
1

PEAF: A Power-Efficient Architecture for SRAM-Based
FPGAs Using Reconfigurable Hard Logic Design in Dark

Silicon Era
Zahra Ebrahimi, Behnam Khaleghi, Hossein Asadi, senior Member, IEEE

Abstract—Significant increase of static power in nano-CMOS
era and, subsequently, the end of Dennard scaling has put a
Power Wall to further integration of CMOS technology in Field-
Programmable Gate Arrays (FPGAs). An efficient solution to
cope with this obstacle is power gating inactive fractions of a
single die, resulting in Dark Silicon. Previous studies employing
power gating on SRAM-based FPGAs have primarily focused
on using large-input Look-up Tables (LUTs). The architectures
proposed in such studies inherently suffer from poor logic
utilization which limits the benefits of power gating techniques.
This paper proposes a Power-Efficient Architecture for FPGAs
(PEAF) based on combination of Reconfigurable Hard Logics
(RHLs) and a small-input LUT. In the proposed architecture, we
selectively turn off unused RHLs and/or LUTs within each logic
block by employing a reconfigurable controller. By mapping a
majority of logic functions to simple-design RHLs, PEAF is able
to significantly improve power efficiency without deteriorating
the performance. Experimental results over a comprehensive set
of benchmarks (MCNC, IWLS’05, and VTR) demonstrate that
compared with baseline 4-LUT architecture, PEAF reduces the
total static power and Power-Delay-Product (PDP), on average, by
24.5% and 21.7%, respectively. This is while the overall system
performance is also improved by 1.8%. PEAF increases total area
by 18.9%, however, it still occupies 22.1% less area footprint than
the 6-LUT architecture with 31.5% improvement in PDP.

Index Terms—Field-Programmable Gate Arrays, Static Power,
SRAM, Dark Silicon, Hard Logic.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are ubiquitously
used in a wide range of applications from embedded systems to
parallel high-performance computing. This widespread usage
has been motivated by their inherent privileges such as inex-
pensive design update, shorter time-to-market, and flexibility
to implement diverse range of applications, as compared to
Application-Specific Integrated Circuits (ASICs). This flexi-
bility, however, comes at the expense of 20x larger area, 4x
lower performance, and 12x higher power consumption as
compared to ASIC counterparts [1]. These challenges make
FPGAs less attractive for designers in applications where
power, performance, and die cost are of major concerns [2].
In particular, with tremendous growth in transistor density
(e.g., more than six billion transistor on a single chip [3]),
the role of power has become more challenging for designers,
especially in low-power embedded applications. Exponential
increase in power consumption of FPGAs can degrade the
overall Power Per Operation which hinders the use of these
devices, particularly in power-constrained applications [4].

With significant downscaling of transistor feature size and
threshold voltage in recent years, ever-increasing static power

dissipation, which is mainly attributed to idle status of the
circuit components, has become a major contributor to the
FPGA total power (5–87x of ASIC equivalent [1]). In embed-
ded mobile applications, static power is even more pronounced
since these devices are mostly in idle status. In conventional
FPGAs, static power is mainly originated by leakage of
SRAM-based configuration bits. The increasing static power
creates a power wall which restricts the number of active
transistors on a single die and hinders further logic integration
in current and upcoming technologies.

% of inactive regions 1%

32nm

2010

21%

22nm

2012

36%

16nm

2014

40%

11nm

2015

50%

8nm

2017

Technology

year

M

M

M

M

M

M

M

M

Select

M

M

M

M

M

M

M

M

Select

Fig. 1: Growth of dark silicon with technology downscaling
due to increasing static power

An effective solution to overcome power wall along with
preserving the performance efficiency is to apply power gating
to inactive fractions of the silicon die. This phenomenon,
illustrated in Fig. 1, has been referred to as dark silicon.
As shown in this figure, the inactive fractions of the silicon
die (shaded in black) contribute up to half of the total chip
resources as technology ceaselessly shrinks. When it comes
to FPGAs, the logic resources dissipate significant portion
(about 50%) of the static power in SRAM-based FPGAs
fabricated in 28nm and beyond [5]. Smaller footprint of logic
resources besides their relative high power consumption is
another testimony that implies reducing the logic power is vital
due to its substantial power density. The higher power density
in logic resources may cause hot spots or thermal challenges
such as leakage-temperature positive feedback, performance
degradation, and intensified aging [6]. Hence, power gating in
logic resources can effectively help to improve power density,
accompanied with the reliability of FPGAs.

One major source of high power dissipation of conventional
FPGA logic resources is originated by power-inefficient struc-
ture of SRAM-based Look-Up Tables (LUTs) which imple-
ment logic functions within FPGAs. A typical structure of
N-input LUT (N-LUT) is composed of a) 2N SRAM cells
which contain the truth-table of any N-input function and
b) a 2N -to-1 multiplexer which routes the appropriate cell
value to the output. Among various configurations of LUTs,
six-input LUTs (i.e., 6-LUT) are well-suited for performance

2

efficiency while 4-LUTs afford designs with smallest area in
conventional FPGA architectures [7]. Despite the generous
flexibility of a LUT, it has poor logic utilization efficiency due
to non-uniform distribution of functions used in applications.
Such flexibility comes with the cost of higher power consump-
tion, inefficient structure and thereby performance, and more
area overhead as compared to ASIC counterpart. Confronting
the power wall due to downscaling of transistor feature size,
power dissipation of FPGAs has become more pronounced for
upcoming technologies.

To tackle the power wall in SRAM-based FPGAs, various
approaches have been proposed which can be classified into
three major categories. The first category exploits low-leakage
manufacturing process such as variable transistor gate length,
triple oxide, and multiple-Vth in recently fabricated devices
[8]. Although these elaborate fabrication processes are not
cost-efficient, yet they can be applied along with other power-
efficient approaches. The second category has targeted mainly
to reduce static power by static or dynamic power gating of
unused logic and routing resources [5], [9], [10]. Static power
gating is applied offline (i.e., during configuration time) only to
unused resources of the design, while dynamic power gating
is applied online (i.e., during runtime). The most important
challenge in dynamic power gating architectures is the so-
called Inrush Current, i.e., a large wake-up (power-on) current.
This is drawn from the power rails which may lead to register
content instability, functional error, and more wake-up time
and power overhead [11]. Notice that the problem of inrush
current does not exist for static power gating techniques
wherein a power-gated module remains off permanently, and
thus, no abrupt current is drawn. In addition, relying on
inefficient soft logic (LUTs) building blocks is a major ob-
stacle in these architectures to improve power, area, and
performance. Additional resources for power control switch
which incurs area and performance overhead to the circuit
is another negative point attributed to these works. The third
category has focused on using Reconfigurable Hard Logic
(RHL) in conjunction with soft logic in the FPGA architecture
in order to achieve area and performance efficiency [12]–
[19]. In such studies, however, power aspect of the suggested
architectures has not been neither considered nor evaluated.

In this paper, we present a fine-grained heterogeneous archi-
tecture based on static power gating, called PEAF, that aims
to improve both power and performance efficiency of SRAM-
based FPGAs. In PEAF, an efficient set of RHLs is developed
to replace the conventional LUT. The applicability of the
proposed RHLs is motivated by comprehensive function char-
acterization in industrial and standard benchmark circuits, i.e.,
MCNC, IWLS’05, and VTR. Based on this characterization, it
is revealed that substantial fraction of functions (up to 97%) is
homomorphic (i.e., have the same homomorphic structure or
uniformity) and can be implemented with power/performance-
aware RHLs, making them a promising alternative for 4-LUT.
Our analysis also shows that three-input functions contribute
the most to those functions that could not be mapped into
any RHL. Such functions can be implemented by 3-LUTs.
Based on this investigation, each 4-LUT is replaced with a
Reconfigurable Logic Unit (RLU) which comprises three 4-

input RHLs with eight or less number of SRAMs and one
3-LUT.

To alleviate the area overhead of the proposed architecture,
we propose a novel technique referred to as Logic SRAM
Sharing (LSS) scheme. In this technique, the SRAMs of each
RHL/LUT can be shared among all RHLs and 3-LUT, since
at most one of RHLs or 3-LUT is activated at a time (i.e.,
only the RHL/LUT that can implement the mapped function
to the corresponding logic block will be activated). In addition
to the aforementioned power saving through exploiting power
gating technique, another advantage of the LSS technique is to
enhance the reliability of the FPGAs due to using RHL/LUTs
with eight SRAMs as contrary to the conventional 4-LUTs
by reducing number of SRAMs of a logic block (which are
significantly susceptible to energetic particles and strikes [20]).
A Reconfigurable Power-Controller (RPC) is also designed
to power on either one of RHLs or the 3-LUT or power
off the entire logic block (if it was entirely unused) at the
(re)configuration time.

We have evaluated the proposed and baseline architectures
in terms of their power, performance, and area footprint. In
this regard, we used Berkeley ABC [21] to synthesize the
circuits and Boolean Matcher [22] for characterization of the
functions. Fully automated transistor sizing models (COFFE)
[23] is exploited for efficient transistor sizing. HSPICE along
with ACE 2.0 [24] activity estimator is used for subsequent
delay, and power measurements. Finally, we used VTR 7.0
toolset [25] to place and route both the baseline and pro-
posed architectures. Experimental results over a set of MCNC,
IWLS, and VTR benchmarks demonstrate an average 24.5%
and 16.9% reduction in total (i.e., considering both logic
and routing power) static and dynamic power, respectively,
compared as to the conventional 4-LUT based architecture. In
addition, our proposed architecture enhances the performance
by 1.8%, which leads to 21.7% improvement in Power-Delay-
Product (PDP). Our novel contributions with respect to the
state-of-the-art work [26] are as follows:

• We perform analytic characterization of most frequent func-
tions (with a full examination in the proposed architecture)
in comprehensive standard and industrial benchmarks such
as MCNC, IWLS’05, and VTR.

• Novel power and performance efficient RHLs to be replaced
with conventional 4-LUT are proposed.

• Logic SRAM sharing scheme to share SRAMs among RHLs
and 3-LUT within logic block is proposed.

• A novel mapping algorithm based on the proposed RHLs
which aims to minimize power against conventional 4-LUT
based architectures is proposed.

• A novel RPC able to power gate unused logic resources
based on the proposed mapping algorithm is suggested.

• We examine the efficiency of the proposed architecture with
parameters (e.g., LUT and multiplexer structure and sizing
and routing topology) that closely matches with commercial
FPGAs which guarantees the effectiveness of the proposed
architecture in industrial use-cases.

The rest of this paper is organized as follows. In Section II,
related works are reviewed. In Section III, the methodology

3

of designing the proposed RHLs, RLU, and RPC is explained,
and afterwards, the proposed mapping algorithm is presented.
Implementation and elaboration of the proposed RLU along
with experimental setup and results are detailed in Section
IV. Finally, Section V concludes the paper.

II. RELATED WORK

Several research studies investigating static power of logic
and/or routing resources have been proposed in the literature.
The focus of this work is to conserve logic static power,
however, we also briefly review studies that attempted to
reduce routing static power, as well.

Routing Static Power: The main motivation behind the
method presented in [27] is originated from placement algo-
rithm characteristic that clusters with high logic correlation
being placed near together to minimize the target cost function
(e.g., routing resources and/or delay). Accordingly, the authors
propose to dedicate a shared power gating switch to a coarse
set of clusters (including both routing and logic resources),
and exploit a region-constrained placement that attempts to
minimize the used cluster sets. Effectiveness of this method is
limited by the ratio of unused regions.
In [28], the multiplexer and its associated buffer of routing
Switch Boxes (SBs) are modified in such a way that they can
selectively operate in three distinct operation modes, i.e., high
speed (normal operation), low power for the non-critical pass
SBs, and sleep mode for unused SBs. A variant sleep mode
is also proposed to avoid floating nodes which could lead to
high-leakage scenarios.
In [29], a multiplexer is added to each Switch Matrix (SM)
that can select between an always-on, always-off, or a
power-controlled state using dedicated configuration cells. The
power-controller signal is also used for power gating the neigh-
bouring Configurable Logic Blocks (CLBs) and Connection
Blocks (CBs) during their idleness period. Efficiency of this
method depends on the number of unused switch matrices and
CAD tool ability to minimize the number of switch matrices
that route either sporadic nets of non-adjacent CLBs or the
power-controller signals themselves.
An architecture is proposed in [30] to power gate
unused/under-utilized SRAMs in routing (including SBs and
CBs) and logic resources. This architecture dedicates an extra
configuration cell for each SB and turns off the whole SB if it
was unused. In addition, this method groups the configuration
cells of LUTs into smaller sets and assigns a power gating
signal (and SRAM cell) to turn off the cells if the LUT was
unused or the cells were don’t-care. The latter happens when
not all LUT inputs are used. An architectural assessment to
choose the optimum number of grouping LUT configuration
cells was also carried out in the same study.
Lastly, it is shown in [31] that different routing architectures
exhibit different ratio and pattern of resource utilization, and
thereby, a certain power-gating scheme with specific gran-
ularity may not be efficient in varied routing architectures.
Accordingly, by investigating the utilization ratio and pattern
of multiplexers within SBs, the efficient power-gating archi-
tecture corresponding to each routing architecture has been
proposed.

Logic Static Power: The previous studies that aim to
reduce static power in logic resources can be classified into
three major categories. The first category takes advantages of
using low-leakage manufacturing processes such as variable
transistor gate length, triple gate oxide, and multiple-Vth in
recent devices fabricated by Xilinx [8] which is employed in
interconnect pass transistors and configuration memory cells.
Despite of considerable static power reduction (nearly 40%),
such techniques cannot be employed in entire chip resources,
due to the performance loss as inherent attribute of high-
threshold transistors. In addition, these techniques may not be
cost-conscious due to the fabrication complexity. Nevertheless,
these techniques are orthogonal to our proposed architecture
(which will be discussed later) and can be used along with
our proposed architecture to provide further power saving.

The second category aims to reduce static power by static or
dynamic power gating of unused logic and routing resources
[5], [10], [32], [33]. Static power gating is applied offline
only to unused resources of the chip, while dynamic power
gating is applied online during device runtime when a module
is (temporarily) idle. In this regard, in [5] and [32], a reconfig-
urable architecture supporting static and dynamic power gating
has been proposed. Frequently used modules and unused
resources are configured to always-on and always-off states,
respectively. Conversely, functional modules that encounter
long idle periods are configured to dynamically controlled
power state which allows their power supply to be controlled
during run-time via signals which are generated and routed
from a power controlling module. Dynamical power gating
of a module is advantageous if the energy saving conquers
the associated overheads, i.e., power controller energy, wake-
up energy during power state transitions, and overhead of
routing the controlling signal. Identifying idleness periods
of modules (through either dataflow graph or application
netlist) is the main issue in dynamic power gating methods.
The idleness period should be large enough to throttle the
mentioned overheads. Nonetheless, the application behaviour
is unpredictable in interactive or input-dependent usages.
Accordingly, [33] proposes an approach for dynamic power
gating of designs that are generated using high-level synthesis
(HLS) process. Using the HLS scheduling information, this ap-
proach automatically detects the promising idleness periods of
designs and generates the power-state controller, as well. The
authors examine their approach using CHStone benchmarks
which are proposed for C-based high-level synthesis. Even in
applications following HLS methodology, only five (out of 12)
benchmarks exhibited long idleness periods to profit from this
approach. Further details such as power-on energy and time
overhead and inrush current issue are neglected in this work.
In [10], an asynchronous FPGA with autonomous fine-grained
power gating has been proposed. Due to using 2-input LUTs
and elaborate power gating structure, area and dynamic power
of the proposed FPGA significantly are increased compared
with conventional (i.e., synchronous) FPGAs.

The third category has focused on using RHL that replaced
or used alongside soft logic to provide area and performance
efficiency [12]–[19]. These architectures, however, may im-
pose power overhead if power is not considered as a main

4

concern. The FPGA architecture proposed in [18] replaces
conventional LUTs with PLA-like macro-cells which are in-
herently power-inefficient due to their large standard cell-
based structure. The authors in [19] propose a hybrid RHL-
LUT FPGA architecture composed of so-called Universal
Logic Gate (ULG) and LUT-based logic blocks in order to
achieve performance and area benefits provided by efficient
ULG structure. Nonetheless, choosing an appropriate ratio of
LUT and ULG is critical in such architectures. Low LUT
ratio can increase the FPGA array size (and thereby area)
since ULG cannot cover all types of the functions. On the
other hand, high LUT ratio circumscribes the architecture
efficiency. In addition, effectiveness of such architectures is
benchmark-dependent, and therefore, unpredictable. Toward
improving power and performance efficiency, a heterogeneous
architecture was proposed in [26]. In this architecture, each
logic block contains three cells, including two power-efficient
RHLs which can implement a considerable fraction of 4-
input functions, and a 4-LUT. Both inputs and outputs of the
cells are shared. Thus, no additional intra-cluster input/output
multiplexer is required and also smaller power gating transistor
is demanded. For each function mapped to a logic block,
the priority is given first to the RHLs, and then to the 4-
LUT. The other two unused cells (or alternatively the entire
logic block when no function is mapped) are power gated to
offset their static power. This work has neglected the inputs
SRAMs overhead (needed for input negating) and suffers
from exploiting inefficient 4-LUTs. In addition, the efficiency
of the suggested RHLs in implementing functions in larger
benchmarks was not investigated.

III. PROPOSED ARCHITECTURE

In this section, we first present the motivation behind the
proposed architecture by analyzing the inefficiency of LUT-
based architectures. Then, we detail our approach in proposing
the architecture by characterizing the benchmarks functions
and accordingly, suggesting efficient RHLs that aim to cover
the high repetition functions. Afterwards, the algorithm to map
designs in the proposed architecture is elaborated. Lastly, our
novel SRAM-sharing scheme to further enhance the RLU,
along with the power controller circuitry is presented.

A. Motivation

The main building blocks of logic resources are LUTs
that contribute to significant fraction of logic area and power
consumption. A typical structure of 4-LUT is depicted in
Fig. 2. Besides the configuration cells and their associated
isolating buffers, tree-based structure, large input buffers (to
drive large number of transistors) and demand for level-
restorers indicate the power and area inefficiency of LUTs. In
addition, the number of transistors grows exponentially as the
number of inputs increases. Among different LUT structures,
FPGAs based on 4-LUT have been reported to have minimum
area, and consequently minimum configuration cell count by
making a trade-off between total number of LUTs and area
of each LUT [7]. However, our investigations reveal that
SRAM configuration cells of 4-LUT is also often remained

S

S

S

S

IN_A IN_B IN_C IN_D

SRAM
LUT input

drivers

Fig. 2: 4-LUT structure [23]

underutilized for majority of functions (see Section III-B). In
other words, it is not necessary to employ 16 SRAM cells
to implement the majority of four (or less) input functions;
instead, smaller logic structure converged with fewer number
of SRAMs can implement a considerable fraction of functions
[12], [16], [26].

This mismatch, besides intrinsic abundance of resources,
causes additional power and area overhead in FPGAs and
exacerbates the FPGA-ASIC power gap. In recent works, fine-
grained heterogeneous architectures have been proposed to
close this gap by using reconfigurable hard logic cells lever-
aging few number of SRAM cells and an efficient structure
using simple logic gates instead of large pass-gates, to replace
or be used in conjunction with LUTs [12], [16], [26]. However,
the main target of these works is improving the performance
while power efficiency has been neglected. Relying on ineffi-
cient LUT-based building blocks, and more importantly, poor
assessment of larger benchmarks obscures the effectiveness of
these approaches in industrial-scale applications.

B. Function Characterization

The first step in designing RHLs is to identify the most
frequent functions. In this regard, we investigate a comprehen-
sive set of standard and industrial benchmarks, i.e., MCNC,
IWLS’05 and VTR. Classifying the functions is carried out
based on the concept of NPN classes. Two functions belong to
the same NPN-class if each function can be obtained from the
other by negating and/or permuting the inputs and/or negating
the output of the other function. For example, two functions
F = AB + CD̄ and G = AC + BD can be obtained from
each other by permuting C and B and negating D. As reported
in [16], all 4-input functions (i.e., 22

4

= 65536 function)
can be classified in 222 NPN-classes. Utilization rate of these
functions, however, is not uniform across different circuits.

In order to identify the most frequent functions, we map the
target benchmarks to 4-input functions by means of Berkeley
ABC tool [21], which optimizes the logic based on And-
Inverter-Graphs (AIGs) and can map to LUTs using opti-
mal DAG-based technology mapping. Afterwards, the output
netlist is fed to Boolean Matcher [22] to extract NPN-class of
each boolean function (that is mapped to a 4-LUT). Table
I summarizes the most frequent NPN-classes in the target
benchmarks. We reported the NPN classes that have coverage

5

TABLE I: Coverage ratio (in percentage) of most frequent 4-
input and 3-input NPN classes in MCNC, IWLS’05, and VTR
benchmarks

NPN MCNC IWLS’05 VTR Average
ABCD 37.1 29.6 35.2 34.0

AB(C +D) 12.1 14.9 16.2 14.4
AB + CD 16.1 13.7 10.8 13.5

A(!BC +BD) 8.0 12.3 5.6 8.6
A(B + CD) 8.7 5.4 6.9 7.0

A(B + C +D) 9.6 3.2 2.5 5.1
ABCD+!(AB)!CD 1.3 10.7 1.2 4.4
AB +AC +BC 0.2 0.4 4.1 1.6

A(B ⊕ C) 0.1 1.7 1.8 1.2
AB(C ⊕D) 1.5 1.0 0.6 1.0
A⊕B ⊕ C 0.1 0.3 2.4 0.9

A(B ⊕ C +D) 1.2 0.8 0.6 0.9
AB(C +D) + CD 0.2 0.2 1.3 0.6
A(BC +BD + CD) 0.2 0.1 1.2 0.5

ratio higher than 1% in at least one of the benchmark suites.
Referring to Table I, minority of NPN-classes implement a
significant fraction (by average, more than 93%) of 4-input
functions in all benchmark suites. This observation motivates
us to design RHLs which can implement a significant portion
of functions, yet be an efficient alternative for conventional 4-
LUT. The remaining NPN-classes have non-uniform utilization
ratio in three benchmark sets. Thus, we do not consider them
in designing RHLs. However, the proposed RHLs may inci-
dentally support other NPN-classes that have not initially been
targeted. The RHLs design methodology will be discussed in
Section III-C.

C. RHLs Design

Designing RHLs necessitates a heuristic procedure by tak-
ing the coverage information of Table I into account. Nev-
ertheless, the following prerequisites should be considered
in proposing RHLs: (1) RHLs should be considerably area
and delay efficient compared as to LUTs, (2) RHLs should
be mutually exclusive as much as possible, i.e., should have
minimum overlap in implementing the NPN-classes, (3) RHLs
should afford input permutability and avoid input negation
as much as possible (to avoid routing overhead in depop-
ulated FPGA architectures and reduce the number of input
configurable inverters), and (4) RHL with maximum number
of SRAM cells determines the total LRU SRAM (due to
employing LSS scheme).

In few previous works solely using RHLs [16], or in
conjunction with LUT [12], [13], [17], [26] wherein if none of

M

M

M

M

M

M
M

M

ABCD

AB+CD

ABCD
AB+CD

M

Fig. 3: The RHL1 design flow

RHLs could implement the function, it would be mapped to the
LUT. The former can incur delay and area overhead because
every function which could not be implemented by RHLs will
be mapped into two or more RHLs. The latter architectures
can also impose area overhead due to employing large LUTs.
As revealed by our experiments, majority of the functions
that could not be implemented by 4-input RHLs, have three
inputs and can be implemented using a 3-LUT. Thus, it is
no longer necessary to use a LUT with the same number of
inputs as for RHLs and instead an efficient small LUT can
be exploited. Accordingly, in spite of previous studies, in our
proposed architecture we exploit 3-LUTs.

Design steps of the first RHL, referred to as RHL1, is
illustrated in Fig. 3. RHL1 is able to support three most
frequent functions presented in Table I, i.e., ABCD, AB(C+D),
and AB+CD, and have been primarily proposed in our orig-
inal work [26], which covers 65.3% of the functions in
MCNC benchmarks. Analyzing large industrial benchmarks of
IWLS’05 and VTR confirms that RHL1 with five configuration
bits covers majority of the functions in these benchmarks,
as well (see Table I). Therefore, it is an efficient alternative
for conventional 4-LUT by offering superior power, area, and
performance characteristics while implementing significant
fraction of functions.

To support the most frequent NPN-class (i.e., ABCD), the
primitive design structure of RHL1 has been shown in Fig. 3
as three 2-input AND gates. To implement the next frequent
NPN-class (i.e., AB+CD), the second structure is two 2-input
AND gates, followed by a 2-input OR gate in its second level.
These designs are interchangeable by merging the 2-input
AND and OR gates (in the second level of both structures)
into a reconfigurable AND gate which is convertible to both
AND and OR. Notice that by providing negation into the
inputs and output, AND and OR gates are interchangeable,
i.e., A+B = (A′ ·B′)′. The reconfigurable inverters can act
as either buffer or inverter and can be implemented by an XOR
gate associated with a configuration cell.

To optimize RHL1, we simply replaced the AND gates with
NAND gates (which is area/delay efficient than AND gate
in static-CMOS implementation) without corrupting the func-
tionality or supporting NPN-classes (due to the configurable
inverter in the output of each gate). In addition, by replacing
one of the NAND gates in the first level with a NOR gate
and using only two configurable inverter in the RHL1 input,
it can implement almost the same number of functions as
using four configurable inverters in primary inputs and a cell
with all NAND gates. In other words, NOR-NAND-NAND
structure with only two configurable inverters in the inputs can
implement almost the same functions as a cell with NAND-
NAND-NAND structure owing four configurable inverters in
the primary inputs. Analogously, we designed two other RHLs,
called RHL2 and RHL3, to support the majority of remaining
NPN classes. Indeed, there is a trade-off between the number
of RHLs inside the RLU (i.e., the coverage ratio of the RLU)
and area or power overhead. Our pre-characterizations revealed
that choosing three RHLs (rather than two or four) achieves
proper power efficiency while giving an efficient area.

Fig. 4 depicts the proposed RHLs designed based on the

6

M

M

M

M

M

M M

M

M

MM M M

M

M M

MMMMM

(a) (b) (c)

Fig. 4: Our proposed RHLs: (a) RHL1, (b) RHL2, (c) RHL3

most frequent NPN-classes represented in Table I. The cov-
erage ratio of each RHL and 3-LUT can be derived from
Table II. The proposed RHLs along with 3-LUT are able
to implement all most-frequent NPNs presented in Table I1.
Several number of other NPNs in addition to those presented
in Table I is supported by RHLs and 3-LUT, however, their
utilization rate is trivial; hence, they are not reported in Table
I for the sake of brevity. According to Table II, there are a few
NPNs with 3 or less inputs that are covered by both RHL3 and
3-LUT. In these cases, we choose RHL3 to implement such
functions due to the power efficiency of RHL3 over 3-LUT
which will be discussed in Section IV.

To summarize, RHL1, RHL2, and RHL3 are able to im-
plement, on average, 61.9%, 21.9%, and 9.2% of functions,
respectively. Input negation can be provided by configurable
inverters in the output of the previous logic block as well.
However, when the previous logic has multiple fan-outs, input
negation cannot be guaranteed anymore since it might cause
conflict between the other fan-out logic. It is noteworthy that
the other RHL candidates have been examined to implement
the remaining functions, however, considering their low uti-
lization rate accompanied with complexity of the target RHL,
it fades out the overall power gain and imposes further area
overhead. Therefore, we concluded that three RHLs together
with a 3-LUT leads to optimum trade-off between utilization
rate and power/area efficiency.

D. Proposed Mapping Algorithm

As discussed in Section III-C, more than 95% of functions
can be directly mapped to either one of the RHLs or 3-LUT.
Although the proposed RHLs have small overlap in NPN cov-
erage, for every function, the mapping priority is given to the
RHL with less power dissipation. This scenario often occurs
with three or less input functions that can be implemented
by more than one cell. For the rest of the functions, i.e.,
unsupported functions, we leverage a novel mapping algo-
rithm which eventuates to two scenarios. First, we examine
whether an arbitrary 4-input function which could not be
mapped to neither RHLs nor 3-LUT, can be implemented by
cascading two RLUs. Otherwise, the target 4-input function
will be decomposed to a pair of cofactors using Shannon

1Except AB(C+D)+CD which has only 0.6% utilization ratio.

expansion, i.e., F = x̄i · F (x0, . . . , xi−1, 0, . . . , , xn) + xi ·
F (x1, . . . , xi−1, 1, . . . , , xn). Based on this theorem, each 4-
input function can be implemented using two 3-input functions
(which can be implemented by 3-LUT and/or RHL) and
a 2-to-1 multiplexer. To choose the most efficient function
pair, the decomposition is performed on all of four variables
and the pair resulting in better power efficiency is selected.
For example, HL1-HL1 pair has higher priority over HL3-
LUT pair. This is due to the different power, delay, and
area characteristics of the proposed RHLs and 3-LUT, which
is detailed in Section IV. If either of cofactors (which has
three or less inputs) cannot be implemented by any RHLs, it
will be mapped to 3-LUT. The required multiplexer can be
implemented by all RHLs or 3-LUT; hence, we choose RHL1
due to its power efficiency. Our investigations show that 4.5%
of functions can be implemented by cascading two RLUs (and
choosing an appropriate cell within the RLU). The proposed
mapping scheme is outlined in Algorithm 1.

E. SRAM Sharing in Logic Block

The total number of configuration SRAM cells in the RLU
is sum of the cells in RHLs and the 3-LUT, i.e.,

SRAMtotal =

3∑
i=1

SRAMRHLi + SRAMLUT = 29 (1)

However, since in each RLU at most one of the logic cells
(RHLs or 3-LUT) and its corresponding configuration SRAM
cells are active in every design, a shared set of configuration
SRAMs can be considered for them. We refer to this scheme
as Logic SRAM Sharing (LSS). Therefore, applying LSS in
the proposed architecture results in Equation 2.

SRAMtotal = max{SRAMRHL1,2,3, SRAMLUT } = 8 (2)

The significant reduction in the number of configuration cells
(from 29 to 8) improves the power efficiency of the RLU by
eliminating the leakage of power-gated SRAMs. In addition,
it reduces the area of the RLU. It is also noteworthy that
while up to eight SRAM cells can be used in RHL1, we just
exploit five configuration cells within its structure and removed

TABLE II: Coverage ratio of the proposed RHLs
NPN Avg. ratio RHL1 RHL2 RHL3 3-LUT

ABCD 34.0 X
AB(C +D) 14.4 X
AB + CD 13.5 X

A(!BC +BD) 8.6 X
A(B + CD) 7.0 X

A(B + C +D) 5.1 X
ABCD+!(AB)!CD 4.4 X
AB +AC +BC 1.6 X

A(B ⊕ C) 1.2 X X
AB(C ⊕D) 1.0 X
A⊕B ⊕ C 0.9 X

A(B ⊕ C +D) 0.9 X
A(BC +BD + CD) 0.6 X

!A!B!C +ABC 0.5 X X
AB(C +D)+!A!B!C!D

1.6
(shared)

X
ABC+!B!C X X

(A⊕B) + CD X
A(B!CD+!BC!D) X
ABCD+!A!B!C!D X

!A!BCD + (A⊕B)!C!D X
ABC+!A!B!C +BC!D+!B!CD X

Other supported NPNs X
Unsupported NPNs 4.5

7

Algorithm 1: Proposed algorithm to map a design into RLUs

Input: Boollist: Input design boolean functions
Input: NPNRHL1: NPNs supported by RHL1
Input: NPNRHL2: NPNs supported by RHL2
Input: NPNRHL3: NPNs supported by RHL3
Output: RLUlist: Output list, determines corresponding

RHL/LUT cell(s) for each function
1 for each Boolean b ∈ Boollist do
2 cellb ← mapRLU(b);
3 if cellb 6= false then
4 RLUlist(b)← cellb;

5 else
6 RHLsetb ← ABC(b,NPNRHL1 ∪NPNRHL2 ∪NPNRHL3);

// Synthesizing b into RHLs by ABC using RHLs library
if RHLsetb.size() = 2 then

7 RLUlist(b)← RHLsetb;

8 else
9 //Decompose b into cofactors

10 CFsetb ← ShannonExpansion(b);
11 MINpairb ← min{CFsetb};
12 RLUlist(b)← mapRLU(MINpairb.get(0)) ∪
13 mapRLU(MINpairb.get(1)) ∪RHL1;

14 Function mapRLU (Boolean b)
15 NPNb ← BooleanMatcher(b);
16 if NPNb ∈ NPNRHL1 then
17 return RHL1;

18 if NPNb ∈ NPNRHL2 then
19 return RHL2;

20 if NPNb ∈ NPNRHL3 then
21 return RHL3;

22 if inputCount(b) < 4 then
23 return 3-LUT;

24 return false;

two configurable inverters from its inputs. It is because they
show negligible improvement in function coverage of RHL1
which will be offset by the area of the two configurable
inverters (XOR gates). In addition, as it will be demonstrated
in Section III-F, by removing two configurable inverters and
using only five SRAMs within RHL1 (rather than eight), three
of the shared configuration cells can be powered off if RLU
is configured to RHL1.

F. Reconfigurable Power Controller

Fig. 5 illustrates the overall structure of the proposed RLU
along with the proposed RPC. Power gating of each RHL
or 3-LUT is performed by inserting a pair of pMOS and
nMOS sleep transistors between the power supply and the
cell supply node2. Four configurable SRAM cells, i.e., S1-
S4 which we refer to as power gating SRAMs, are dedicated
to determine the power state of both RHLs/LUT cells and

2In Fig. 5, only the pMOS sleep transistors are shown for the sake of
simplicity.

Fig. 5: Overall structure of the proposed RLU and RPC

eight shared configuration SRAMs. Logical 0 when power
gating an SRAM indicates that the associated cell is ON.
For example, S3 = 0 or S4 = 0 implies that RHL3 or 3-
LUT is active inside an RLU, respectively. In such cases,
the power gating pMOS transistor of a logic cell is ON and
delivers strong Vdd to the corresponding logic cell. In addition,
when RHL1 is used within an RLU, since it uses only five
configuration cells (i.e., M1-M5), other three SRAMs can be
power gated. Therefore, if none of RHL2, RHL3, or 3-LUT
was used (S2 = S3 = S4 = 1), then M6-M8 can be power
gated. Analogously, when another logic cell was used, e.g.,
RHL2, then S2 = 0 produces a logical 0 in the output of both
AND gates (see Fig. 5), which subsequently turns on all the
configuration cells (notice that RHL2 requires all of the eight
cells). Finally, if the entire RLU was not used, then the output
of both AND gates (see Fig. 5) is high, which turns off the
power supply of all the configuration cells (while the logic
cells are power gated as well).

IV. EXPERIMENTAL RESULTS

In this section, first we explain the implementation and
evaluation flow. Afterwards, experimental setup and param-
eters used for evaluating the baseline architectures (i.e., no
power gating and fine-grained power gating based on typical
pure LUT) and the proposed architecture are described. We
elaborate a detailed comparison among baseline architectures
including traditional 4-LUT, 6-LUT, a similar work in [26],
and Fine-Grained Power Gating (FGPG). The FGPG scheme
applies power gating with single logic block (considering pure
LUT architecture) granularity that has been suggested to have
better results over coarse-grained power gating in FPGAs [34].
Both [26] and [34] are most relevant studies to our proposed
architecture which exploit the static power gating in logic
resources.

Overall experimental flow is illustrated in Fig. 6. As shown
in this figure, we first synthesize HDL description of the

8

Architecture file development

Transistor
Sizing

Capacitance
Resistance

Area CalculationsPower Calculations

COFEE 2.1

Automated Transistor Sizing Tool

Power per
RHL

Recourses
Usage

Power
(Static, Dynamic)

ACE 2.0

Activity Estimation
(Dynamic Power)

Area
(Logic, Routing)

Benchmark
Circuits

In-house C++

RHL Design

In-house C++

Mapping Algorithm
(Cascade/Co-Factors)

Hspice(45nm)

Area, Delay, Power Estimation

ABC tool

Technology Mapping (4-LUT)

Boolean matcher In-house C++

Extraction and Analysis

Clustering, Placement,
and Routing

VPR7

Critical Path
Delay

Fig. 6: Overall implementations flow

benchmark circuits into 4-LUTs using Berkeley ABC logic
synthesis and optimization tool [21]. Using an in-house C
script, boolean truth-table of each LUT is obtained and fed
into Boolean Matcher [22] to generate the corresponding
NPN class. According to generated NPNs, the proposed RHLs
are designed, as detailed in Section III-C. Afterwards, by
exploiting Algorithm 1, the initial BLIF netlist is modified
to replace 4-LUTs with RHLs/3-LUT cells or a cascade of
two or more cells (in the case of using Shannon expansion).
To evaluate the architectures in terms of delay, area, and
performance, we exploit COFFE [23] to automatically gen-
erate the efficient transistor sizing for both 4-LUT and 6-LUT
architectures (including the transistor sizes for SB and CBs
with different number of inputs). HSPICE simulations using
45nm high performance Predictive Technology Model (PTM)
[35] is performed for delay and power estimation. Delay
and area parameters are wrapped in VPR [25] architecture
description files to obtain the corresponding parameters for
each benchmark after place and routing steps. Finally, we post-
process the VPR-generated placement and routing information
to estimate the static and dynamic power for each benchmark.
For dynamic power estimation, average activity factor of each
benchmark is calculated using ACE activity estimator tool
[24].

A. Experimental Setup and Parameters

1) Parameters: Table III summarizes the delay, power, and
area characteristics of the proposed designs and typical 4-LUT
and 6-LUT. In addition, characteristics of the multiplexers
(denoted by MUX which includes both CB and intra-cluster
multiplexers) and SB are reported in this table.

Delay: The delay of each logic cell (RHLs and LUTs) is the
average delay of its different inputs. Since VPR estimates the

CB delay internally (because its size is not determined before
routing stage), it is not included in the table. However, the
delay of the intra-cluster multiplexers (which have the same
size of 16 in all architectures) is 40ps. In addition, the size of
an SB is independent from channel width and can be obtained
from Equation 3 (the parameters are defined in Table V).

XSB = N · Fcout ·
L

2
+ L · (Fs − 1) + 1 (3)

Taking into account the fact that Fcout has minor impact in
efficiency of an FPGA architecture, it is usually considered as
1

N
[36]. Thus, regardless of value of the N , SB size can be

rewritten as Equation 4:

XSB =
L

2
+ L · (Fs − 1) + 1 (4)

Using this equation, XSB = 11 for constant L = 4 and
Fs = 3 in all architectures. Therefore, similar SB parameters
have been used for different architectures. It is noteworthy
that two-stage multiplexers (that has been shown to afford best
area-delay efficiency [23]) have been used for all multiplexer
structures except for LUTs (i.e., CB, SB, and intra-cluster
multiplexers) for which the same structure shown in Fig. 2
has been used.

Static Power: The second column in Table III reports the
static power of different designs, obtained by transistor-level
HSPICE simulations under the temperature of 65°C. The static
power of a CB or intra-cluster multiplexer owing X inputs
can be obtained by 110×X0.42 (in nW) which is obtained by
interpolating all multiplexers from 8 to 64 inputs. However,
SB multiplexer has larger sizing and consumes higher power,
so it is reported separately. Notice that, in the proposed RLU,
when a cell is active, static power of the other power gated
cells has been also considered.
Power of the cells is also reported in their power gated state.
When the proposed RLU is entirely power gated, it consumes
192nW , however, the 4-LUT dissipates 418nW in power
gated state due to its large input drivers and configuration
cells.

Dynamic Power: The dynamic power of the designs is
calculated assuming a switching input frequency of 100MHz
with switching probability α = 1. Later, we scale the dynamic
powers according to P ∝ α · f using actual activity and
frequency of each benchmark. Load capacitance of each design
has been set equal to input capacitance of subsequent module.
Thus, power of SB is considerably higher than equivalent
11-input multiplexer due to the larger transistors of the SB

TABLE III: Proposed and Baseline Cells Characteristics

Design Delay
(ps)

Static Power
ON state

(nW)

Static Power
OFF state

(nW)

Dynamic Power
(nW)

Config.
Cell

Area
(min width
transistors)

RHL1 78 406

192

242 5 72
RHL2 105 601 308 8 114
RHL3 98 801 386 8 120
3-LUT 123 746 1098 8 126
4-LUT 172 2388 418 1639 16 264
6-LUT 207 5769 845 3212 64 940

MUX - 110X0.42 - 174X0.22 [
√
X] + d X

[
√
X]
e 15X0.6

SB 49 429 - 767 7 71.5

9

TABLE IV: The proposed and baseline architectures parameters

Parameter PEAF 4-LUT
(Normal, PG)

6-LUT
(Normal, PG) [26]

N 10 10 10 10
K 4 4 6 4
I 25 25 36 25

Fcin 0.2 0.3 0.3 0.2
Fcout 0.1 0.2 0.2 0.1

Intra-cluter
multiplexer 16 16 16 16

Ffb 5/16 5/16 5/16 5/16
Fblb 0, 1/5, 1/9 0, 1/5, 1/9 0, 1/5, 1/9 0, 1/5, 1/9

TABLE V: Explanation of the architectural parameters

Parameter Definition
N Cluster (CLB) size
K LUT size
I Cluster inputs (from adjacent routing channels)

Fcin
CB connectivity factor

(determines number of channel tracks connected to each CB)

Fcout
Cluster output connectivity factor

(determines number of SBs a logic block output is connected to)
Intra-cluter

multiplexer (X) LUT input multiplexer size

Ffb
Cluster feedback factor

(determines no. of other logic blocks output in LUT input multiplexer)
Fblb Repetition factor of black-box modules
L Routing wire segment length
Fs Number of output branches of a routing wire, when it intersects an SB

(thereby larger parasitics capacitance) and the large wire
capacitance that it drives.

Area Model: The area of all designs are reported as
minimum width transistor model [23], formulated by Equation
5:

Area(x) = 0.447 + 0.128x+ 0.391
√
x (5)

in which x is the size (strength) of a single transistor. The area
of an SRAM cell is considered as 6.0.

2) General Setup: Similar to commercial FPGAs such as
Xilinx Virtex IV [37] and Altera Stratix II [38], we lever-
aged conventional island-style architecture supposed in VPR
tool. Architectural parameters of the baseline and proposed
architecture are summarized in Table IV. It should be noted
that heterogeneous black-box modules such as single/dual port
RAMs and multipliers in VTR benchmarks needs specifying
the repeat frequency of black-box columns (i.e., Fblb) in
the FPGA architecture. This ratio is different among varied
commercial FPGAs. By trying comprehensive examinations
over the VTR benchmarks, we realized that Fblb = 5 results
in the best area efficiency when there are large number of
such modules3. On the other hand, Fblb = 12 is optimum
when repetition frequency of black-boxes is low. Our results
is in concordance with [39] which suggests Fblb = 5 for area
efficiency. Since the contribution of this paper does not involve
hard-wired modules such as multipliers and RAMs, we do not
consider these modules in our area and power estimations.
However, since these modules are placed and routed in our
experiments, they will affect the placement and routing the
corresponding benchmarks, which has been considered in the
experiments.

3It means that, per every five CLB columns there is one black-box module
column.

B. Critical Path Delay

In order to compare the delay of PEAF and the baseline,
we implemented all the benchmarks using VPR with the delay
and architectural parameters reported in Table III and Table
IV. Fig. 7 compares the logic and routing delay of different
architectures in MCNC, IWLS, and VTR benchmarks4. Logic
and routing delays in this figure are separately normalized
to 4-LUT (with no power gate scheme). Compared with the
baseline 4-LUT architecture, PEAF reduces the logic delay
by 25.6%, 30.3%, and 4.6% in MCNC, IWLS, and VTR
benchmarks, respectively, which eventuates to average logic
delay reduction by 21.3%. Notice that, according to Table III,
the average delay of RLU (i.e., average delay of comprising
cells) is reduced by 41.3% with respect to 4-LUT delay. This
improvement, however, is diminished to 21.3% in the bench-
marks due to the impact of the intra-cluster multiplexer delay
(which is equal in all architectures). In addition, shrinking the
logic that cannot be implemented with a single RLU (detailed
in Section III-D) could increase the number of logic blocks
within circuit critical path.

Since our proposed RHLs do not support full input permu-
tation (only inputs of gates in the first-stage can be swapped),
PEAF imposes routing overhead. In addition, shrinking some
of the functions (as mentioned in the above paragraph) results
in more SBs for routing the nets, thereby higher routing
delay. Thus, routing delay is increased, as expected, by 8.3%,
14.8%, and 27.6% in MCNC, IWLS, and VTR benchmarks,
respectively. Altogether, taking into account both the logic
and routing delays, the total delay is improved by 1.8%, on
average, considering all benchmarks suites (8.2% improvement
is achieved if only MCNC and IWLS benchmarks are con-
sidered). As expected, [26] exhibits better performance with
respect to PEAF since it does not shrinks functions due to
employing 4-LUT within its so-called Mega Cell. Conversely,
FGPG 4-LUT architecture5 increases the logic and total delay
with respect to the baseline 4-LUT by 7.5% and 2.5%,

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

MCNC IWLS'05 VTR MCNC+IWLS'05+VTR

Fig. 7: Delay comparison of different architectures over
MCNC, IWLS’05, and VTR benchmark suites

4All experiments (delay, area, and power) have been performed for all
circuits of MCNC, IWLS’05, and VTR benchmark suites but for the sake of
brevity, we only report the detailed results for MCNC and the average results
of these three benchmark suites.

5In all of the figures, FGPG architectures are denoted by PG-4-LUT and
PG-6-LUT.

10

17.3 26

Fig. 8: Comparing the delay of different architectures in MCNC benchmarks (bottom and top half of each bar corresponds to
logic and routing delay, respectively.)

4-
L

U
T

PG
-4

-L
U

T
6-

L
U

T
PG

-6
-L

U
T

PE
A

F
[2

6]

4-
L

U
T

PG
-4

-L
U

T
6-

L
U

T
PG

-6
-L

U
T

PE
A

F
[2

6]

4-
L

U
T

PG
-4

-L
U

T
6-

L
U

T
PG

-6
-L

U
T

PE
A

F
[2

6]

4-
L

U
T

PG
-4

-L
U

T
6-

L
U

T
PG

-6
-L

U
T

PE
A

F
[2

6]

MCNC IWLS'05 VTR MCNC+IWLS'05+VTRMCNC IWLS'05 VTR MCNC+IWLS'05+VTR

Fig. 9: Comparing the static power of different architectures
over MCNC, IWLS’05, and VTR benchmark suites

respectively. This arises from delay overhead of employing
power gating6. It should be noted that 6-LUT inherently is the
most delay-efficient architecture with worst area [7]. Hence,
direct comparison of 6-LUT with less input architectures is
not fair. Therefore, we compare the holistic PDP parameter of
this architecture with the counterparts. Detail results of delays
for different architectures implementing MCNC benchmarks
are represented in Fig. 8.

C. Static Power

The static power of benchmarks is obtained by post-
processing the reports generated by VPR, e.g., array size and
channel width, and obtaining the number of CLBs, CBs (with
different sizes) and SBs7. Afterwards, the numbers reported in
Table III are used to estimate the static power of each architec-
ture. Fig. 9 represents the static power of different architectures
implementing various circuits. Detailed information of MCNC
benchmark suite is shown in Fig. 10. According to Fig.
9, PEAF reduces logic power in MCNC, IWLS, and VTR
benchmarks by 56.3%, 54.4%, and 59.1%, respectively, with
respect to 4-LUT architectures (56.6% on average considering
all benchmarks). This is mainly due to using small number of
SRAMs by exploiting LSS scheme and replacing the 4-LUT
with smaller 3-LUT. On the other hand, FGPG 4-LUT and the
previous work in [26] result in only 18.8% and 27.7% average
logic power saving. Therefore, PEAF increases the logic power
gating efficiency by approximately 3x and 2x compared as to
FGPG 4-LUT architecture and the work presented in [26].

6We set the power gating transistor size such that it yields the best PDP.
A 67.5X power gating transistor for the entire logic block imposes 7.5% delay
overhead but achieves minimum PDP.

7CB multiplexer size can be obtained by Fcin ×W .

As discussed in Section IV-B, PEAF may impose routing
overhead due to using more logic blocks. Our experiments
revealed that routing static power is increased by 7.6%,
7.8%, and 17.2% in MCNC, IWLS, and VTR benchmarks,
respectively. As a result, taking both logic power reduction and
routing power increase into account, PEAF improves the total
static power by 19.0%, 19.2%, and 20.0% in MCNC, IWLS,
and VTR benchmarks, respectively. This results in average
19.4% improvement over all benchmark suites. FGPG 4-LUT
architecture keeps the routing power intact, therefore, the total
average power improvement of this architecture is 10.1%,
taking both logic and routing static power into consideration.
Therefore, PEAF still increases the power gating efficiency as
2.4x with respect to FGPG.

D. Dynamic Power

As for the static power, dynamic power of different ar-
chitecture is estimated by post-processing the VPR reports
including number of CLBs and SBs, and number and size
of CBs. Afterwards, parameters in Table III are used to obtain
the dynamic power for each benchmark. Power numbers in
Table III have obtained for frequency of 100MHz with α = 1.
Thus, actual dynamic power of each benchmark is obtained
by Equation 6.

Pdyn = Pdyn,base ·
10−8

Ttotal
· α (6)

In this equation, Pdyn,base is dynamic power of the circuit
with base parameters, i.e., 100MHz frequency (10ns delay)
and activity factor equal to 1, Ttotal is circuit total delay, and
α is actual activity factor obtained by exploiting ACE tool. Fig.
13 reports the dynamic power of different architectures over
all benchmark suites. In addition to the activity factor obtained
by ACE which depends on activity of the primary inputs, we
report the dynamic power considering constant α = 0.125 for
all benchmarks. Detailed results of the dynamic power for the
MCNC benchmarks are reported in Fig. 11 and Fig. 12 for
α = 0.125 and for α reported by ACE tool, respectively.

Using the accurate activity factor reported by ACE, our
proposed architecture reduces dynamic power by 6.3%, 14.1%,
and 11.2% in MCNC, IWLS, and VTR benchmarks, respec-
tively (10.4%, on average). On the other hand, assuming a
constant α = 0.125 results in 7.3% average improvement in
dynamic power. Compared with 6-LUT architecture, PEAF
reduces the dynamic power by 39.7%. The substantially higher
dynamic power of 6-LUT architecture is mainly attributed to

11

26

Fig. 10: Static power comparison of different architectures in MCNC benchmarks (bottom and top half of each bar corresponds
to logic and routing power, respectively.)

26

Fig. 11: Comparing the dynamic power of different architectures in MCNC benchmarks assuming constant α = 0.125 (bottom
and top half of each bar corresponds to logic and routing power, respectively.)

4.6
26

4.6

Fig. 12: Comparing the dynamic power of different architectures in MCNC benchmarks, using the α reported by ACE (bottom
and top half of each bar corresponds to logic and routing power, respectively.)

AF from ACE 2.0AF = 0.125

MCNC IWLS'05 VTR MCNC+IWLS'05+VTR MCNC IWLS'05 VTR MCNC+IWLS'05+VTR

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

4
-L

U
T

6
-L

U
T

P
E

A
F

[2
6

]

Fig. 13: Dynamic power comparison of different architectures
over MCNC, IWLS’05, and VTR benchmark suites

the tree-structure of 6-LUT multiplexer with large buffers and
pass-gates having large parasitics capacitances. In addition,
PEAF improves the dynamic power by 9.9% with respect to
[26]. This improvement is due to exploiting 4-LUT in the logic
block of [26] that consumes large dynamic power compared
with our proposed RHLs.

E. Power-Delay Product

Fig. 14 compares the PDP of all architectures implementing
various benchmark suites. PDP is obtained by multiplying
the total delay in total power (static and dynamic) of each
benchmark. As compared to the baseline 4-LUT, PEAF im-
proves the PDP by 27.6%, 25.6%, and 12.0% for MCNC,
IWLS, and VTR benchmarks, respectively, resulting in average

MCNC IWLS'05 MCNC+IWLS'05+VTRVTR

[26]PG-4-LUT 6-LUT PG-6-LUT PEAF[26]

Fig. 14: PDP comparison of different architectures over
MCNC, IWLS’05, and VTR benchmark suites

of 21.7% over all benchmark circuits. Compared with [26],
our proposed architecture enhances the PDP by 10.6% and
12.4% in MCNC and IWLS benchmarks, respectively. In
the VTR benchmarks, however, [26] surpasses our proposed
architecture. Finally, while 6-LUT architecture improves both
the logic and routing delay (due to the intrinsic characteristics
of 6-LUT that uses less logic resources, thereby less routing
resources, as well), due to its substantial static/dynamic power
consumption, PEAF improves the PDP by 31.5% over 6-
LUT structure. Therefore, PEAF is a promising candidate for
state-of-the-art 6-LUT architectures wherein overall energy
consumption is an important factor.

12

[2
6]

[2
6]

[2
6]

[2
6]

[26][2
6]

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

6-
L

U
T

P
G

-6
-L

U
T

P
E

A
F

[2
6]

MCNC IWLS'05 VTR MCNC+IWLS'05+VTR

Fig. 15: Area comparison of different architectures over
MCNC, IWLS’05, and VTR benchmark suites

F. Area

Unlike Section IV-B in which direct results of the VPR
tool is reported as logic and routing delay of benchmarks, for
estimating the area we post-processed the logic and routing
information of the benchmarks (after place and route steps)
including number of SBs and CLBs, and number and size of
CBs using an in-house C script. It is because VPR follows
an older area modelling that does not well match for newer
technology sizes. It should be noted that VPR maps each
benchmark to minimum-size FPGA, and then iteratively finds
the minimum channel width necessary to route the design. In
addition, we have used COFFE for transistor sizing which
gives optimum sizing for given input technology file and
architectural parameters (such as L, W, etc.) which results
in different SB and CB transistor sizing with VPR defaults.
Fig. 15 compares the area of different FPGA architectures
for all the benchmark suites. Detailed information of MCNC
benchmark suite is shown in Fig. 16.

PEAF increases the logic area by 21.3% compared with
the baseline 4-LUT. Based on the parameters of Table III and
taking into account the area of flip-flop and output multiplexer
inside every logic block, the area of a logic block that consists
of the proposed RLU is only 11% larger than the baseline 4-
LUT based logic block. However, increasing the number of
logic blocks due to shrinking of some functions into two or
three logic blocks, the overall logic area overhead increases to
21.3%. Nonetheless, the previous work [26] increases the logic
area by 31.3%. The area saving of the proposed architecture is
achieved due to employing LSS scheme and exploiting small
3-LUT. Taking into account routing area increase of PEAF (by
16.5%) due to lacking input full permutation8 and shrinking
logic which demands further routing resources, the total area
of the proposed architecture has been increased by 18.9%
compared with 4-LUT. However, the area of PEAF is still
18.1% less than 6-LUT architecture. It is noteworthy that due
to using large power gating transistors, FGPG imposes 3%
area overhead per logic block, hence, its overall logic area
also increases by 3%.

8It should be noted that routing area of [26] is also increased due to the
same reason.

G. Commercial FPGAs

As mentioned in Section IV-F, VPR maps each benchmark
to minimum-size logic array and routing channel width. How-
ever, commercial FPGA devices have pre-determined (fixed)
number of logic and routing resources. To evaluate the ef-
ficiency of PEAF, we modified the VPR such that it maps
each benchmark to smallest Virtex II device. These devices
range from 8x8 to 104x112 array of CLBs with N = 8. The
other parameters, I, W, intra-cluster multiplexer size, Fcin, and
Fcout, are set to 20, 196, 14, 0.2, and 0.125, respectively, by
exploring the Virtex II architecture using Xilinx FPGA-Editor
and also from [40].

Fig. 17 compares the static power of PEAF with other ar-
chitectures. Logic static power has been significantly reduced
by 72.1%, 68.1%, and 74.8% in MCNC, IWLS, and VTR
benchmarks, respectively, compared to 4-LUT architecture.
This means an average of 72.6% static power reduction
considering all benchmarks, which is higher than the former
56.6% when VPR maps each benchmark to minimum possible
array. In overall, as demonstrated in Fig. 18, the PDP of PEAF
is reduced by 37.9%, 37.1%, and 35.4% in MCNC, IWLS,
and VTR benchmarks, respectively (36.9% on average, while
it was 21.7% for VPR default mapping).

H. Limitations and Summary

We encountered some limitations with VPR tool which we
believe resolving them could further enhance the delay and
area efficiency of the proposed architecture. First, VPR does
not support function-based permutation. For example, in a
function such as A(B + C + D), variables B, C, and D can
be permuted, which reclaims the pressure on routing network.
Notice that, based on our investigation, a significant portion of
PEAF’s routing area overhead (includes 10.5% of total 16.5%
routing overhead) arises from input non-permutablity (the
remaining 6% is due to routing cascaded logic). In addition,
in some of the benchmarks, VPR is unable to detect the
RHL-latch pairs (although we used its pack-pattern attribute
to resolve this issue). Thus, when a latch follows an RHL,
VPR separates them into two different logic blocks (one for
RHL and the other for the latch), which imposes both area
and delay overhead. This problem, however, does not occur

TABLE VI: Summary of the results across all benchmark suites.
All parameters are normalized to baseline 4-LUT architecture.

Parameter/Architecture PG 4-LUT 6-LUT PG 6-LUT [26] PEAF
Logic Delay 1.07 0.85 0.91 0.73 0.80
Routing Delay 1.00 0.88 0.88 1.06 1.17
Total Delay 1.03 0.86 0.87 0.89 0.98
Logic Static Power 0.81 1.64 1.25 0.72 0.43
Routing Static Power 1.00 0.96 0.96 1.05 1.11
Total Static Power 0.90 1.31 1.09 0.88 0.81
Logic Dynamic Power 1.00 1.92 1.92 0.73 0.64
Routing Dynamic Power 1.00 1.23 1.23 1.15 1.04
Total Dynamic Power 1.00 1.49 1.49 0.99 0.90
Logic Total Power 0.82 1.64 1.26 0.72 0.44
Routing Total Power 1.00 0.97 0.97 1.05 1.10
Total Power 0.90 1.31 1.11 0.88 0.81
Logic Area 1.02 1.85 1.87 1.31 1.21
Routing Area 1.00 1.20 1.20 1.11 1.17
Total Area 1.01 1.40 1.41 1.21 1.19
PDP 0.92 1.13 0.96 0.82 0.78

13

26

Fig. 16: Area comparison between the proposed and baseline architectures (bottom and top portions are logic and routing area,
respectively.)

MCNC IWLS'05 VTR MCNC+IWLS'05+VTR

4-
L

U
T

P
G

-4
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

P
E

A
F

[2
6]

4-
L

U
T

P
G

-4
-L

U
T

P
E

A
F

[2
6]

Fig. 17: Static power comparison of different architectures
with logic/routing resources similar to commercial FPGAs
over MCNC, IWLS’05, and VTR benchmark suites

MCNC MCNC+IWLS'05+VTRVTRIWLS'05

[26]4-LUT PG-4-LUT PEAF[26]

Fig. 18: PDP comparison of different architectures with
logic/routing resources similar to commercial FPGAs over
MCNC, IWLS’05, and VTR benchmark suites

for LUT-based architecture since VPR perfectly identifies the
LUT-latch pairs. It should also be noted that VPR could not
route LU32PEEng in VTR benchmarks after 20 days9. Thus,
we omitted this application from our evaluations. Summary of
the experiments results is presented in Table VI.

V. CONCLUSION

In this paper, we proposed a power-efficient architecture,
called PEAF, to reduce the power efficiency of SRAM-based
FPGAs while preserving the performance efficiency in dark
silicon era. PEAF comprises a set of RHLs, a 3-LUT, and
a reconfigurable power controller, called RPC. Three RHLs
are designed in such a way that together with a 3-LUT can
implement more than 95% of the functions. Furthermore, we
proposed a novel scheme to share intra logic block SRAMs to
alleviate the area overhead of the proposed architecture where

9Using Intel Xeon CPU E5-2690 v2 @ 3.00GHz workstation with 132GB
RAM.

we share eight SRAMs among RHLs/3-LUT within each logic
block. PEAF reduces both the static power of unused logic
as well as the used logic. The comparison of the proposed
architecture (PEAF) and the equivalent 4-LUT based FPGAs
demonstrates that total performance, static power, and the PDP
are improved by 1.8%, 24.5%, and 21.7% respectively with the
cost of 18.9% overhead in the total area.

REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 26, no. 2, pp. 203–215, 2007.

[2] B. Zahiri, “Structured asics: opportunities and challenges,” in Computer
Design, 2003. Proceedings. 21st International Conference on. IEEE,
2003, pp. 404–409.

[3] (2016 (accessed May 3, 2016)) Xilinx 7 series fpgas.
[Online]. Available: http://www.xilinx.com/publications/prod mktg/7-
Series-Product-Brief.pdf

[4] A. Amara, F. Amiel, and T. Ea, “Fpga vs. asic for low power applica-
tions,” Microelectronics Journal, vol. 37, no. 8, pp. 669–677, 2006.

[5] A. A. Bsoul and S. J. Wilton, “An fpga architecture supporting dy-
namically controlled power gating,” in Field-Programmable Technology
(FPT), 2010 International Conference on. IEEE, 2010, pp. 1–8.

[6] F. Firouzi, S. Kiamehr, and M. B. Tahoori, “Statistical analysis of bti in
the presence of process-induced voltage and temperature variations,” in
Design Automation Conference (ASP-DAC), 2013 18th Asia and South
Pacific. IEEE, 2013, pp. 594–600.

[7] E. Ahmed and J. Rose, “The effect of lut and cluster size on deep-
submicron fpga performance and density,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 12, no. 3, pp. 288–298,
2004.

[8] M. Klein, “Wp298: Power consumption at 40 and 45 nm,” 2009.
[9] R. Ahmed, S. J. Wilton, P. Hallschmid, and R. Klukas, “Hierarchical

dynamic power-gating in fpgas,” in Applied Reconfigurable Computing.
Springer, 2015, pp. 27–38.

[10] S. Ishihara, M. Hariyama, and M. Kameyama, “A low-power fpga based
on autonomous fine-grain power gating,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 19, no. 8, pp. 1394–1406,
2011.

[11] A. A. Bsoul and S. J. Wilton, “A configurable architecture to limit
wakeup current in dynamically-controlled power-gated fpgas,” in Pro-
ceedings of the ACM/SIGDA international symposium on Field Pro-
grammable Gate Arrays. ACM, 2012, pp. 245–254.

[12] I. Ahmadpour, B. Khaleghi, and H. Asadi, “An efficient reconfigurable
architecture by characterizing most frequent logic functions,” in Field
Programmable Logic and Applications (FPL), 2015 25th International
Conference on. IEEE, 2015, pp. 1–6.

[13] J. H. Anderson and Q. Wang, “Area-efficient fpga logic elements:
architecture and synthesis,” in Proceedings of the 16th Asia and South
Pacific Design Automation Conference. IEEE Press, 2011, pp. 369–375.

[14] P. Jamieson and J. Rose, “Enhancing the area-efficiency of fpgas with
hard circuits using shadow clusters,” in Field Programmable Technology,
2006. FPT 2006. IEEE International Conference on. IEEE, 2006, pp.
1–8.

[15] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P. Ienne, “Rethinking
fpgas: elude the flexibility excess of luts with and-inverter cones,”
in Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays. ACM, 2012, pp. 119–128.

14

[16] Y. Okamoto, Y. Ichinomiya, M. Amagasaki, M. Iida, and T. Sueyoshi,
“Cogre: A configuration memory reduced reconfigurable logic cell
architecture for area minimization,” in Field Programmable Logic and
Applications (FPL), 2010 20th International Conference on. IEEE,
2010, pp. 304–309.

[17] Y. Hu, S. Das, S. Trimberger, and L. He, “Design and synthesis of
programmable logic block with mixed lut and macrogate,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 28, no. 4, pp. 591–595, 2009.

[18] J. Cong, H. Huang, and X. Yuan, “Technology mapping and architecture
evalution for k/m-macrocell-based fpgas,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 10, no. 1, pp. 3–23,
2005.

[19] T. Luo, H. Liang, W. Zhang, B. He, and D. Maskell, “A hybrid logic
block architecture in fpga for holistic efficiency,” 2016.

[20] G. Asadi and M. B. Tahoori, “Soft error rate estimation and mitigation
for sram-based fpgas,” in Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays. ACM,
2005, pp. 149–160.

[21] A. Mishchenko et al., “ABC: A system for sequential synthesis and
verification,” URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[22] D. Chai and A. Kuehlmann, “Building a better boolean matcher and sym-
metry detector,” in Proceedings of the conference on Design, automation
and test in Europe: Proceedings. European Design and Automation
Association, 2006, pp. 1079–1084.

[23] C. Chiasson and V. Betz, “Coffe: Fully-automated transistor sizing for
fpgas,” in Field-Programmable Technology (FPT), 2013 International
Conference on. IEEE, 2013, pp. 34–41.

[24] J. Lamoureux and S. J. Wilton, “Activity estimation for field-
programmable gate arrays,” in Field Programmable Logic and Appli-
cations, 2006. FPL’06. International Conference on. IEEE, 2006, pp.
1–8.

[25] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “Vtr 7.0: Next generation
architecture and cad system for fpgas,” ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), vol. 7, no. 2, p. 6, 2014.

[26] A. Ahari, B. Khaleghi, Z. Ebrahimi, H. Asadi, and M. B. Tahoori,
“Towards dark silicon era in fpgas using complementary hard logic
design,” in Field Programmable Logic and Applications (FPL), 2014
24th International Conference on. IEEE, 2014, pp. 1–6.

[27] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. T. Kandemir, M. J. Irwin,
and T. Tua, “Reducing leakage energy in fpgas using region-constrained
placement,” in Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays. ACM, 2004, pp. 51–58.

[28] J. H. Anderson and F. N. Najm, “Low-power programmable fpga
routing circuitry,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 17, no. 8, pp. 1048–1060, 2009.

[29] A. A. Bsoul and S. J. Wilton, “An fpga with power-gated switch
blocks,” in Field-Programmable Technology (FPT), 2012 International
Conference on. IEEE, 2012, p. 8.

[30] S. Yazdanshenas and H. Asadi, “Fine-grained architecture in dark silicon
era for sram-based reconfigurable devices,” Circuits and Systems II:
Express Briefs, IEEE Transactions on, vol. 61, no. 10, pp. 798–802,
2014.

[31] Z. Seifoori, B. Khaleghi, and H. Asadi, “A Power Gating Switch Box
Architecture in Routing Network of SRAM-Based FPGAs in Dark
Silicon Era,” in Proceedings of the conference on Design, Automation &
Test in Europe. European Design and Automation Association, 2017.

[32] A. A. Bsoul, S. J. Wilton, K. H. Tsoi, and W. Luk, “An fpga architecture
and cad flow supporting dynamically controlled power gating,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 24,
no. 1, pp. 178–191, 2015.

[33] R. Ahmed, A. A. Bsoul, S. J. Wilton, P. Hallschmid, and R. Klukas,
“High-level synthesis-based design methodology for dynamic power-
gated fpgas,” in Field Programmable Logic and Applications (FPL),
2014 24th International Conference on. IEEE, 2014, pp. 1–4.

[34] A. Rahman, S. Das, T. Tuan, and S. Trimberger, “Determination of
power gating granularity for fpga fabric,” in Custom Integrated Circuits
Conference, 2006. CICC’06. IEEE. IEEE, 2006, pp. 9–12.

[35] (2013) Predictive Technology Model (PTM). [Online]. Available:
http://ptm.asu.edu/

[36] G. Lemieux and D. Lewis, “Using sparse crossbars within lut,” in
Proceedings of the 2001 ACM/SIGDA ninth international symposium
on Field programmable gate arrays. ACM, 2001, pp. 59–68.

[37] “Virtex-4 platform FPGA user guide,” User Guide, Xilinx, December
2008.

[38] “Stratix-2 platform FPGA hand book,” Hand Book, Altera, April 2011.

[39] E. Kadric, D. Lakata, and A. DeHon, “Impact of memory architecture
on fpga energy consumption,” in Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays. ACM,
2015, pp. 146–155.

[40] M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong, “Performance benefits of
monolithically stacked 3-d fpga,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 26, no. 2, pp. 216–229,
2007.

Zahra Ebrahimi received the B.Sc. degree in com-
puter engineering from Sharif University of Tech-
nology (SUT), Tehran, Iran, in 2014, wherein she is
currently pursuing the M.Sc. degree. She has been
with the Data Storage, Processing, and Networks
(DSN) Laboratory at the Department of Computer
Engineering, SUT, as a researach assistant for three
years. Her current research interests include recon-
figurable computing and computer-aided design.

Behnam Khaleghi has received his B.Sc. and M.Sc.
degrees in Computer Engineering from SUT, Tehran,
Iran, in 2013 and 2016, respectively. He is currently
working as a research assistant in the DSN Labo-
ratory at the Department of Computer Engineering,
SUT. He spent the summers 2014 and 2015 as a
visiting researcher at the Chair for Embedded Sys-
tems in the Karlsruhe Institute of Technology. His
research interests include reconfigurable computing,
CAD, and reliable system design. He has two best
paper nominations at the DAC’17 and DATE’17.

Hossein Asadi (M’08, SM’14) received the B.S.
and M.S. degrees in computer engineering from the
SUT, Tehran, Iran, in 2000 and 2002, respectively,
and the Ph.D. degree in electrical and computer
engineering from Northeastern University, Boston,
MA, USA, in 2007. He was with EMC Corporation,
Hopkinton, MA, USA, as a Research Scientist and
Senior Hardware Engineer, from 2006 to 2009. From
2002 to 2003, he was a member of the Dependable
Systems Laboratory, SUT, where he researched hard-
ware verification techniques. From 2001 to 2002, he

was a member of the Sharif Rescue Robots Group. He has been with the
Department of Computer Engineering, SUT, since 2009, where he is currently
a tenured Associate Professor. He is the Founder and Director of the DSN
Laboratory at SUT. He spent three months in the summer 2015 as a Visiting
Professor at the the School of Computer and Communication Sciences at the
Ecole Poly-technique Federele de Lausanne (EPFL). He has also co-founded
the first startup company in the Middle East, called HPDS, designing and
fabricating midrange and high-end data storage systems. He has authored
and co-authored more than sixty technical papers in reputed journals and
conference proceedings. His current research interests include data storage
systems and networks, solid-state drives, operating system support for I/O
and memory management, and reconfigurable and dependable computing. Dr.
Asadi was a recipient of the Technical Award for the Best Robot Design
from the International RoboCup Rescue Competition, organized by AAAI
and RoboCup, a recipient of Best Paper Award at the 15th CSI Internation
Symposium on Computer Architecture and Digital Systems (CADS), and the
Distinguished Lecturer Award from SUT in 2010, one of the most prestigious
awards in the university. He is also recipient of Extraordinary Ability in
Science visa from US Citizenship and Immigration Services in 2008. He
has also served as the publication chair of several national and international
conferences including CNDS2013, AISP2013, and CSSE2013 during the
past three years. Most recently, he has served as a Guest Editor of IEEE
Transactions on Computers and a Program Co-Chair of the 18th International
Symposium on Computer Architecture & Digital Systems (CADS2015).

