
type 2

Instruction
type N-1

Instruction
type N

(a) ASIC/inst (b) ASIC/module

(c) RC/all (d) RC/module

Fig. 6. Baseline architectures of implementing the functional units: (a)
ASIC/inst (b) ASIC/module (c) RC/all (d) RC/module

... ...

 LUT-RU

LUT
component

#M1

LUT
component

#1

LUT
component

#M2

LUT
component

#1

High-Frequent
Instruction

type 1

High-Frequent
Instruction

type 2

High-Frequent
Instruction

type K-1

Low-Frequent
Instruction

type K

Low-Frequent
Instruction
type K+1

Low-Frequent
Instruction

type N-1

Low-Frequent
Instruction

type N

Fig. 7. The proposed LUT-RU architecture overview

B. Proposed Architecture

The base of the proposed architecture is to integrate the low-
utilized and fragmentally-accessed units into shared RUs to reduce
logic resources and the number of configuration bits in the processor.
Hence, this will improve area and power efficiency of the soft-core
processor. To achieve an efficient architecture, we take the following
steps: (a) finding the low-utilized candidate units to be integrated
in RUs, (b) appropriate grouping of the candidate units into single
or multiple RUs, and (c) optimizing the proposed architecture by
exploiting the similarities in Boolean functions of associated units.
We explain each step in the following.

1) Candidate Units: As discussed in Sec. III, low utilized and
fragmentally-accessed units (i.e., small number of switching to/from
a unit) is essential to migrate them to an RU. These parameters are
determined by running the target application benchmarks and probing
the trace file. For the RISC-V processor, as shown in Fig. 3, ALU
and IU-MUL/DIV units have relatively high utilization (44.8% and
1.5%, respectively) compared to the average utilization rate of the
floating-point units (0.24%). On the other hand, the area of the ALU
is smaller than the FPU. Therefore, it is not effective to migrate
the ALU unit into a reconfigurable unit. As presented in Table II,
FPU unit occupies a significant fraction (more than 59.5%) of the
processor area while its utilization is only about 0.24%. The same
trace is used to obtain the total number of switching between units
for each benchmark and estimate the reconfiguration overhead.

2) Grouping into RUs: The critical step in the proposed architec-
ture is determining the number of RUs and assigning the candidate
units to each unit. There is a trade-off between the number of RUs and
total execution time. Smaller number of RU results in area-efficient
architecture (i.e., more units are bounded in an RU) but increases the
overall execution time due to the high number of reconfigurations in
these units. We define the efficiency goal (λeff) as minimizing the
area× execution time according to Equation 1.

λeff = Area× Texecution (1)

In this equation, Texecution is composed of two parts, (a) required
time to execute the instructions and (b) reconfiguration overhead
(which can be the dominant part). Even in the case that reconfigura-
tion is performed infrequently (e.g., once per 500 instructions), the

reconfiguration time (which is typically more than 50us) will domi-
nate the overall execution time (can be estimated as 500×5ns = 5us
assuming a clock cyle of 5ns). As a result, we can alter this formula
to λeff ∝ Area × Trcfg . In addition, the critical path delay of a
circuit is not affected by the number of units inside an RU since
each time only one component is implemented, and thereby, can take
its original mapping. Assuming N RUs, λeff can be obtained from
Equation 2. In this equation, area of each RU (in term of number
of LUTs) is equal to the area of its largest candidate unit. Thus,
integrating Components (denoted by Cj) with similar area/size into
an individual RU is more prosperous.

λeff ∝
N∑
i=1

Area(RUi)× Trcfg

=

N∑
i=1

max{Area(Cj)|Cj ∈ RUi} × Trcfg

(2)

The number of reconfigurations in a particular RU can be obtained
from the original benchmark trace by discarding the non-existing
units in that RU. For instance, if the original instruction sequence is
{C1, C2, C1, C3, C1, C2, C3, C2} and only C1 and C2 are integrated
inside this RU, then the number of reconfigurations, i.e., Trcfg , would
be equal to three, (i.e., {C1

1−→ C2
2−→ C1,C3, C1

3−→ C2,C3, C2}).
We carefully analyzed λeff for possible architectural assortments
of grouping six candidate components into two or three RUs which
has 40 different cases as summarized in Fig. 8. All λeff in this
figure are normalized to the minimum case (i.e., the case with
RU1 = [1, 4], RU2 = [2, 3], and RU3 = [5, 6]). For the sake
of brevity, we have omitted the results of integrating candidate
units into four and five RUs, since such classification does not gain
much area-power improvement. Based on the results reported in Fig.
8, we propose three RUs based on the best classification, which
is detailed in Table III. i.e., RU1=(FP Single[MUL/ADD/SUB],
FP2INT), RU2=(FP Double[MUL/ADD/SUB], FP-DIV/SQRT), and
RU3=(FP2FP, INT2FP).

Exploiting the concept of integrating several low-utilized and
fragmentally-accessed units in one RU (LUT-RU architecture) im-
proves several design parameters. First, the number of reconfigurable
units in the pipeline stages will be reduced, and therefore the
complexity of the control unit and address bus will be reduced.
Second, number of write-back ports decreases, which consequently
reduces the number of write-back buffers. It should be noted that
the proposed architecture would not provide considerable advantage
when (a) functional units are high utilized and have frequent access
patterns that may cause considerable execution time overhead and
(b) functional units differ significantly in size, e.g., merging two
component with 1× and 20× LUTs may not be beneficial since the
context switching overhead can shallow the small area gain.

C. Optimizing RUs

By following the previous steps, the proposed LUT-RU architecture
could be achieved. Here, we aim to further improve the efficiency of
the proposed architecture by reducing the number of resources i.e.,
transistors and configuration cells, by using area and power efficient

TABLE III
GROUPING CANDIDATE UNITS INTO PROPOSED RUS

RUs Area (4-LUT) Description

RU1 3152 FP-Single[MUL-ADD-SUB]
FP-FP2INT

RU2 10918 FP-Double[MUL-ADD-SUB]
FP-DIV/SQRT

RU3 2074 FP-INT2FP
FP-FP2FP

6

Fig. 8. Various architectural classification based on λeff

... ...

CHL-LUT-RU

LUT
component

#M1

LUT
component

#1

High-Frequent
Instruction

type 1

High-Frequent
Instruction

type 2

High-Frequent
Instruction

type K-1

Low-Frequent
Instruction

type K

Low-Frequent
Instruction
type K+1

Low-Frequent
Instruction

type N-1

Low-Frequent
Instruction

type N

CHL-LUT
component

#1

CHL-LUT
component

#M1

Fig. 9. The proposed CHL-LUT-RU architecture overview

CHLs instead of conventional LUTs. Previous studies have shown
that 4-LUT based FPGA architecture has the minimum area among
different LUTs [42]. Nonetheless, even in such a small-input LUT,
the majority of LUT structure remains underutilized in a broad range
of circuits [43]–[45]. For example, a considerable portion of functions
do not necessarily have 4-inputs, so half of LUT configuration bits
and multiplexer structure, or more, is wasted. Even if all inputs
are used, a small set of specific functions are repeated significantly
higher than others. Therefore, there is no need to allocate generous
flexibility of 16 SRAM cells to implement them. The high number
of SRAMs in LUT-based logic blocks can exacerbates the area and
power consumptions in FPGA and soft-core processors. In recent
studies, several fine-grained architectures have been proposed that
use small reconfigurable logic cells solely or along with conventional
LUTs [43]–[45]. CHLs are logic blocks that can implement the
majority of functions with considerably smaller area and less delay
as compared to their LUT counterparts. However, the main goal of
these studies is enhancing of design constraints in FPGA platforms
while their applicability in soft-core processors is not evaluated.

Accordingly, we have proposed an area-power optimization ap-
proach, i.e., CHL-LUT-RU, where for each RU, we synthesize each
component (which is assigned to the target RU) into 4-input LUTs
by the means of Berkeley ABC synthesis tool [32] to obtain 4-
input functions and then extract its Negation-Permutation-Negation
(NPN) class representation. To elaborate, F = AB̄ + CD and
G = BC + AD are NPN-equivalent since each function can be
obtained from the other by negating B and permuting A and C. There-
fore, such functions can be implemented with the same homomorphic
logic structure augmented with configurable inverters at its inputs
and output. Our investigation, reported in Table IV, has revealed
that a significant portion (66.8%) of functions in the proposed RUs
have the same homomorphic structure based on the concept of
NPN-class representation and can effectively be implemented with
CHL1 and CHL2 which have been primarily introduced in [44]. It
should be noted that although applicability of CHLs is motivated
by function characterization in RISC-V processor, their effectiveness
is also examined in LEON2 processor and large-scale commercial
FPGA benchmarks [44], [45] wherein some of these benchmarks are
soft-core processors and microprocessor by themselves. For instance,

our investigation has revealed that CHL1 and CHL2 can implement
68% of functions in OR1200 in VTR benchmark suite and 59% of
functions in TV80 benchmark in IWLS’05. It is also noteworthy
that any generic function, even unidentified at design time, can be
implement using pure CHLs. Albeit, in such non-LUT designs there
will be an overhead in the number of used logic blocks (CHLs) due
to elimination of 4-LUT and pure exploiting of CHLs which are less
flexible than LUT in one-to-one implementation of some functions.

Fig. 10 illustrates the proposed Configurable Logic Block (CLB)
wherein cluster size (N) is equal to 10 and CHL1:CHL2:LUT ratio is
equal to 4:3:3, based on observations obtained from Table IV. Each
proposed CLB reduces area by 28.6% compared to homogeneous
LUT-based CLB. The proposed CHL-LUT-RU approach iterates over
functions of components mapped to an RU and examines whether the
function could be substituted with either one of CHLs. Otherwise, it
will remain as a 4-LUT.

D. Insensitivity of Proposed Architecture to Different Synthesis Tools

In addition to an academic synthesis tool (Berkeley ABC), we
repeat the mapping flow with a commercial tool (Altera Quartus
Integrated Synthesis (QIS) tool [33]) to investigate the sensitivity
of the results to CAD flow. To this regard, QUIP targeting Startix IV
device is exploited which directly synthesizes a VHDL, Verilog, or
SystemVerilog circuit to hierarchical BLIF. Our investigation reveals
that the coverage ratio of CHLs is almost the same obtained by
an academic synthesis tool (Berkeley ABC). The comparison of the
CHLs coverage ratio in both Berkeley ABC and Altera Quartus is
detailed in Table IV. It is noteworthy that default synthesis constraint
of ABC is area optimization while Quartus aims to reduce the delay
which results in larger area (number of LUTs) and therefore power
consumption [33]. To be consistent with other studies, we evaluate
our proposed architecture using netlists of Berkeley ABC.

V. EXPERIMENTAL SETUP AND RESULTS

Here, we elaborate the implementation and evaluation flow of
the proposed and baseline architectures. According to the overall
evaluation flow illustrated in Fig. 11, we first examine the access pat-
tern to each of the datapath components to identify low-utilized and

TABLE IV
COVERAGE RATIO OF 4-INPUT NPN-CLASSES IN LOW-UTILIZED

COMPONENT FUNCTIONS IN RISC-V PROCESSOR

Cell NPN-Class Berkeley ABC Altera Quartus

CHL1
ABCD

38.4% 33.4 %AB+CD
AB(C+D)

CHL2 A(B+CD) 28.4% 21.1%A(B+C+D)
4-LUT Others 33.2% 45.5%

7

I

10

D-FF

M M M M M M M M M M M M M M M M

D-FF

M M M M M M M M M M M M M M M M

D-FF

M M M M M M M M M M M M M M M M

M

M

M
M

M

D-FF

M

M

M
M

M

D-FF

M

M

M
M

M

D-FF

D-FFM

M

M
M

M D-FFM

M

M
M

M D-FFM

M

M
M

M D-FFM

M

M
M

M

BLE 1

BLE 5

BLE 8

Fig. 10. Proposed Configurable Logic Block (CLB)

fragmentally-accessed ones. For this aim, each MiBench benchmark
is cross-compiled to the RISC-V ISA using modified GCC [8]. Then,
the utilization and access pattern to the functional units is obtained
by the means of RISC-V ISA Simulator (Spike) [46]. Next, HDL
description of each component is extracted from the processor HDL
source code and then optimized and mapped to 4-input functions by
the means of Berkeley ABC synthesis tool [32] and Altera Quartus
[33]. The truth-table of each function is generated using an in-
house C script and is fed to the Boolean Matcher [47] to extract
the corresponding NPN-Class representation. We exploit COFFE [34]
for efficient transistor sizing and area and delay estimation of LUT-
based architectures (according to commercial architectures), while
evaluation of the CHLs is performed using HSPICE circuit-level
simulations with Nangate 45nm Open Cell Library [48]. The area and
delay values of each cell are fed to the VPR [35] architecture file for
circuit placement on FPGA-based platform. To obtain more accurate
and reliable results, we run VPR simulations using different initial
placements (i.e., different placement seeds) since the timing and area
results are sensitive to initial placements. Lastly, area and critical
path delay are extracted directly from VPR while power is estimated
by post-processing VPR-generated reports such as number of logic
blocks and routing switches (channel width). An in-house C script
is used to estimate execution-time based on profiling the instruction
execution flow reported by RISC-V ISA Simulator (Spike). In the
C script, we have considered the switching time overhead which is
needed whenever an RU should be reconfigured.

TABLE V
PARAMETERS IN THE PROPOSED AND BASELINE RC ARCHITECTURES

Parameter Definition Value
N Cluster (CLB) size 10
K LUT size 4
I Cluster inputs (from adjacent routing channels) 22

Fcin
CB connectivity factor (determines no. of

channel tracks connected to each CB) 0.16

Fcout
Cluster output connectivity factor (determines no.

of SBs a logic block output is connected to) 0.1

X LUT input multiplexer size 16

Ffb
Cluster feedback factor (determines no. of

other logic blocks output in LUT input mux) 5/16

Architecture File
Development

COFEE 2.1

Automated
Transistor Sizing

Tool

*Area, Delay,
 and Power Estimation

Clustering and
Placement

Processor
HDL Description

In-house C++

Mapping Algorithm
(Pre-Designed

Low-Power CHLs)

Xilinx ISE

Computational Unit
Decomposition

Berkeley ABC /
Altera Quartus

Synthesis to
4-Input Functions

GCC Cross-Compiler

MiBench
Application

Cross-Compiled to the RISC-V ISA

RISC-V Full System Simulator (Spike)

Component Utilization Extraction
and Active and Leisure Periods

Resource
Utilization

Switching
Rate

 Candidate
Components

NPN-Class Extraction
and Analysis

In-house C++

Application Run-Time
Estimation (Calculations)

Power
Calculations

Power

Application
Execution-Time

Critical Path
Delay

Area
Calculations

*Area and
Power per RHL

Area

Component
Delay

VPR-7 Tool

Hspice
(45nm PTM)

Capacitance
Resistance

Transistor
Sizing

Fig. 11. Implementation and evaluation flow of the proposed architecture(s)
TABLE VI

CONFIGURABLE HARD LOGICS AND LUT PARAMETERS

Cell Delay
(ps)

Static Power
(nW)

Config.
Cell

Area
(min width
transistors)

Area
(µm2)

CHL1 67 180 5 72 8.8
CHL2 69 180 5 72 8.8
4-LUT 155 1388 16 267 32.5

A. Preliminary

Table V demonstrates the architectural parameters and the descrip-
tion for the proposed and baseline architectures used in the VPR
experiments. Similar to commercial FPGA devices [49], [50], we
used the conventional island-style architecture exploited in VPR tool.
To calculate the area, we first extracted total area from VPR post
routing reports which uses minimum width transistor model [34]
represented by Equation 3 in which x is the ratio of transistor width
to minimum width. For instance, a minimum-sized inverter area in
the 45nm technology can be obtained by setting x = 90nm

90nm
= 1 for

the NMOS, and x = 135nm
90nm

for the PMOS transistor.

Min. width transistor(x) = 0.447 + 0.128x+ 0.391
√
x (3)

While Equation 3 can be directly used for comparison purpose, to
obtain the geometric (i.e., layout) area, it is shown that multiplying
it to 60F 2, in which F is the technology size, gives an acceptable
layout-level area [34], [35].

Area(x) = Min. width transistor(x)× 60F 2 (4)

B. Area

According to Table III, low utilized components are integrated into
3 RUs with 3152, 10918, and 2074 LUTs. Therefore, the number of
LUTs is decreased by 26.8% from 43743 (which is the total number
of LUTs in all functional units in RC/module) to 32019 (number
of LUTs in the proposed architecture). Taking into account that by
reducing logic resources, routing resources are also reduced; hence,
number of configuration bits in the proposed architecture is decreased
by 30.9%, as shown in Fig. 12. Area of LUT-based architectures is
first calculated with respect to the dimension-less area estimation
in term of minimum width transistor count, and then the layout-
level area is obtained using Equation 4. The layout area of ASIC-
based structures is directly reported by Synopsys Design Compiler

8

Fig. 12. Comparing the number of configuration bits and area of RISC-V
components in the baseline and proposed architectures

Fig. 13. Comparing the delay of functional units and execution time in
different architectures in RISC-V processor

and then is multiplied to the number of instances. According to Fig.
12, the proposed LUT-RU architecture has reduced the area by 30.7%,
compared with the RC/module baseline architecture. As expected, this
improvement is lower than the improvement in the number of LUTs
since some CHL cells have been substituted with LUTs.

C. Critical Path Delay

The delay of the ASIC-based architectures is obtained from Synop-
sys Design Compiler. As shown in Fig. 13, the LUT-RU architecture
does not affect the logic delay compared with the baseline RC/module
since once a component, e.g., FP-FP2F, is configured in either
RC/module or LUT-RU architectures, it would have identical delay
in both architectures due to the same mapping and logic resource
usages. Yet, the routing delay will be reduced since the channel
width in LUT-RU architecture is considerably less than RC/module.
Hence, the proposed LUT-RU architecture reduces critical path delay
by 9.2% compared to the baseline RC/module architecture.

D. Application Execution Time

To calculate the execution time, we multiplied execution time of
each instruction to its corresponding component delay. In addition,
for the proposed architectures, we added the reconfiguration time
by calculating the write latency of the total number of configu-
ration bits (sum of logic and routing) with the method proposed
in [18]2. Accordingly, we assume a 128-bit parallel data bus [18]
and a write latency of 0.2ns for a single SRAM cell [51]. Thus,
reconfiguration time of RU1, RU2, and RU3 in LUT-RU architecture
will be 424619×0.2ns

128
= 0.66 µs, 1481035×0.2ns

128
= 0.23 µs, and

337531×0.2ns
128

= 0.52 µs, respectively, in which 424619, 1481035,
and 337531 are the configuration bit count of the largest component
in each RU. Due to the fact that the configurations time is prorated

2It is noteworthy configuring one component to another in [18] has been
calculated based on configuring configuration cells of the smallest component
which is not correct.

in overall execution time of the application, LUT-RU architecture
outperforms the RC/module architecture by 6.3% improvement in
execution time, as shown in Fig. 13.

E. Power and Energy Consumption

The total static power for each architecture is obtained by post-
processing the VPR reports by summing the power of logic and
routing resources in the target architecture. Notice that we consider
the static power of both utilized and unutilized LUT/CHL cells in
power and energy computation despite that the RUs do not use all
cells. Fig. 14 compares the normalized static power consumption
in different architectures. Compared with the baseline RC/module
architecture, the proposed LUT-RU architecture reduces the power
consumption by 32.5%. The static power of both logic and routing
is also decreased since the LUT-RU architecture reduces both of
the logic and routing resources. In addition, while the proposed
architecture is most power-efficient in reconfigurable architectures
and reduces the number of logic resources, however, the conventional
ASIC implementation, i.e., ASIC/module, is still power-efficient than
all other architectures.

The energy consumption of different architectures are obtained by
Equation 5. Energy is estimated as summation of reconfiguration and
operation energy while reconfiguration energy is zero in ASIC-based
architectures. Powertotal stands for total power of RUs or total
power of resources in baseline architectures and non-reconfiguring
components (i.e., Integer Unit). For reconfiguration, a write energy
of 3.5 × 10−18J for a single SRAM cell in 45nm technology
is assumed [51]. Fig. 14 compares the normalized energy in the
proposed and baseline architectures. As demonstrated in this figure,
LUT-RU architecture improves the energy by 36.9% as compared to
the baseline RC/module architecture.

E = (

N∑
i=1

#SRAM(RUi)×#Rcfg(RUi)× ESRAM)

+ Powertotal × Execution time

(5)

Fig. 14. Comparing the power and energy consumption of different architec-
tures implementing the RISC-V processor

It is noteworthy that the proposed architecture advances power-
gating approach in different aspects. First, the most challenging issue
of power-gating is so-called inrush current, i.e., a substantial wake-
up current occurs whenever a power-gated module turns abruptly
on, which may cause violation scenarios such as instability of the
registers content and functional errors resulting from dynamic voltage
(IR) drop [52]. It also can increase the wake-up time and wake-up
energy. Previous studies have reported inrush power contributes to
20% of the static power in FPGAs with 45nm technology size [53].
Second, power gating requires complicated controller and compiling
techniques to (a) anticipate the idle intervals and evaluate whether
the power gating is advantageous in spite of associated overheads,
(b) predict data arrival in order to initiate the wake-up phase and
assure that only a small fraction of resources is switched each time to
preclude timing (and hereby, functional) errors, and (c) route signals

9

Low
Utilization

High
Utilization

Not
Considered

Memories

Cache

Cache

Peri

Mem ctrl

RAM 1

RAM 2

RAM 3

RAM 4

FPU

DRAM 1

DRAM 2

TAP

Adder Divider
IU

Multiplier

Fig. 15. LEON2 processor microarchitecture (the area of each block is
normalized to the chip area.)

in such a way that they do not use the resources of power-gated
regions. Another advantage of the proposed architecture with respect
to power-gating is the improvement of reliability. When a soft-error
flips a configuration cell in the proposed architecture, this cell will
be automatically corrected in the next configurations (notice that the
power-gating methods do no turn-off the SRAM cells). Last but not
least, power-gating approach leaves the part of device unused, while
the proposed architecture utilizes all the resources which shortens the
wirelength and thereby, wire delays, consequently. Nevertheless, since
FPGAs comprise abundant routing resources which mainly remain
underutilized, power gating of the routing resources [54] can be
employed in tandem with our proposed architecture to further increase
the power efficiency.

F. Alternative Processor

We have examined the applicability of the proposed architecture
on an alternative open-source soft-core processor. We choose LEON2
which is SPARC-V8-compliant, as an alternative processor for several
reasons. First, it is popular among a wide range of embedded
processors and also compatible and extensible to be customized for
diverse range of performance/cost trade-off, e.g., LEON2-FT. Second,
the full HDL source code of total LEON2 (including FPU) is license
free, while source code of FPU is not available in LEON3 and
LEON4 which causes problem in running application with floating
point instructions. Finally, in RISC-V case study, the integrated
functional units all belong to FPU, but here in LEON2, as we will
demonstrate in the following, all functional units are separate and
thereby, integration of low-utilized units is more challenging.

Fig. 15 illustrates the synthesized floorplan of LEON2. As shown
in this figure, LEON2 functional units include a 32-bit adder, 32-
bit multiplier (that can be configured to 32x32, 32x16, 32x8, and
16x16), 32-bit divider, and an optional FPU. FPU as a co-processor
is licensed and therefore, is not available in the processor source code.
Therefore, we have omitted the FPU unit from our evaluations and
focused on the integer functional units which proves the generality of
the proposed architectures not just in FPU. Accordingly, in the rest
of this section, the reported results for LEON2 processor are in the
scope of Integer Unit (IU).

To identify the utilization and access pattern to the functional
units, each MiBench benchmark is cross-compiled to the SPARC-
V8 architecture using RTEMS [55]. Afterwards, Simics full system
simulator [56] is used to obtain the utilization and access patterns
of the functional units which are shown in Table VII and Fig.

TABLE VII
UTILIZATION, AREA, AND CHLS COVERAGE RATIO IN LEON2

PROCESSOR FUNCTIONAL UNITS

Functional
Units Utilization Area (4-LUT)

RC/module LUT-RU CHL-LUT-RU
ADD 15.42% 176 176 4-LUT 176 4-LUT
MUL 3.4× 10−4% 485 2498 4-LUT 414 CHL1, 61 CHL2

, and 2023 4-LUT)DIV 9.49% 2498

Fig. 16. Utilization ratio of LEON2 components in MiBench benchmarks

Fig. 17. Average inter-component switching ratio in LEON2 processor

Fig. 18. Comparing the number of LUTs and area of LEON2 components
in the baseline and proposed architectures

16. Utilization ratio of the integer divider (DIV) is approximately
3.48 × 10−6% while it occupies a significant area (79.1%) of total
functional units. Therefore, it can be efficiently integrated with integer
multiplier (MUL) into a shared RU. Hence, switching ratio of the
proposed RU unit is 2.81 × 10−6 on average, as demonstrated in
Fig. 17. Subsequently, reconfiguration overhead of the proposed RU
will be small and prorated in application execution time, leaving
negligible impact on total execution time of applications. The rest
of the evaluation flow for the proposed and baseline architectures in
LEON2 processor is the same as RISC-V processor.

1) Area: Fig. 18 demonstrates the number of LUTs and configu-
ration bits in the proposed and baseline architectures. As shown in
this figures, the number of LUTs and configuration bits in LUT-RU
has been reduced by 23.1%, compared to the baseline RC/module
architecture. The total area for LUT-RU is also reduced by 23.1%.
The detailed results for each architecture are shown in Fig. 18.

2) Power and Energy Consumption: As demonstrated in Fig. 19,
static power of the LUT-RU architecture is reduced by 23.2% as
compared to the RC/module architecture. In addition, compared to

10

Fig. 19. Comparing the power and energy of different architectures imple-
menting LEON2 processor

Fig. 20. Comparing the delay of functional units and execution time in
different architectures implementing LEON2 processor

the RC/module architecture, LUT-RU architecture has reduced energy
by 23.2%. These results are expectable since Divider is considerably
smaller than Multiplier. Hence, the improvements are nearly equal
between energy-power and between area-configuration bits.

3) Critical Path Delay and Application Execution Time: Fig. 20
indicates the critical path delay and total execution time of the
baseline and proposed architectures. The results demonstrate that total
execution time has only increased by 10−5% in LUT-RU compared
with the RC/module architecture. This is due to negligible utilization
ratio of the divider which reduces the reconfiguration time overhead.

It should be noted that the efficiency of the proposed architecture
is irrelevant to the size of processor itself, as we have shown its
effectiveness in the moderate-size RISC-V processor with ∼ 35, 000
LUTs, and a smaller one (LEON2) consists of ∼ 3, 200 LUTs.
The key prerequisite for effectiveness of the proposed architecture
is (a) low utilized units with fragmented access pattern, and (b) low
utilized units have close area. Nevertheless, larger processors result
in larger RUs and consequently, higher number of reconfiguration
bits and therefore, reconfiguration time. The proposed architecture
also improves the critical path delay which will directly enhance the
execution time due to the shorter clock cycles which is valid in RISC-
V case study.

G. Evaluating CHL-LUT-RU

In the proposed CHL-LUT-RU architecture, each shared LUT that
its function can be implemented with either CHL1 or CHL2, is simply
substituted by an appropriate cell in the netlist BLIF file. The CHL-
LUT-RU architecture has been evaluated after placement stage and the
results are reported in terms of logic resources. Since the contribution
of this work is focused on logic architecture, the impact of routing
resources has not been considered. Nevertheless, a brief discussion
about routing is represented in Section VI. We intend to consider
proposing a customized (generic) routing architecture in the future
track of this work. Table VI reports area, delay, and static power of
4-LUT and CHLs which are obtained using HSPICE simulations and
with transistor sizing and sub-circuit models obtained from COFFE.
The delays reported in Table VI are the average delay of all inputs

TABLE VIII
RESULTS FOR CHL-LUT-RU IN RISC-V AND LEON2 PROCESSORS

NORMALIZED TO RC/MODULE (CONSIDERING LOGIC RESOURCES)

Parameters/
Achitectures

RISC-V LEON2
LUT-RU CHL-LUT-RU LUT-RU CHL-LUT-RU

of Config. Bits 0.72 0.65 0.78 0.69
Area 0.72 0.59 0.78 0.66

Critical Path 1.04 0.93 0.93 0.89
Execution Time 1.06 0.97 0.94 0.89

Energy 0.71 0.48 0.78 0.55
Static Power 0.75 0.47 0.72 0.53

of target CHL or LUT. Static power of each cell is measured using
HSPICE simulations with the same transistor technology files and
temperature used in Nangate library (i.e., 25 °C).

The summary of results is reported in Table VIII. As demonstrated
in this table, the proposed CHL-LUT-RU architecture has further
reduced the number of SRAM configuration bits, area, static power,
critical path delay, execution time, and energy compared to the
proposed LUT-RU in the scope of logic resources. Note that reducing
configuration bits can be translated as the circuit reliability due to the
reduction of the number of susceptible bits to soft errors [57], [58].
In addition, while our proposed architectures, particularly CHL-LUT-
RU, have significantly reduced the logic resources, the conventional
ASIC implementation, i.e., ASIC/module, is still power-efficient than
all other architectures. This is mainly due to the large number of
configuration cells used in the other architectures while the ASIC
implementation of a 4-input Boolean function consumes only 35nW
on average, whereas this value is greater than 180nW for CHL cells.

VI. DISCUSSION

Here, we discuss some points related to the proposed architecture.
1) Routing architecture: We have not investigated the routing

architecture for CHL-LUT-RU due to its high complexity in both
implementation and analysis. However, since the routing resources
in a typical island style FPGA architecture are surrounded by logic
clusters, reducing the number of required logic clusters by the factor
of S will reduce the number of routing resources (i.e., switch boxes)
and thereby their area and power by the same factor. In addition,
taking the routing delay into account, the critical path delay will not
be increased since at each time only one of the functional units is
mapped on the corresponding RU owning the same (or more in the
case that is smaller than RU) routing and logic resources as in its
baseline architecture. In particular, we expect that the critical path
delay may also be improved since higher number of resources (more
flexibility to place and route) will be allocated to specific components.
Furthermore, in the proposed architecture, proximity of the logic
clusters of each component may increase after the mapping due to
the exclusive mapping of components and reduction of the array size.
It can further improve the routing delay.

2) Optimal heterogeneous mapper: A heterogeneous architecture
such as the proposed CHL-LUT-RU may need modifications in the
original mapping algorithm that is used in a homogeneous, pure 4-
LUT based architecture [43]; therefore, detailed investigation of the
intra-cluster architecture (e.g., ratio of CHL to LUTs) and mapping
to such an architecture is required. We will cover details of both the
routing and logic architectures as an extension of this work.

3) Reconfiguration overhead: Integrating underutilized compo-
nents into shared RUs can impose reconfiguration overhead which
can be problematic in hard real-time designs. Although the impact of
reconfiguration time on the total application runtime is negligible
(about 2%), it can be eliminated using the concept of shadow
SRAM cells [59]. Nevertheless, a trade-off between eliminating the
reconfiguration delay and area-power overhead of shadow SRAMs
should be taken into account.

11

TABLE IX
SUMMARY OF THE RESULTS FOR VARIOUS SYNTHESIS TOOLS AND PROCESSORS ACROSS ALL BENCHMARK (NORMALIZED TO RC/MODULE).

Parameter Area Critical Path Execution Time Energy Static Power
Processor RISC-V LEON2 RISC-V LEON2 RISC-V LEON2 RISC-V LEON2 RISC-V LEON2

Synthesis Tool Berkeley
ABC

Altera
Quartus

Berkeley
ABC

Berkeley
ABC

Altera
Quartus

Berkeley
ABC

Berkeley
ABC

Altera
Quartus

Berkeley
ABC

Berkeley
ABC

Altera
Quartus

Berkeley
ABC

Berkeley
ABC

Altera
Quartus

Berkeley
ABC

ASIC/inst
(logic) 0.06 0.06 0.05 0.16 0.16 0.12 0.01 0.01 0.26 0.01 4.18× 10−3 0.3 0.41 0.26 0.25

ASIC/module
(logic) 0.01 0.01 0.01 1.8× 10−3 0.16 0.57 0.17 0.16 1.18 0. 01 0.01 0.11 0.07 0.07 0.09

RC/all 0.29 0.24 0.64 0.93 1.02 0.99 41.48 29.57 46.81 0.1 0.08 0.64 4.2× 10−3 2.7× 10−3 0.03
RC/module 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LUT-RU 0.69 0.71 0.77 0.91 0.97 1 0.94 0.99 1 0.63 0.69 0.77 0.68 0.69 0.77

4) Applicability with Non-Volatile Memories (NVM): Although
our proposed architecture is targeted for SRAM-based soft-core pro-
cessors, it is definitely not limited to SRAMs and can be expanded to
NVM platforms as well. However, despite promising characteristics
of NVM such as negligible leakage power, they encounter with
several unaddressed deficiencies such as write latency and energy and
still are in prototyping phase. In addition, the proposed architecture
may require large number of reconfigurations which is not consistent
with currently-available NVMs.

5) Applicability in emerging applications: One of the promising
application of the proposed architecture can be in implementing Ma-
chine Learning (ML) algorithms, e.g., Neural Networks. Despite the
widespread research on efficient implementation of Neural Networks,
only a limited range of objective functions, especially sum or mean
squared error used in linear regression, has been implemented on
the state-of-the-art FPGAs [60]. This is because, operations such
as division and square root used in the gradient descent cycle of
objective function either occur infrequently or consume significant
amount of resources. The proposed architecture can be beneficial
in these applications when for example, floating-point multiplier
can be merged with divider since in ML algorithms, a stream of
multiplication-additional (MAC) operations is followed by a division.
Therefore, the context-switching inside an RU will be tolerable. As an
interesting point, in the proposed architecture we have already merged
these units within RISC-V processor. The proposed architecture is
also applicable for component-based designs other than soft-core pro-
cessors, such as DSP cores that are exploited in ML algorithms [60].
We have examined the applicability of the proposed architecture on a
floating point DSP core from OpenCores [61] which its contributing
components are listed in Table X. Depending on the distribution of
the operations (tunable according to the target application), several
components of the DSP core [60] can be merged into a shared RU.
One appropriate integration to save considerable area and power can
be achieved by merging the divider, multiplier, and subtractor units.
Our experimental results for this DSP core reveal that area is saved
by 50.2%, with 50.1% improvement in static power while keeping
the latency intact.
Another use-case of the proposed method can be in FPGA-assisted
Cloud computing, a.k.a, FPGA virtualization [62] which incorporates
FPGAs in datacenters in order to improve the processing capacity
and power consumption. A challenging task in such platforms is
an efficient use of FPGA resources since an FPGA is expected
to afford computation of different users (i.e., several tasks) at the
same time. Since the proposed architecture integrates low-utilized
functional units into a single RU, provided that we keep the FPGA
size the same, further tasks can be implemented into the same FPGA
device. This will reduce the cost-per-user or cost-per-task.

TABLE X
COMPONENTS AREA IN THE DSP CORE [61]

Functional Unit Adder Subtractor Round Divider Multiplier Exception
of 4-LUTs 689 2667 434 3723 2688 1067

VII. CONCLUSION

In this paper, we presented a reconfigurable architecture for em-
bedded soft-core processors, which aims to improve area and power
efficiency of FPGA-based soft-core processors while maintaining
flexibility to customize and update the processor for designers. In the
proposed architecture, we integrated low-utilized and fragmentally-
accessed components into a single RU and used efficient configurable
logics along with the mapping algorithm to implement the overlap-
ping functions of functional components mapped to each RU. Our
integration is based on carefully profiling the frequency and access
pattern of instructions in MiBench applications, in order to well select
the merged components. We have implemented RISC-V processor to
examine the efficiency of the proposed architectures. Experimental
results show that, as compared to conventional FPGA-based soft-core
processors, the proposed architecture improve the area footprint, static
power, energy consumption, critical path delay, and total execution
time by 30.7%, 32.5%, 36.9%, 9.2%, and 6.3%, respectively.

REFERENCES

[1] D. D. Gajski and F. Vahid, “Specification and design of embedded
hardware-software systems,” Design & Test of Computers, IEEE, vol. 12,
no. 1, pp. 53–67, 1995.

[2] P. Marwedel, Embedded system design: Embedded systems foundations
of cyber-physical systems. Springer Science & Business Media, 2010.

[3] M. Barr, Programming embedded systems in C and C++. ” O’Reilly
Media, Inc.”, 1999.

[4] P. Marwedel and G. Goossens, Code generation for embedded proces-
sors. Springer Science & Business Media, 2013, vol. 317.

[5] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 26, no. 2, pp. 203–215, 2007.

[6] M. Sarrafzadeh, F. Dabiri, R. Jafari, T. Massey, and A. Nahapetan, “Low
power light-weight embedded systems,” in Low Power Electronics and
Design. ISLPED’06. Proceedings of the 2006 International Symposium
on. IEEE, 2006, pp. 207–212.

[7] (Accessed March, 2016) Gaisler research website. [Online]. Available:
www.gaisler.com/

[8] K. Asanović and D. A. Patterson, “Instruction sets should be free:
The case for RISC-V,” Technical report, University of California at
Berkeley, http://www. eecs. berkeley. edu/Pubs/TechRpts/2014/EECS-
2014-146. pdf, Tech. Rep., 2014.

[9] (Accessed March, 2016) Opensparc website. [Online]. Available:
www.opensparc.org

[10] (Accessed March, 2016) Openrisc website. [Online]. Available:
www.openrisc.io

[11] F. Plavec, B. Fort, Z. G. Vranesic, and S. D. Brown, “Experiences with
soft-core processor design,” in null. IEEE, 2005, p. 167b.

[12] L. Barthe, L. V. Cargnini, P. Benoit, and L. Torres, “The SecretBlaze: A
configurable and cost-effective open-source soft-core processor,” in Par-
allel and Distributed Processing Workshops and Phd Forum (IPDPSW),
International Symposium on. IEEE, 2011, pp. 310–313.

[13] J. G. Tong, I. D. Anderson, and M. A. Khalid, “Soft-core processors
for embedded systems,” in Microelectronics. ICM’06. International
Conference on. IEEE, 2006, pp. 170–173.

[14] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of
fpga-based soft processors,” in Proceedings of the 2005 international
conference on Compilers, architectures and synthesis for embedded
systems. ACM, 2005, pp. 202–212.

12

[15] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 1216–1225.

[16] A. A. Bsoul and S. J. Wilton, “An FPGA architecture supporting dy-
namically controlled power gating,” in Field-Programmable Technology
(FPT), 2010 International Conference on. IEEE, 2010, pp. 1–8.

[17] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ACM
SIGARCH Computer Architecture News, vol. 39, no. 3. ACM, 2011,
pp. 365–376.

[18] A. R. Ashammagari, H. Mahmoodi, and H. Homayoun, “Exploiting
STT-NV technology for reconfigurable, high performance, low power,
and low temperature functional unit design,” in Proceedings of the
conference on Design, Automation & Test in Europe. European Design
and Automation Association, 2014, p. 335.

[19] A. R. Ashammagari, H. Mahmoodi, T. Mohsenin, and H. Homayoun,
“Reconfigurable STT-NV LUT-based functional units to improve perfor-
mance in general-purpose processors,” in Proceedings of the 24th edition
of the great lakes symposium on VLSI. ACM, 2014, pp. 249–254.

[20] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
M. C. Eliseu Filho, “Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” Computers, IEEE
Transactions on, vol. 49, no. 5, pp. 465–481, 2000.

[21] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” in Field Programmable Logic and
Application. Springer, 2003, pp. 61–70.

[22] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, “Piperench: A reconfigurable architecture and compiler,”
Computer, vol. 33, no. 4, pp. 70–77, 2000.

[23] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” in ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), vol. 11,
no. 3. ACM, 2004, pp. 659–681.

[24] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, CHIMAERA:
a high-performance architecture with a tightly-coupled reconfigurable
functional unit. ACM, 2000, vol. 28, no. 2.

[25] J. E. Carrillo and P. Chow, “The effect of reconfigurable units in
superscalar processors,” in Proceedings of the 2001 ACM/SIGDA ninth
international symposium on Field programmable gate arrays. ACM,
2001, pp. 141–150.

[26] M. Labrecque and J. G. Steffan, “Improving pipelined soft processors
with multithreading,” in Field Programmable Logic and Applications,
FPL. International Conference on. IEEE, 2007, pp. 210–215.

[27] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and
P. Bose, “Microarchitectural techniques for power gating of execution
units,” in Proceedings of the 2004 international symposium on Low
power electronics and design. ACM, 2004, pp. 32–37.

[28] S. Roy, N. Ranganathan, and S. Katkoori, “A framework for power-
gating functional units in embedded microprocessors,” IEEE transactions
on very large scale integration (VLSI) systems, vol. 17, no. 11, pp. 1640–
1649, 2009.

[29] A. A. Bsoul, S. J. Wilton, K. H. Tsoi, and W. Luk, “An fpga architecture
and cad flow supporting dynamically controlled power gating,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 1, pp. 178–191, 2016.

[30] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and cus-
tomization of FPGA-based soft processors,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 2,
pp. 266–277, 2007.

[31] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. IEEE
International Workshop on. IEEE, 2001, pp. 3–14.

[32] BLSG, “ABC: A system for sequential synthesis and verification,”
Berkeley Logic Synthesis and Verification Group, 2011.

[33] J. Pistorius, M. Hutton, A. Mishchenko, and R. Brayton, “Benchmarking
method and designs targeting logic synthesis for fpgas,” in Proc. IWLS,
vol. 7, 2007, pp. 230–237.

[34] S. Yazdanshenas and V. Betz, “Automatic circuit design and modelling
for heterogeneous fpgas,” in Field-Programmable Technology (FPT),
2017 International Conference on. IEEE, 2017, pp. 9–16.

[35] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, Liu et al., “VTR 7.0: Next generation architecture
and CAD system for FPGAs,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 7, no. 2, p. 6, 2014.

[36] M. Hosseinabady and J. L. Nunez-Yanez, “Run-time power gating in hy-
brid arm-fpga devices,” in Field Programmable Logic and Applications
(FPL), 24th International Conference on. IEEE, 2014, pp. 1–6.

[37] J. Teich, “Hardware/software codesign: The past, the present, and
predicting the future,” Proceedings of the IEEE, vol. 100, no. Special
Centennial Issue, pp. 1411–1430, 2012.

[38] VectorBlox/risc-v. VectorBlox Computing Inc. [Online]. Available:
https://github.com/VectorBlox/orca

[39] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović,
and K. Asanović, “A 45nm 1.3 ghz 16.7 double-precision gflops/w risc-
v processor with vector accelerators,” in European Solid State Circuits
Conference (ESSCIRC), 2014-40th. IEEE, 2014, pp. 199–202.

[40] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, pp. 22–31, 2009.

[41] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom CMOS
and the impact on processor microarchitecture,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, 2011, pp. 5–14.

[42] E. Ahmed and J. Rose, “The effect of lut and cluster size on deep-
submicron fpga performance and density,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 12, no. 3, pp. 288–298,
2004.

[43] I. Ahmadpour, B. Khaleghi, and H. Asadi, “An efficient reconfigurable
architecture by characterizing most frequent logic functions,” in Field
Programmable Logic and Applications (FPL), 2015 25th International
Conference on. IEEE, 2015, pp. 1–6.

[44] A. Ahari, B. Khaleghi, Z. Ebrahimi, H. Asadi, and M. B. Tahoori,
“Towards dark silicon era in fpgas using complementary hard logic
design,” in Field Programmable Logic and Applications (FPL), 2014
24th International Conference on. IEEE, 2014, pp. 1–6.

[45] Z. Ebrahimi, B. Khaleghi, and H. Asadi, “PEAF: A Power-Efficient
Architecture for SRAM-Based FPGAs Using Reconfigurable Hard Logic
Design in Dark Silicon Era,” Computers, IEEE Transactions on, In press,
2017.

[46] (Accessed August, 2016) Behavioural simulation (spike). [Online].
Available: www.lowrisc.org/docs/untether-v0.2/spike

[47] D. Chai and A. Kuehlmann, “Building a better boolean matcher and sym-
metry detector,” in Proceedings of the conference on Design, automation
and test in Europe: Proceedings. European Design and Automation
Association, 2006, pp. 1079–1084.

[48] (Accessed March, 2016) Nangate Open Cell Library. [Online].
Available: www.nangate.com/

[49] “Stratix-2 platform FPGA hand book,” Altera, April 2011.
[50] “Virtex-4 platform FPGA user guide,” Xilinx, December 2008.
[51] A. Chen, J. Hutchby, V. Zhirnov, and G. Bourianoff, Emerging nano-

electronic devices. John Wiley & Sons, 2014.
[52] A. A. Bsoul and S. J. Wilton, “A configurable architecture to limit

wakeup current in dynamically-controlled power-gated fpgas,” in Pro-
ceedings of the ACM/SIGDA international symposium on Field Pro-
grammable Gate Arrays. ACM, 2012, pp. 245–254.

[53] S. Sharp. Power management solution guide - xilinx. [On-
line]. Available: https://www.xilinx.com/publications/archives/solution
guides/power management.pdf

[54] Z. Seifoori, B. Khaleghi, and H. Asadi, “A power gating switch box
architecture in routing network of sram-based fpgas in dark silicon
era,” in Proceedings of the Conference on Design, Automation & Test
in Europe. European Design and Automation Association, 2017, pp.
1342–1347.

[55] (Accessed August, 2016) RTEMS Cross Compilation System (RCC).
[Online]. Available: www.rtems.org

[56] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[57] S. Yazdanshenas, H. Asadi, and B. Khaleghi, “A scalable dependability
scheme for routing fabric of sram-based reconfigurable devices,” IEEE
Trans. VLSI Syst., vol. 23, no. 9, pp. 1868–1878, 2015.

[58] H. Asadi and M. B. Tahoori, “Analytical techniques for soft error rate
modeling and mitigation of fpga-based designs,” IEEE Trans. VLSI Syst.,
vol. 15, no. 12, pp. 1320–1331, 2007.

[59] W. Zhang, N. K. Jha, and L. Shang, “Low-power 3D nano/CMOS hybrid
dynamically reconfigurable architecture,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 6, no. 3, p. 10, 2010.

[60] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K.
Kim, and H. Esmaeilzadeh, “Tabla: A unified template-based framework
for accelerating statistical machine learning,” in High Performance
Computer Architecture (HPCA), 2016 IEEE International Symposium
on. IEEE, 2016, pp. 14–26.

13

[61] (Accessed November, 2017) Opencores. [Online]. Available: www.
opencores.org

[62] S. Yazdanshenas and V. Betz, “Quantifying and mitigating the costs
of fpga virtualization,” in Field Programmable Logic and Applications
(FPL), 27th International Conference on. IEEE, 2017, pp. 1–7.

Sajjad Tamimi has received the B.Sc. and M.Sc.
degrees in computer engineering from Iran Univer-
sity of Science and Technology (IUST) and Sharif
University of Technology (SUT), Tehran, Iran, in
2014 and 2016, respectively. He has been with
the Data Storage, Processing, and Networks (DSN)
Laboratory at the Department of Computer Engi-
neering, SUT, as a research assistant for two years.
His current research interests include reconfigurable
computing, embedded system design, and computer
architecture.

Zahra Ebrahimi has received the B.Sc. and M.Sc.
degrees in computer engineering SUT, Tehran, Iran,
in 2014 and 2016, respectively. She has been with
the DSN Laboratory at the Department of Computer
Engineering, SUT, as a research assistant for four
years. Her current research interests include recon-
figurable computing and computer-aided design.

Behnam Khaleghi has received his B.Sc. and M.Sc.
degrees in computer engineering from SUT, Tehran,
Iran, in 2013 and 2016, respectively. He is currently
working as a research assistant in the DSN Labo-
ratory at the Department of Computer Engineering,
SUT. He spent the summer 2014 and 2015 as a re-
search assistant at the Chair for Embedded Systems
in the Karlsruhe Institute of Technology (KIT). His
research interests include reconfigurable computing,
CAD, and reliable system design. He has two Best
Paper Nominations at the DAC’17 and DATE’17.

Hossein Asadi (M’08, SM’14) received the B.Sc.
and M.Sc. degrees in computer engineering from the
SUT, Tehran, Iran, in 2000 and 2002, respectively,
and the Ph.D. degree in electrical and computer
engineering from Northeastern University, Boston,
MA, USA, in 2007.

He was with EMC Corporation, Hopkinton, MA,
USA, as a Research Scientist and Senior Hardware
Engineer, from 2006 to 2009. From 2002 to 2003, he
was a member of the Dependable Systems Labora-
tory, SUT, where he researched hardware verification

techniques. From 2001 to 2002, he was a member of the Sharif Rescue
Robots Group. He has been with the Department of Computer Engineering,
SUT, since 2009, where he is currently a tenured Associate Professor. He
is the Founder and Director of the Data Storage, Networks, and Processing
(DSN) Laboratory, Director of Sharif High-Performance Computing (HPC)
Center, the Director of Sharif Information and Coummnications Technology
Center (ICTC), and the President of Sharif ICT Innovation Center. He spent
three months in the summer 2015 as a Visiting Professor at the School of
Computer and Communication Sciences at the Ecole Poly-technique Federele
de Lausanne (EPFL). He is also the co-founder of HPDS corp., designing
and fabricating midrange and high-end data storage systems. He has authored
and co-authored more than eighty technical papers in reputed journals and
conference proceedings. His current research interests include data storage
systems and networks, solid-state drives, operating system support for I/O
and memory management, and reconfigurable and dependable computing.

Dr. Asadi was a recipient of the Technical Award for the Best Robot
Design from the International RoboCup Rescue Competition, organized by
AAAI and RoboCup, a recipient of Best Paper Award at the 15th CSI
Internation Symposium on Computer Architecture & Digital Systems (CADS),
the Distinguished Lecturer Award from SUT in 2010, the Distinguished
Researcher Award and the Distinguished Research Institute Award from SUT
in 2016, and the Distinguished Technology Award from SUT in 2017. He is
also recipient of Extraordinary Ability in Science visa from US Citizenship
and Immigration Services in 2008. He has also served as the publication
chair of several national and international conferences including CNDS2013,
AISP2013, and CSSE2013 during the past four years. Most recently, he has
served as a Guest Editor of IEEE Transactions on Computers, an Associate
Editor of Microelectronics Reliability, a Program Co-Chair of CADS2015,
and the Program Chair of CSI National Computer Conference (CSICC2017).

