
1

An Efficient Hybrid I/O Caching Architecture
Using Heterogeneous SSDs

Reza Salkhordeh, Mostafa Hadizadeh, and Hossein Asadi

Abstract—Storage subsystem is considered as the performance bottleneck of computer systems in data-intensive applications.
Solid-State Drives (SSDs) are emerging storage devices which unlike Hard Disk Drives (HDDs), do not have mechanical parts and
therefore, have superior performance compared to HDDs. Due to the high cost of SSDs, entirely replacing HDDs with SSDs is not
economically justified. Additionally, SSDs can endure a limited number of writes before failing. To mitigate the shortcomings of SSDs
while taking advantage of their high performance, SSD caching is practiced in both academia and industry. Previously proposed
caching architectures have only focused on either performance or endurance and neglected to address both parameters in suggested
architectures. Moreover, the cost, reliability, and power consumption of such architectures is not evaluated. This paper proposes a hybrid
I/O caching architecture that while offers higher performance than previous studies, it also improves power consumption with a similar
budget. The proposed architecture uses DRAM, Read-Optimized SSD (RO-SSD), and Write-Optimized SSD (WO-SSD) in a three-level
cache hierarchy and tries to efficiently redirect read requests to either DRAM or RO-SSD while sending writes to WO-SSD. To provide
high reliability, dirty pages are written to at least two devices which removes any single point of failure. The power consumption is also
managed by reducing the number of accesses issued to SSDs. The proposed architecture reconfigures itself between performance-
and endurance-optimized policies based on the workload characteristics to maintain an effective tradeoff between performance and
endurance. We have implemented the proposed architecture on a server equipped with industrial SSDs and HDDs. The experimental
results show that as compared to state-of-the-art studies, the proposed architecture improves performance and power consumption
by an average of 8% and 28%, respectively, and reduces the cost by 5% while increasing the endurance cost by 4.7% and negligible
reliability penalty.

Index Terms—Solid-State Drives, I/O Caching, Performance, Data Storage Systems.

F

1 INTRODUCTION

Hard Disk Drives (HDDs) are traditional storage de-
vices that are commonly used in storage systems due
to their low cost and high capacity. The performance
gap between HDDs and other components of computer
systems has significantly increased in the recent years.
This is due to HDDs have mechanical parts which puts
an upper limit on their performance. To compensate
the low performance of HDDs, storage system designers
proposed several hybrid architectures consists of HDDs
and faster storage devices such as Solid-State Drives
(SSDs).

SSDs are non-mechanical storage devices that offer
higher performance in random workloads and asym-
metric read/write performance as compared to HDDs.
SSD manufacturers design and produce several types
of SSDs with different performance and cost levels to
match a wide range of user requirements. The relative
performance and costs of SSDs compared to HDDs and
Dynamic Random Access Memory (DRAM) is shown in Fig.
1. Due to the relatively very high price of SSDs, replacing
the entire disk array in data storage systems with SSDs

• Reza Salkhordeh, Mostafa Hadizadeh, and Hossein Asadi (corresponding
author) are with the Department of Computer Engineering,
Sharif University of Technology, Emails: salkhordeh@ce.sharif.edu,
mhadizadeh@ce.sharif.edu, and asadi@sharif.edu .

25x

1
5

0
x

40x

3
0

0
x

5
x

200x

Performance

C
o

st SSD

PCI-E SSD

Enterprise 

HDD

Consumer 

HDD

~3x cost

~10x performance

~1.5x cost

~4x performance

+

+

DRAM

Fig. 1: Storage Devices Characteristics

is not practical in Big Data era. In addition, SSDs have
restricted lifetime due to the limited number of reliable
writes which can be committed to SSDs. The power
outage can also cause data loss in SSDs as reported in
[1]. Although SSDs have such shortcomings, they have
received a significant attention from both academic and
industry and many architectures for I/O stack based on
SSDs have been proposed in recent years.

One promising application of SSDs emerged in recent
years is to alleviate low performance of HDDs with
minimal cost overhead by using SSDs as a caching
layer for HDD-based storage systems. The main focus of
previous studies in caching architecture is on improving



2

performance and/or endurance. Three main approaches
have been proposed in previous studies to this end: a)
prioritizing request types such as filesystem metadata,
random, and read requests, b) optimizing baseline al-
gorithms, and c) modifying the traditional single-level
cache. As shown in Fig. 1, caching architectures offer
various performance levels with significantly different
costs depending on their choice of SSDs. Previous stud-
ies neglected to consider the effect of choosing different
SSDs on the performance. Additionally, they are mostly
focused on the performance, while other major system
metrics such as power consumption, endurance, and
reliability also need to be considered in the caching
architectures. To our knowledge, none of previous stud-
ies considered all the mentioned parameters, simultane-
ously.

This paper proposes a Three-level I/O Cache Architec-
ture (TICA) which aims to improve the performance
and power consumption of SSD-based I/O caching
while having minimal impact on the endurance. TICA
employs Read-Optimized SSD (RO-SSD), Write-Optimized
SSD (WO-SSD), and DRAM as three levels of I/O cache.
Employing heterogeneous SSDs decreases the probabil-
ity of correlated failure of SSDs since such SSDs either
belong to different brands or have different internal data
structures/algorithms. To enhance the performance of
both read and write requests, TICA is configured in the
write-back mode such that it buffers the most frequent
read and write intensive data pages in DRAM to reduce
the number of writes committed to SSDs and to increase
their lifespan. In order to guarantee the reliability of
write requests, all write requests are committed to both
DRAM and WO-SSD before the write is acknowledged to
the user. Dirty data pages in DRAM are asynchronously
flushed to RO-SSD to free up allocated DRAM space for
future requests.

In order to efficiently optimize the proposed archi-
tecture for read- and write-intensive applications, we
offer two cache policies where evicted data pages from
DRAM can be either moved to SSDs or removed from
the cache. The first policy, called Write to Endurance
Disk (TICA-WED), improves performance since the next
access to the data page will be supplied by SSDs instead
of HDD. The shortcoming of TICA-WED is reducing
SSDs lifetime due to the extra writes for moving the data
page from DRAM to SSD. To alleviate such shortcoming,
the second policy, called Endurance Friendly (TICA-EF),
can be employed. In TICA-EF, performance is slightly
decreased while the lifetime of SSDs is significantly
extended. To select between TICA-WED and TICA-EF,
we propose a state-machine which analyzes the running
workload and dynamically selects the most effective
policy for TICA. With such data flow, TICA improves
performance and power consumption of I/O cache while
having negligible endurance overhead and no cost and
reliability impact.

To verify the efficiency of TICA, we have first extracted
I/O traces from a server equipped with two Intel Xeon,

32GB memory, and 2x SSD 512GB. I/O traces are ex-
tensively analyzed and characterized to help optimize
parameters of TICA towards higher performance. Exper-
imental setup consists of a rackmount server equipped
with a RO-SSD, a WO-SSD, and 128GB memory. The
benchmarking suites for experiments consist of over 15
traces from Microsoft research traces [2], HammerDB [3],
and FileBench [4]. Experimental results show that de-
spite reducing the cost by 5%, as compared to the state-
of-the-art architectures, TICA enhances performance and
power consumption, on average, by 8% (and up to 45%),
and by 28% (and up to 70%), respectively, while having
only 4.7% endurance overhead and negligible reliability
penalty.

To our knowledge, we make the following contribu-
tions:
• By carefully analyzing state-of-the-art SSDs avail-

able in the market and their characteristics, we select
two types of SSDs to design a low-cost hybrid
caching architecture capable of providing high per-
formance in both read- and write-intensive applica-
tions.

• We propose a three-level caching architecture, called
TICA, employing DRAM, RO-SSD, and WO-SSD to
improve performance and power consumption of
storage systems while having negligible endurance
penalty.

• TICA reduces the correlated failure rate of SSDs in
I/O caching architectures by using heterogeneous
SSDs while the performance is not limited by the
slower SSD, unlike traditional heterogeneous archi-
tectures.

• To balance performance and endurance, we propose
Endurance-Friendly (TICA-EF) and Write to Endurance
Disk (TICA-WED) policies for TICA, where the first
policy prioritizes endurance and the second policy
tries to further improve performance.

• We also propose a state-machine model to select
one of TICA-EF or TICA-WED policies based on the
workload characteristics. Such model can identify
the most effective policy for TICA with negligible
overhead while running I/O intensive applications.

• We have implemented TICA on a physical server
equipped with enterprise SSDs and HDDs and con-
ducted an extensive set of experiments to accurately
evaluate TICA, considering all optimization and
buffering in storage devices and Operating System
(OS).

The remainder of this paper is organized as follows.
Previous studies are discussed in Section 2. The moti-
vation for this work is presented in Section 3. Section 4
introduces the proposed caching architecture. In Section
5, the experimental setup and results are presented.
Finally, Sec. 6 concludes the paper.

2 PREVIOUS STUDIES
Previous studies in SSD-based I/O caching can be cat-
egorized into three groups: a) prioritizing various re-



3

quest types based on storage device characteristics, b)
optimizing baseline eviction and promotion policies, and
c) proposing multi-level caching architectures. The first
category tries to characterize performance of HDDs and
SSDs. Based on the characterization, request types which
have higher performance gap between HDDs and SSDs
are prioritized to be buffered. A comprehensive study
on the workload characteristics and request types is
conducted in [5]. The different response time of SSDs on
read and write requests is considered in [6] to prioritize
data pages. The locality of data pages is employed in
RPAC [7] to improve both performance and endurance
of caching architecture. ReCA [8] tries to characterize
several requests and workload types and selects suitable
data pages for caching. Filesystem metadata is one of the
primary request types which is shown to be very efficient
for caching [9], [10]. OODT [9] considers randomness
and frequency of accesses to prioritize the data pages.
To reduce the migrations between HDD and SSD, [11]
considers the dirty state of the data pages in memory
buffers. ECI-Cache [12] prioritizes data pages based on
the request type (read/write) in addition to the reuse
distance. The optimization of the previous studies in
this category is mostly orthogonal to TICA and can be
employed in the eviction/promotion policies of the SSDs
in TICA.

The studies in the second category try to optimize the
eviction policy of caching architectures. To prevent cache
pollution, Lazy Adaptive Replacement Cache (LARC) [13]
is suggested which promotes data pages to cache on the
second access to the data page. This technique, however,
cannot perform in a timely fashion when workload is not
stable. mARC [14] tries to select the more suitable option
from ARC and LARC based on the workload characteris-
tics. In [15], various management policies based on ARC
for DRAM-SSD caching architectures are compared. A
more general approach to prevent repetitive replacement
of data pages in SSDs is suggested in [16] which provides
buffered data pages a more chance to be accessed again
and therefore stay in the cache. S-RAC [17] characterizes
workloads into six groups. Based on the benefit of
buffering requests in each category, it decides which data
pages are best suited for caching. S-RAC tries to reduce
the number of writes in SSD to improve its lifetime with
minimal impact on the cache performance. H-ARC [18]
partitions the cache space into clean and dirty sections
where each section is maintained by ARC algorithm. D-
ARC [19] also tries to improve ARC by prioritizing the
data pages based on the clean/dirty state. Me-CLOCK
[20] tries to reduce the memory overhead of SSD caching
architectures by using bloom filter. RIPQ [21] suggests
a segmented-LRU caching algorithm, which aggregates
small random writes and also places user data with the
same priority close to each other. In WEC [22], write-
efficient data pages are kept in cache for longer periods
to reduce the writes due to the cache replacements. This
category of previous studies is also orthogonal to TICA
and such policies can be employed jointly with TICA to

further improve performance and/or endurance.
Among previous studies that try to enhance perfor-

mance of I/O caching by utilizing multi-level cache
hierarchies, LLAMA [23] employs a DRAM-SSD archi-
tecture for designing an Application Programming Inter-
face (API) suitable for database management systems.
FASC [24] suggests a DRAM-SSD buffer cache, which
tries to reduce the cost of evictions from buffer cache
as well as write overheads on the SSD. Employing
exclusive DRAM-SSD caching is investigated in [15]
which shows the impact of such technique on improving
SSD endurance. In [25], separate promotion/demotion
policies for DRAM/SSD cache levels are replaced with
a unified promotion/demotion policy to improve both
performance and endurance. uCache [26] also employs a
DRAM-SSD architecture and tries to reduce the number
of writes in the SSD due to the read misses. In case
of a power loss, all dirty data pages in DRAM will be
lost which significantly reduces the reliability of uCache.
Additionally, no redundant device is employed and
both DRAM and SSD are single points of failure. MDIS
[27] uses a combination of DRAM, SSD, and NVM to
improve performance of I/O caching. Although perfor-
mance and energy consumption are improved in MDIS,
the cost and reliability have not been taken into account.
Graphene [28] suggests a DRAM-SSD architecture to im-
prove performance of graph computing for large graphs.
SSD caching is also suggested in distributed and High
Performance Computing (HPC) environments [29], [30],
[31], [32], [33].

Optimizing SSDs for key-value store is discussed in
previous studies. DIDACache [34] allows the key-value
SSD cache to directly manage the internal SSD structure
to improve both performance and endurance. WiscKey
[35] separates key and value storage in SSD to improve
random lookups and database loading. Deduplication
and compression can also be employed to extend the
SSDs lifetime [36], [37], [38]. Modifying the existing inter-
face between OS and SSDs is also suggested in previous
studies to design efficient caching architectures [39], [40].
In [40], a new interface for SSDs is designed, which
does not allow overwriting of data pages, to reduce the
size of the required DRAM in SSD and also to improve
performance. F2FS [41] employs an append-only logging
approach to reduce the need for overwriting data pages
in SSDs. KAML [42] suggests a customized interface
for SSDs for storing and retrieval of key-value data.
FStream [43] employs streamID to hint Flash Translation
Layer (FTL) on lifetime of user data so that FTL places
the data pages with the same lifetime on a physical
block. Optimizing SSD caching architectures by leverag-
ing information from SSDs internal data structures such
as FTL is also suggested in previous studies [44], [45].
FLIN [46] provides a fair scheduler for SSDs servicing
multiple applications simultaneously. A scheduler to
maximize the efficiency of parallelism inside of the SSD
is also proposed in [47]. SHRD [48] tries to optimize the
physical placement of data pages in SSD to reduce the



4

TABLE 1: Power Consumption, Cost, Reliability, and
Endurance of Storage Devices in the Cache Architectures

Device MTTF (h) $/GB Writes/GB
Read/Write/Idle

Power (w)
DRAM 4M 7.875 ∞ 4/4/4
C-SSD 1.5M 0.375 750 3.3/3.4/0.07

RO-SSD 2M 0.74 1,171 3.3/3.4/0.07
WO-SSD 2M 0.842 6,416 2.4/3.1/1.3

FTL overheads on random write requests. AGCR [49]
characterizes the workload behavior and increases the
program time of read-intensive data pages in the flash
chips so that their read time can be decreased. Such
architectures require hardware modifications which is
not in the scope of this paper.

In general, one of the main shortcomings of previous
studies is neglecting to consider the difference between
various SSD brands and models in terms of cost and
read/write performance. Many types of SSDs are op-
timized towards read operations while others are opti-
mized to provide higher write performance. In addition,
the tradeoff between performance, power consumption,
endurance, reliability, and cost has not been considered
in previous works which is crucial for I/O caching
architectures.

3 MOTIVATION

In this section, we detail the three shortcomings of state-
of-the-art caching architectures which motivates us to
propose three-level caching architecture employing SSDs
in addition to DRAM. First, we show the diverse charac-
teristics of the SSDs in the market and the performance
impact of employing such SSDs as the caching layer
for HDDs. Second, we evaluate the write overhead of
caching read misses in SSDs. Finally, we investigate the
performance of mirrored heterogeneous SSDs employed
to overcome the correlated SSDs failure.

SSD manufacturers employ Single-Level Cell (SLC),
Multi-Level Cell (MLC), or Three-Level Cell (TLC) NAND
chips in their products. SLC SSDs have the highest
performance and endurance at the cost of more than 2x
of MLC SSDs. The read performance of MLC SSDs, how-
ever, is comparable to the SLC SSDs due to the nature of
the NAND flashes. Table 1 reports the performance and
endurance of several types of SSDs. Using high cost SSDs
is not economically justifiable in several workload types.
Fig. 2 shows the read and write IOPS per $ for various
SSDs. In read-intensive workloads employing RO-SSD
or Consumer-SSD (C-SSD) results in higher performance
per cost. RO- or C-SSDs, however, fail to provide high
performance per cost in write-intensive workloads. This
experiment reveals that high-cost and low-cost SSDs can
be efficient in different workload types and using only
one SSD type cannot provide suitable performance per
cost in all workload types.

In Write-Back (WB) cache policy which is commonly
practiced in previous studies, each read miss requires

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Read Write

IO
P

S
 p

e
r 

$

WO-SSD
RO-SSD

C-SSD

Fig. 2: Performance per Cost for various SSDs

 0

 0.5

 1

 1.5

 2

 2.5

 3

R
srch_0

Ts_0

U
sr_0

W
dev_0

Src1_2

Stg_1

TPC
C

W
ebserver

Postm
ark

M
SN

FS

Exchange

LiveM
apsB

E

D
evToolR

el

H
m

_1

M
ds_0

Prn_0

Prxy_0

A
verage

14.27 4.57

C
a
c
h

e
 W

ri
te

 
A

m
p

li
fi

c
a
ti

o
n

 F
a
c
to

r

Fig. 3: CWAF for various workloads

writing a data page to the SSD while all write requests
are directed to the SSD. Therefore, the total number of
writes in SSD will be higher than the number of write
requests in the workload. This will result in reduced
lifetime of SSDs employed as a WB cache. To evaluate the
amplification of writes in previous studies, we introduce
Cache Write Amplification Factor (CWAF) parameter which
is calculated based on Equation 1. Fig. 3 shows CWAF
parameter for various workloads. In Stg 1 and Webserver
workloads, CWAF is greater than 4.5 which shows the
importance of read misses on the SSDs lifetime. By
reducing the number of writes due to the read misses on
SSDs, we can significantly improve the SSD endurance.

CWAF =
Writesssd

Writesworkload
(1)

One of the reliability concerns of employing SSDs,
specially in Redundant Array of Independent Disks (RAID)
configurations is correlated failures due to the either
software or hardware defects [50]. Since SSDs in the
RAID configuration are identical and in mirrored RAID
configurations they receive the same accesses, any soft-
ware defect probably will trigger on both SSDs resulting
in data loss. Additionally, due to the same aging pattern
and lifetime, both SSDs are expected to fail in a close
time interval which also results in data loss. To mitigate
such problem and reduce the probability of double disk
failures, employing heterogeneous SSDs with different
internal algorithms and/or from different brands can be
practiced. Here, we investigate the effect of employing
such technique on various MLC-TLC SSD combinations.
Fig. 4 shows the normalized performance of various mir-
rored (RAID-1) configurations for heterogeneous SSDs
compared to the performance of homogeneous mirrored



5

 0

 2000

 4000

 6000

 8000

 10000

Write IOPS Read IOPS

IO
P

S
2xWO−SSD

WO−SSD/SSD−C

WO−SSD/RO−SSD

2xSSD−C

SSD−C/RO−SSD

2xRO−SSD

Fig. 4: Performance of Heterogeneous RAID Architec-
tures

SSDs. As can be seen in this figure, the performance is
limited by the slower SSD, specially in write requests
which results in overall lower performance per cost. For
instance, replacing a SSD in a mirrored WO-SSD with
a RO-SSD results in almost 5x performance degradation
in write requests. Write performance of two mirrored
RO-SSDs is equal to the performance of mirrored WO-
SSD and RO-SSD while the cost and power consumption
of the latter architecture is higher. In read requests, the
performance degradation of employing heterogeneous
architectures is lower compared to write requests since
the performance gap of different SSDs is smaller in read
requests. This experiment shows that there is a need for
heterogeneous SSD architectures with high performance
per cost to simultaneously improve both performance
and reliability.

4 PROPOSED ARCHITECTURE

An efficient I/O caching architecture should provide
high performance, endurance, and reliability with rea-
sonable cost overhead in order to be integrated in storage
and high-performance servers. Previous caching archi-
tectures have neglected to simultaneously consider such
important parameters of I/O caching and focused on
improving only one of the parameters without investigat-
ing the corresponding impact on the other parameters.
The proposed architecture is motivated by the lack of
a comprehensive caching architecture which is able to
mitigate the shortcomings of previous studies discussed
in Section 3.

For this purpose, we try to improve performance,
power consumption, and lifetime of I/O cache by using
a DRAM and high performance SSDs and reducing the
number of committed writes to SSDs. To address the
reliability concern, TICA is designed such that it does
not have any single point of failure and in addition,
a failure in any of the caching devices will not result
in data loss. This is while the cost overhead is kept as
small as possible compared to the traditional caching
architectures. TICA is also architected in such a way
that the optimizations proposed in previous studies for
increasing the cache hit ratio and prioritizing request
types can be directly integrated with TICA in order to
further improve performance and/or endurance.

Cache

WO-SSD

RO-SSDDRAM

Disk Subsystem

Block I/O Driver

Async. Write

Dirty 
Eviction

TRIM

Read Write

W
ri

te

W
ri

te

R
ea

d
 H

it
 R

ea
d

 M
is

s

Fig. 5: Proposed Architecture

4.1 High-Level Architecture
To design an efficient caching architecture, we leverage
the traditional cache architecture and use three differ-
ent storage devices for I/O caching. A DRAM module
alongside a RO-SSD and a WO-SSD form the three-
levels of the proposed architecture. In order to decrease
the probability of data loss, a small battery-backup unit
is added to DRAM which can sustain a cold system
reboot. Such heterogeneous architecture improves the
reliability by reducing the probability of double disk
failures due to the correlated failure between SSDs of
the same model. Fig. 5 depicts the proposed architecture
consists of three hardware modules. The data migration
inside the I/O cache or between the cache and the
main storage device is done using Direct-Memory Access
(DMA) unit to reduce the CPU overhead. Since a data
page might exist in more than one caching device at any
time, they are looked up based on the device priority
which are prioritized as DRAM, RO-SSD, and then WO-
SSD for read requests. TICA works in write-back mode
and as such, all write requests will be buffered. If the old
data page resides in any of the caching devices, it will be
invalidated. In addition to invalidation in mapping data
structures, a TRIM1 request is sent to SSDs to improve
its performance on write requests.

The proposed architecture also employs a DRAM in
addition to SSDs in the caching layers where it is parti-
tioned into read and asynchronous write cache sections.
The read cache partition is used for caching read miss
requests. The requested data page is moved to DRAM
using DMA and afterwards the data page will be copied
from DRAM cache to the destination memory address in
the user space. The user write requests arriving to the
cache will be redirected to both WO-SSD and DRAM
where they will be stored in the second partition of
DRAM. An asynchronous thread goes through the sec-
ond partition and sends the data pages to the RO-SSD
and removes them from DRAM. The size of partitions
is adjusted dynamically in the runtime based on the
percentage of the write requests arrived to DRAM.

To enhance the performance of the proposed archi-
tecture, RO-SSD and WO-SSD are configured in such a
way that they reside in the critical path of responding

1. Informs disk about data blocks which are no longer in use by OS.



6

 0

 0.5

 1

 1.5

 2

Read Hit Read Miss Write Eviction

N
o

rm
a
li
z
e
d

 L
a
te

n
c
y

RO-SSD

WO-SSD

Mixed

TICA

Fig. 6: Average Response Time of Cache Operations
Normalized to RO-SSD Read Latency

to those requests that can be handled more efficiently.
This way TICA can have optimal performance on both
read and write requests without having to use ultra
high-performance SSDs which significantly reduces the
total cost of I/O cache. In order to show the difference
between the proposed architecture and the traditional
RAID 1 configurations, the normalized average response
time under various cache operations is depicted in Fig.
6. All configurations use two SSDs where in the first
two configurations, SSDs in RAID 1 are the same and
in the third configuration (mixed) and TICA, one RO-
SSD and one WO-SSD are employed. In order to have
a fair comparison in Fig. 6, the DRAM module in the
proposed architecture is ignored in this experiment. As
shown in Fig. 6, TICA has near optimal performance on
every cache operation since the critical path of operations
and the optimal operation for each SSD is considered.

4.2 Detailed Algorithm
Algorithm 1 depicts the workflow of the proposed ar-
chitecture in case of a request arrival. If the request
is to write a data page and the data page exists in
the cache, it will be invalidated. Lines 5 through 8
check the DRAM write cache partition for free space.
If there is no space available, the size of the write cache
partition will be extended. The calculation for extending
the write cache size considers a baseline cache size called
defwritecachesize and if the current write cache size
is greater than this value, the write cache size will be
extended by smaller values. This technique prevents
write cache partition from over extending which will
reduce the number of read hits from DRAM. In addition
to DRAM, WO-SSD will be checked for free space and if
there is no space left, a victim data page will be selected
and discarded from both SSDs (lines 9 through 11). The
victim data page will be removed from RO-SSD since
leaving a dirty data page in RO-SSD has a risk of data
loss in case of failure of this SSD. After allocating a page
in both DRAM and WO-SSD, the write request will be
issued. The request for flushing from DRAM to RO-SSD
will be issued after completion of the user request.

If an incoming request is for reading a data page, the
caching devices will be searched based on their read
performance (DRAM, RO-SSD, and WO-SSD, in order).
If the request is served from DRAM, LRUDRAM will

Algorithm 1 Proposed Caching Algorithm
1: procedure ACCESS(Request)
2: capacityEstimator(Request)
3: if Request.iswrite then
4: IssueDiscards(Request.address)
5: if DRAMwritecache.isfull then
6: writecachesize← writecachesize+

2−(writecachesize−defwritecachesize)

7: DiscardfromDRAM(writecachesize)
8: waitforFreeup
9: if WOSSD.isfull then

10: FreeupWOSSD
11: FreeupROSSD
12: Issue writes to WOSSD and DRAM
13: Wait for issued writes
14: update LRUDRAM and LRUWOSSD

15: Issue async. write to ROSSD
16: else
17: if inDRAM(Request.address) then
18: ReadfromDRAM(Request.address)
19: Update LRUDRAM

20: else if InROSSD(Request.address) then
21: ReadfromROSSD(Request.address)
22: Update LRUROSSD

23: Update LRUWOSSD

24: else if InWOSSD(Request.address) then
25: ReadfromWOSSD(Request.address)
26: Update WOSSDLRU
27: else
28: if DRAMReadcache.isfull then
29: writecachesize ← max(defwritecachesize,

writecachesize− 2writecachesize−defwritecachesize)
30: DiscardfromDRAM(writecachesize)
31: if TICA is in WED mode then
32: Copy evicted page to WOSSD
33: Issue page fault for Request.address

be updated and if the request is hit in either of SSDs,
the LRU queue for both SSDs will be updated. If the
request is missed in the cache while DRAM read cache
is full and the DRAM write cache size is greater than
defwritecachesize, the DRAM write cache size will be
shrunk. In order to shrink the write cache, it is required
to wait for completion of one of the ongoing asyn-
chronous writes to RO-SSD; this will make the current
request being stalled. On the other hand, evicting a data
page from DRAM read cache imposes no I/O overhead.
Therefore, in the proposed architecture, a request is sent
to the disk for reading the data page and a watcher
thread waits for completion of one of the asynchronous
writes to RO-SSD. If one of the asynchronous writes is
finished before disk I/O, its place will be allocated for
the data page and if not, a data page will be evicted from
DRAM read cache in order to make the required space
available. TICA allocates a few data pages from DRAM
and SSDs for internal operations such as migrating data
pages. The default behavior of TICA is to discard the
evicted data page from DRAM which we call TICA-EF.
There is an alternative approach which copies the evicted
data page to WO-SSD which is called TICA-WED. TICA-
WED and the algorithm for selecting the TICA policy are
detailed next.

4.3 TICA-EF vs. TICA-WED

As mentioned earlier, the endurance of the SSD caching
architectures is penalized by the read misses. TICA-
EF eliminates the writes in the SSDs due to the read



7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

R
srch_0

Ts_0

U
sr_0

W
dev_0

Src1_2

Stg_1

TPC
C

W
ebserver

Postm
ark

M
SN

FS

Exchange

LiveM
apsB

E

D
evToolR

el

H
m

_1

M
ds_0

Prn_0

Prxy_0

A
verage

H
it

 R
a

ti
o

RAID1

TICA-EF

Fig. 7: TICA-EF Hit Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

R
srch_0

Ts_0

U
sr_0

W
dev_0

Src1_2

Stg_1

TPC
C

W
ebserver

Postm
ark

M
SN

FS

Exchange

LiveM
apsB

E

D
evToolR

el

H
m

_1

M
ds_0

Prn_0

Prxy_0

A
verage

N
u

m
b

e
r 

o
f 

S
S

D
 W

ri
te

s

RAID1-Cache TICA-EF TICA-WED

Fig. 8: Total Number of Writes Committed to SSDs

misses and therefore, is called Endurance-Friendly. Such
approach, however, imposes performance cost since the
data pages are evicted early from the cache and cache
hit ratio is decreased. Fig. 7 shows the evaluation of the
TICA-EF in terms of the cache hit ratio compared to the
baseline RAID-1 configuration. TICA-EF fails to provide
high performance in several workloads such as Usr 0,
Hm 1, and Wdev 0. Our investigation reveals that this is
due to the large working set size of the read-intensive
data pages. Such data pages can be only buffered in
DRAM and since DRAM has a small size, data pages are
evicted before re-referencing. Therefore, TICA-EF needs
to access HDD more often to bring back evicted data
pages to DRAM.

Copying the evicted data pages from DRAM to SSD
can improve performance at the cost of reducing en-
durance. To show the effect of such technique, we
propose TICA-WED which copies the data pages on
eviction from DRAM to WO-SSD. As mentioned in the
motivation section (Section 3), this will decrease the
endurance of SSDs. Fig. 8 shows the number of writes
committed to SSDs in TICA-WED compared to TICA-
EF. In read-intensive workloads with small working set
size, TICA-EF has close endurance efficiency to TICA-
WED. In other workloads, however, TICA-WED has
higher endurance efficiency. We can conclude here that
both TICA-EF and TICA-WED policies can provide a
suitable policy for a specific workload type and a general
approach is required to select one of these two policies
based on the workload characteristics.

4.4 Adaptive TICA

To select an effective policy for TICA, we have ana-
lyzed the performance of TICA-EF. The performance
behavior of TICA-EF in Wdev 0, Usr 0, Ts 0 and Rsrch 0
workloads reveals that there are two reasons for low

Algorithm 2 DRAM Low Capacity Identifier
1: windowSize← 2 ∗DRAMsize

2: requestCounter, EQHit,DRAMReadHit← 0
3: procedure CAPACITYESTIMATOR(request)
4: requestCounter ← requestCounter + 1
5: if request.isRead then
6: if Hit in DRAM then
7: DRAMReadHit← DRAMReadHit+ 1
8: else if Hit in EQ then
9: EQHit← EQHit+ 1

10: if requestCounter == windowSize then
11: if (EQHit+DRAMReadHit) > Tmax then
12: Switch to TICA-WED
13: else if EQHit > Tmin then
14: Switch to TICA-WED
15: else
16: Switch to TICA-EF
17: requestCounter, EQHit,DRAMReadHit← 0

performance of TICA-EF: 1) DRAM size is less than the
working set size, and 2) cold data pages are trapped in
SSDs. To mitigate the performance degradation of TICA-
EF, we propose TICA-Adaptive (TICA-A) which switches
the policy from TICA-EF to TICA-WED when one of
the two above conditions is detected. In this section, the
algorithms for identifying the mentioned two conditions
are detailed.

4.4.1 DRAM Low Capacity Identifier

Due to the small size of DRAM in TICA, the thrashing
problem [51] is likely to happen if the working set size
of the workload is larger than DRAM size. To identify
such condition, we keep a queue of evicted data pages
from DRAM, called Evicted Queue (EQ). Evicted data
pages from DRAM enter EQ if they are copied to the
DRAM due to a read miss. The hit ratio with and without
considering the EQ is calculated periodically and if their
difference is greater than a predefined threshold (Tmin),
TICA will switch to the TICA-WED policy. Employing
the threshold for minimum difference between hit ratios
prevents constantly switching between the two policies.

Since TICA-EF lowers the Total Cost of Ownership
(TCO) by extending the SSDs lifetime, we prefer it
over TICA-WED. Therefore, if TICA-EF has high hit
ratio, regardless of the hit ratio of EQ, we switch to
TICA-EF. The threshold (Tmax), however, should be set
conservatively to ensure negligible performance degra-
dation. Modifying the thresholds enables us to prefer
one of the two policies based on the I/O demand of
the storage system and/or the overall system status. For
instance, when most SSDs in the array are old, we would
prefer TICA-EF to prolong their lifetime and reduce the
probability of data loss. Algorithm 2 shows the flow
of identifying thrashing in DRAM. Switching between
the policies is conducted once the number of incoming
requests to the cache becomes twice the size of DRAM
memory. For each request, the counter for hits in DRAM
and EQ are updated in Lines 5 through 9. In Lines 11 to
17, the hit ratios are checked and TICA policy is changed
if required.



8

Initial State
--------------------
Use TICA-EF Policy

counter = steps

Wait State
--------------------
Use TICA-EF Policy
Counter=counter-1

Too many HDD Reads

High Read Hit

Too many HDD 
Reads and High 

Read Hit

Too many HDD Readscounter == 0 or 
High Read Hit

counter > 0

WED State
--------------------

Use TICA-WED Policy

counter = steps-1

Fig. 9: State Machine for Preventing Cold Data Trapped
in SSD

4.4.2 Preventing Cold Data Trapped in SSDs

In TICA-EF, only write accesses are redirected to SSDs
and all read accesses are supplied by either DRAM
or HDD. Therefore, in read-intensive workloads, SSDs
become idle and previously hot data pages which are
now cold reside in SSDs without any means to evict
such data pages. To prevent such problem, we propose
a State Machine Based Insertion (SMBI) to conservatively
switch from TICA-EF to TICA-WED in order to replace
the cold data pages in SSDs. The simplified model of
SMBI is shown in Fig. 9. We identify two conditions
1) too many HDD reads and 2) high hit ratio. When
both conditions are met in the workload, TICA switches
to TICA-WED until one of the conditions is no longer
valid. Too many HDD reads shows that the read working
set size is larger than DRAM size. In such condition,
we allow evicted data pages from DRAM to enter WO-
SSD to increase its hit ratio and reduce the number of
HDD reads. We cannot rely solely on the number of
HDD reads for switching to WED since in workloads
with low locality, the number of HDD reads is also
high and copying the evicted data pages from DRAM
to WO-SSD will only impose endurance cost without
any performance improvement. Therefore, SMBI stays
in the WED state as long as both number of HDD reads
and hit ratio are high. Having high hit ratio and low
number of HDD reads shows that the working set size
is smaller than DRAM size and SMBI switches back to
the EF policy.

If the hit ratio is decreased while the number of HDD
reads is still high, SMBI enters a waiting state which pre-
vents re-entering WED mode in the next few windows.
This state prevents constantly switching between the two
policies. Algorithm 3 shows the detailed flow of SMBI.
Line 13 switches the policy to TICA-WED if the number
of HDD read requests in the current window is greater
than the Thdd threshold. In lines 18 through 28, SMBI
checks both conditions and if one of them is no longer
valid, it switches back to TICA-EF policy.

Algorithm 3 State Machine Based Insertion
1: counter ← steps
2: currentState← initialState, nextState← initialState
3: diskRead, readHit, requestCounter ← 0
4: procedure SMBI(request)
5: requestCounter ← requestCounter + 1
6: if request.isRead then
7: if Hit in cache then
8: readHit← readHit+ 1
9: else

10: diskRead← diskRead+ 1

11: if requestCounter == sampleSize then
12: if currentState == initialState then
13: if diskRead > Thdd then
14: Switch to TICA-WED policy
15: counter ← steps− 1
16: currentState← WEDState
17: else if currentState == WEDState then
18: if diskRead > Thdd then
19: if readHit > Tread then
20: Switch to TICA-WED policy
21: currentState← WEDState
22: else
23: Switch to TICA-EF policy
24: currentState← waitState
25: else if readHit > Tread then
26: Switch to TICA-EF policy
27: counter ← steps
28: currentState← initialState
29: else if currentState == waitState then
30: if (counter == 0 or readHit) > Tread then
31: Switch to TICA-EF policy
32: counter ← steps
33: currentState← initialState
34: else
35: counter ← counter − 1

RO-SSD WO-SSD
12 Gbps

12
 G

b
p

s

12
 G

b
p

s

DRAM

RAID Controller

SAS Expander

PCI-E 8x

Fig. 10: Hardware Architecture of Experimental Setup

5 EXPERIMENTAL RESULTS

In this section, the performance, power consumption,
endurance, and reliability of the proposed architecture
is evaluated. We compare TICA with a state-of-the-
art multi-level caching architecture (uCache [26]) and
a state-of-the-art SSD caching architecture (S-RAC [17]).
In order to have a fair comparison, uCache is modified
and all single points of failure are removed to improve
its reliability. Support for RAID1 SSDs is also added
to uCache. Since S-RAC is a single-level cache archi-
tecture, a first level DRAM cache is added so that all
three examined architectures benefit from both DRAM
and SSD. To show the effect of different TICA policies,
in addition to TICA-A, both TICA-EF and TICA-WED
are also evaluated. The detailed characteristics of the
workloads are reported in Table 2.



9

 0.6

 0.7

 0.8

 0.9

 1

 1.1

R
srch_0

Ts_0

U
sr_0

W
dev_0

Src1_2

Stg_1

TPC
C

W
ebserver

Postm
ark

M
SN

FS

Exchange

LiveM
apsB

E

D
evToolR

el

H
m

_1

M
ds_0

Prn_0

Prxy_0

A
verage

2.91 1.3 3.15 1.25

N
o

rm
a

li
z
e

d
 R

e
s

p
o

n
s

e
 T

im
e TICA-EF TICA-WED uCache S-RAC TICA-A

Fig. 11: Normalized Response Time: TICA vs. Conventional Caching Architectures

5.1 Experimental Setup

To conduct the experiments, we employed a rackmount
server equipped with Intel Xeon, 128GB memory, and
a SSD for the operating system to reduce the effect of
the operating system and the other running applications
on the obtained results. Fig. 10 shows the actual server
running experiments and the interfaces between I/O
cache layers. SAS expander is capable of supporting both
SATA and SAS disk drivers. RAID controller is configured
in Just a Bunch Of Disks (JBOD) mode where disks are di-
rectly provided to the OS without any processing by the
controller. Employing SAS expander and RAID controller
enables us to run experiments on various SATA/SAS
SSDs without need for disk replacement or server reboot.

WO- and RO-SSDs are selected from enterprise-grade
SSDs employed in the datacenters. We warm up SSDs
before each experiment by issuing requests until the
SSD reaches a stable latency. The traces are replayed
on the devices using our in-house trace player which
is validated by blktrace [52] tool. The requests sent
to the disk by our trace player are compared to the
original trace file to ensure it has the expected behavior.
The characteristics of DRAM and SSDs employed in
the experimental results is reported in Table 1. In the
experiments, size of SSDs and DRAM is set to 10% and
1% of the working set size, respectively. The value of
Tmin, Tmax, Thdd, and Tread are set to 0.15, 0.25, 0.2, and
0.2, respectively.

5.2 Performance

Fig. 11 shows the normalized response time of TICA
compared to uCache and S-RAC, all normalized to
uCache. TICA-WED which is optimized toward higher
performance, reduces the response time by 12% on aver-
age compared to uCache and S-RAC. The highest perfor-
mance improvement of TICA belongs to Ts 0 workload
with 45% reduction in response time (compared to S-
RAC). Although TICA-WED and TICA-EF differ in read
miss policy and Ts 0 is a write-dominant workload (80%
write requests), TICA-WED still performs better than
TICA-EF with 42% less response time. This shows the
significant impact of writing read misses on the SSDs
and therefore, forcing the dirty data pages to be evicted

TABLE 2: Workload Characteristics

Workload
Total

Requests Size Read Requests Writes Requests
TPCC 43.932 GB 1,352,983 (70%) 581,112 (30%)
Webserver 7.607 GB 418,951 (61%) 270,569 (39%)
DevToolRel 3.133 GB 108,507 (68%) 52,032 (32%)
LiveMapsBE 15.646 GB 294,493 (71%) 115,862 (28%)
MSNFS 10.251 GB 644,573 (65%) 349,485 (35%)
Exchange 9.795 GB 158,011 (24%) 502,716 (76%)
Postmark 19.437 GB 1,272,148 (29%) 3,172,014 (71%)
Stg 1 91.815 GB 1,400,409 (64%) 796,452 (36%)
Rsrch 0 13.11 GB 133,625 (9%) 1,300,030 (91%)
Src1 2 1.65 TB 21,112,615 (57%) 16,302,998 (43%)
Wdev 0 10.628 GB 229,529 (20%) 913,732 (80%)
Ts 0 16.612 GB 316,692 (18%) 1,485,042 (82%)
Usr 0 51.945 GB 904,483 (40%) 1,333,406 (60%)
Hm 1 9.45 GB 580,896 (94%) 28,415 (6%)
Mds 0 11.4 GB 143,973 (31%) 1,067,061 (69%)
Prn 0 63.44 GB 602,480 (22%) 4,983,406 (78%)
Prxy 0 61.03 GB 383,524 (5%) 12,135,444 (95%)

from cache. TICA-WED also improves performance in
read-dominant workloads such as TPCC by copying the
evicted data pages from DRAM to WO-SSD.

TICA-EF, optimized toward better endurance, outper-
forms TICA-WED in few workloads such as Webserver
and Exchange. Our investigation reveals that this is due
to a) the limited space of SSDs and b) forcing the eviction
of dirty data pages from SSD which is conducted ag-
gressively in TICA-WED. In Webserver workload, TICA-
A also identifies such problem and manages copying
evicted data pages from DRAM to WO-SSD. Therefore, it
has better performance-efficiency in Webserver workload
compared to both TICA-EF and TICA-WED policies. By
managing the evicted data pages from DRAM, TICA-A
improves performance compared to previous studies by
up to 45% and 8% on average. We can conclude here
that TICA-A is performance-efficient in both read- and
write-intensive workloads by managing the evicted data
pages from DRAM.

5.3 Power Consumption

To evaluate the power consumption of TICA, we es-
timate the total consumed energy for workloads. In
addition to the read and write requests, idle power
consumption of the devices is also considered in the
energy consumption to further increase its accuracy. The
read and write operations for background tasks such as



10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

R
srch_0

Ts_0

U
sr_0

W
dev_0

Src1_2

Stg_1

TPC
C

W
ebserver

Postm
ark

M
SN

FS

Exchange

LiveM
apsB

E

D
evToolR

el

H
m

_1

M
ds_0

Prn_0

Prxy_0

A
verage

2.35 1.3 2.71

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

TICA-EF TICA-WED uCache S-RAC TICA-A

Fig. 12: Normalized Power Consumption: TICA vs. Conventional Caching Architectures

TABLE 3: Parameters Description
Parameter Description
Readwo WO-SSD Total Read Requests
Writewo WO-SSD Total Write Requests
Readro RO-SSD Total Read Requests
Writero RO-SSD Total Write Requests
ReadD DRAM Total Read Requests
WriteD DRAM Total Write Requests
RLatwo WO-SSD Read Latency
WLatwo WO-SSD Write Latency
RLatro RO-SSD Read Latency
WLatro RO-SSD Write Latency
Latwo DRAM Latency
RPwo WO-SSD Read Power
WPwo WO-SSD Write Power
RPro RO-SSD Read Power
WPro RO-SSD Write Power
PD DRAM Power
IPwo WO-SSD Idle Power
IPro RO-SSD Idle Power
IPD DRAM Idle Power
Idlewo Total WO-SSD Idle Time
Idlero Total RO-SSD Idle Time
IdleD Total DRAM Idle Time
RDevice Device Reliability
UDevice Device Unreliability

MTTFDevice Device Mean Time To Failure

copying the dirty data pages from DRAM to RO-SSD and
flushing such data pages from RO-SSD to disk are also
included in the energy consumption formula. Equation
2 shows the formula for estimating the total energy
consumption. All parameters are detailed in Table 3.

Energy =

Readwo∑
(RLatwo ∗ RPwo) +

Writewo∑
(WLatwo ∗WPwo)+

(Idlewo ∗ IPwo) +

Readro∑
(RLatro ∗ RPro)+

Writero∑
(WLatro ∗WPro) + (Idlero ∗ IPro)+

(ReadD+WriteD)∑
(LatD ∗ PD) + (IdleD ∗ IPro) (2)

TICA improves the power consumption by a) employ-
ing power-efficient SSDs while maintaining the perfor-
mance and b) reducing the number of accesses to the
SSDs. Previous studies employ two identical SSDs in a
mirrored RAID configuration to provide high reliability
while as discussed in Section 3, heterogeneous SSDs
are not performance-efficient in traditional mirrored
RAID configurations. As such, state-of-the-art architec-

tures such as uCache and S-RAC need to employ two
WO-SSDs, which have high power consumption. TICA
on the other hand, employs a WO-SSD and a RO-SSD in
its architectures which results in lower power consump-
tion compared to using two WO-SSDs. Additionally, by
reducing the response time of the requests, SSDs more
often enter idle state and therefore, the total power
consumption is decreased. Fig. 12 shows the normalized
consumed energy of TICA compared to uCache and S-
RAC, normalized to uCache. In all workloads, TICA
policies improve power consumption which shows the
effectiveness of replacing a WO-SSD with a RO-SSD. The
only exceptions are Usr 0 and Hm 1 workloads where
TICA-EF has 2.35x and 2.71x higher power consumption
compared to uCache, respectively. This is due to the high
response time of the requests in this workload, which
prevents SSDs from entering the idle state. TICA-A
improves power consumption by an average of 28% and
the maximum improvement in the power consumption
(70%) belongs to Ts 0 workload in comparison with S-
RAC.

5.4 Endurance

TICA-WED redirects all evicted data pages from DRAM
to WO-SSD and therefore, significantly increases the
number of writes in SSDs. TICA-EF on the other hand,
does not copy such data pages to SSDs to preserve their
lifetime. Fig. 13 shows the normalized number of writes
in the SSDs compared to uCache and S-RAC, normalized
to uCache. uCache, S-RAC, and TICA-EF have almost
the same number of writes in SSDs since they limit
writes in the SSDs. TICA-EF improves SSDs lifetime by
an average of 1.3% compared to uCache and S-RAC.

TICA-WED places all evicted data pages from DRAM
in SSD and therefore, increases the number of writes in
SSDs. For instance, in Stg 1 workload, TICA-WED re-
duces the SSDs lifetime by more than 7x. TICA-A which
tries to balance the performance and endurance has only
4.7% on average lifetime overhead compared to uCache
and S-RAC. Since TICA employs an unbalanced writing
scheme between WO-SSD and RO-SSD, the lifetime of
the RO-SSD is not affected by the increase in the number
of writes. Note that TICA-A still improves the SSDs



11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

R
srch_0

Ts_0

U
sr_0

W
dev_0

Src1_2

Stg_1

TPC
C

W
ebserver

Postm
ark

M
SN

FS

Exchange

LiveM
apsB

E

D
evToolR

el

H
m

_1

M
ds_0

Prn_0

Prxy_0

A
verage

1.9

7.62 2.18 1.69 1.64 1.78

N
o

rm
a
li
z
e
d

 S
S

D
 W

ri
te

s
TICA-EF TICA-WED uCache S-RAC TICA-A

Fig. 13: Normalized Number of Writes Committed to SSDs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

R
srch_0

Ts_0

U
sr_0

W
dev_0

Src1_2

Stg_1

TPC
C

W
ebserver

Postm
ark

M
SN

FS

Exchange

LiveM
apsB

E

D
evToolR

el

H
m

_1

M
ds_0

Prn_0

Prxy_0

A
verage

1.46

N
o

rm
a
li
z
e
d

 H
it

 R
a
ti

o

TICA-EF TICA-WED uCache S-RAC TICA-A

Fig. 14: Hit Ratio of Caching Architectures

lifetime by an average of 38% compared to the single-
level SSD architectures (not shown in Fig. 13).

5.5 Hit Ratio

TICA, uCache, and S-RAC do not comply with a simple
LRU algorithm (there is not a global LRU queue for
all data pages). Hence, the hit ratio of such multi-level
caching architectures needs to be evaluated. Although
the performance of such architectures is already investi-
gated in Section 5.2, the hit ratio evaluation enables us to
predict the performance in other hardware setups such
as using RAID or Storage Area Network (SAN) storages
as the backend of the caching architecture.

Fig. 14 shows the normalized hit ratio of TICA-EF,
TICA-WED, TICA-A, and S-RAC compared to uCache.
TICA-WED which is optimized toward performance, has
the highest average hit ratio. TICA-A improves hit ratio
compared to uCache and S-RAC in all workloads by
an average of 6.4%. The highest improvement belongs
to DevToolRel workload where TICA-WED and TICA-
A improve hit ratio by 46% and 39%, respectively. S-
RAC, however, has comparable hit ratio with TICA in
this workload. This is due to the ghost queue employed
in S-RAC to identify requests with higher benefit for
caching. Due to the DRAM eviction policy of TICA-EF, it
has lower hit ratio compared to uCache and other TICA
policies. The hit ratio degradation of TICA-EF, however,
is negligible in most workloads.

5.6 Reliability

uCache and S-RAC employ two WO-SSDs while TICA
uses a WO-SSD alongside a RO-SSD in its architecture.
Both uCache and S-RAC will fail only when both WO-
SSDs are failed. There are two conditions which can
result in failure of TICA: a) failure of WO-SSD and
RO-SSD, and b) failure of WO-SSD and DRAM. Since
RO-SSD has lower Mean Time To Failure (MTTF) [53]
compared to WO-SSD, TICA might reduce the overall
reliability of the system. DRAM, on the other hand,
has higher MTTF compared to WO-SSD. Therefore, the
actual reliability of TICA depends on the duration of
keeping dirty data pages in DRAM and RO-SSD.

The reliability of caching architectures is calculated
based on Reliability Block Diagram (RBD) [54]. To calculate
the system reliability, RBD uses 1) the reliability of
system components (storage devices in our use-case) and
2) the dependency of system failure to the failure of com-
ponents. The reliability of storage devices is computed
based on MTTF [53]. This is done via considering the
exponential distribution for faults in SSDs, which is for-
mulated in Equation 3. The MTTF value for storage de-
vices is extracted from their datasheets. Although other
distributions such as Weibull might be more suitable,
they require additional parameters to MTTF to model
reliability. Field studies in SSD failure models do not
disclose the brands of SSDs [50], [55], [56], and therefore,
we cannot use such models. If such field studies become
available, we can employ a more accurate MTTF for



12

devices in the exponential distribution. This can be done
by estimating the real MTTF of the device, based on
the Cumulative Distribution Function (CDF) of Weibull
distribution, as discussed in [57]. The description of
parameters in Equation 3 is available in Table 3. Equation
4 and Equation 5 show the formula for calculating the
reliability of TICA and uCache, respectively. Note that
the reliability of S-RAC is calculated using the same
formula as uCache. The α variable denotes the weight
of each failure scenario. In the traditional RAID archi-
tectures, α is equal to one. In TICA, α depends on the
running workload and number of write requests. Since
TICA employs a RO-SSD instead of WO-SSD, compared
to uCache and S-RAC, it is expected that TICA slightly
reduces the reliability. Considering 0.8 as the value of α,
which is close to the actual value of α in our experiments,
TICA will have unreliability of 1.27 ∗ 10−5 while unre-
liability of uCache and S-RAC is 1.14 ∗ 10−5. Note that
the cost of hardware in TICA is lower than uCache and
TICA will have the same reliability compared to uCache
if the same hardware is employed for both architectures.

RDevice =e
− 1

MTTFDevice∗365∗24 (3)

RTICA =α ∗ (1− (1− RWO-SSD) ∗ (1− RD))+

(1− α) ∗ (1− (1− RWO-SSD) ∗ (1− RRO-SSD)) (4)

RuCache =1− (1− RWO-SSD) ∗ (1− RWO-SSD) (5)

5.7 Overall
We can conclude that the experimental results with
following observations: 1) TICA improves performance
and hit ratio compared to previous state-of-the-art ar-
chitectures. 2) The power consumption is also improved
in TICA by reducing the number of accesses to the
SSDs. 3) Lifetime of SSDs is extended in TICA com-
pared to single-level SSD caching architectures while
the lifetime is negligibly reduced compared to uCache
and S-RAC. 4) The reliability of TICA is the same as
previous studies when the same hardware is employed.
Reducing the total cost in TICA can result in slightly
less reliability. Fig 15 shows the overall comparison of
TICA policies with uCache and S-RAC. All parameters
are normalized to the highest value where higher values
are better in all parameters. Fig. 16 also shows the overall
benefit of caching architectures. Benefit is computed by
multiplying normalized performance, endurance, cost,
and power consumption. uCache and S-RAC, which
focus on optimizing only one parameter have lower
benefit compared to TICA variants. TICA-A provides
the highest benefit since it considers all mentioned pa-
rameters in designing caching architecture and balances
the performance and endurance, based on the workload
characteristics.

6 CONCLUSION

In this paper, we demonstrated that simultaneously em-
ploying different SSDs in traditional architectures is not

0.7

0.75

0.8

0.85

0.9

0.95

1
Performance

Endurance

Reliability
Energy

Efficiency

GB/$

TICA - WED

Adaptive TICA

uCache

TICA-EF

S-RAC

Fig. 15: Overall Comparison of Caching Architectures
(Higher values are better)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

TICA−EF TICA−WED uCache S−RAC TICA−A

N
o

r
m

a
li

z
e

d
 B

e
n

e
fi

t

Fig. 16: Normalized Benefit of Various Caching Architec-
tures

performance-efficient. In addition, state-of-the-art archi-
tectures neglected to consider all aspects of the caching
architectures. To mitigate such problems, we proposed a
three-level caching architecture, called TICA, which by
employing RO-SSD and WO-SSD tries to reduce the cost
and improve the performance and power consumption.
TICA does not have any single point of failure offering
high reliable I/O cache architecture. This is while the
endurance cost of the proposed architecture is only
4.7% higher than state-of-the-art caching architectures.
Additionally, the hardware cost of TICA is 5% less than
conventional architectures. The SSDs lifetime is extended
by up to 38% compared to single-level SSD caching ar-
chitectures. The experimental results demonstrated that
our architecture can improve performance and power
consumption compared to previous studies, by up to 8%
and 28%, respectively.

ACKNOWLEDGMENTS

This work has been partially supported by Iran National
Science Foundation (INSF) under grant number 96006071
and by HPDS Corp.

REFERENCES
[1] S. Ahmadian, F. Taheri, M. Lotfi, M. Karimi, and H. Asadi,

“Investigating power outage effects on reliability of solid-state
drives,” in to appear in Design, Automation Test in Europe Conference
Exhibition (DATE), March 2018.

[2] Storage Networking Industry Association, “Microsoft enterprise
traces,” http://iotta.snia.org/traces/130, accessed: 2015-08-10.



13

[3] S. Shaw, HammerDB: the open source oracle load test
tool, 2012, accessed: 2017-08-10. [Online]. Available:
http://www.hammerdb.com/

[4] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible frame-
work for file system benchmarking,” USENIX; login, vol. 41, 2016.

[5] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-
Azad, “A hybrid non-volatile cache design for solid-state drives
using comprehensive I/O characterization,” IEEE Transactions on
Computers (TC), vol. 65, no. 6, pp. 1678–1691, 2016.

[6] X. Wu and A. L. N. Reddy, “Managing storage space in a flash
and disk hybrid storage system,” in IEEE International Symposium
on Modeling, Analysis Simulation of Computer and Telecommunication
Systems (MASCOTS), Sept 2009, pp. 1–4.

[7] F. Ye, J. Chen, X. Fang, J. Li, and D. Feng, “A regional popularity-
aware cache replacement algorithm to improve the performance
and lifetime of SSD-based disk cache,” in IEEE International
Conference on Networking, Architecture and Storage (NAS), Aug 2015,
pp. 45–53.

[8] R. Salkhordeh, S. Ebrahimi, and H. Asadi, “ReCA: an efficient
reconfigurable cache architecture for storage systems with online
workload characterization,” IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), vol. PP, no. 99, pp. 1–1, 2018.

[9] R. Salkhordeh, H. Asadi, and S. Ebrahimi, “Operating system
level data tiering using online workload characterization,” The
Journal of Supercomputing, vol. 71, no. 4, pp. 1534–1562, 2015.

[10] S. Liu, J. Jiang, and G. Yang, “Macss: A metadata-aware combo
storage system,” in Proceedings of the International Conference on
Systems and Informatics (ICSAI), May 2012, pp. 919 –923.

[11] M. Lin, R. Chen, J. Xiong, X. Li, and Z. Yao, “Efficient sequential
data migration scheme considering dying data for HDD/SSD
hybrid storage systems,” IEEE Access, vol. 5, pp. 23 366–23 373,
2017.

[12] S. Ahmadian, O. Mutlu, and H. Asadi, “ECI-Cache: A high-
endurance and cost-efficient I/O caching scheme for virtualized
platforms,” in in Proceedings of the ACM International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS).
ACM, 2018.

[13] S. Huang, Q. Wei, D. Feng, J. Chen, and C. Chen, “Improving
flash-based disk cache with lazy adaptive replacement,” ACM
Transactions on Storage (TOS), vol. 12, no. 2, pp. 8:1–8:24, Feb. 2016.

[14] R. Santana, S. Lyons, R. Koller, R. Rangaswami, and J. Liu, “To
ARC or Not to ARC,” in Proceedings of the 7th USENIX Conference
on Hot Topics in Storage and File Systems (HotStorage), 2015, pp.
14–14.

[15] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum,
“Cache, cache everywhere, flushing all hits down the sink: On
exclusivity in multilevel, hybrid caches,” in IEEE 29th Symposium
on Mass Storage Systems and Technologies (MSST), May 2013, pp.
1–14.

[16] Y. Liang, Y. Chai, N. Bao, H. Chen, and Y. Liu, “Elastic Queue: A
universal SSD lifetime extension plug-in for cache replacement
algorithms,” in Proceedings of the 9th ACM International on Systems
and Storage Conference (SYSTOR). ACM, 2016, pp. 5:1–5:11.
[Online]. Available: http://doi.acm.org/10.1145/2928275.2928286

[17] Y. Ni, J. Jiang, D. Jiang, X. Ma, J. Xiong, and Y. Wang,
“S-RAC: SSD friendly caching for data center workloads,”
in Proceedings of the 9th ACM International on Systems and Storage
Conference. ACM, 2016, pp. 8:1–8:12. [Online]. Available:
http://doi.acm.org/10.1145/2928275.2928284

[18] Z. Fan, D. Du, and D. Voigt, “H-ARC: A non-volatile memory
based cache policy for solid state drives,” in Mass Storage Systems
and Technologies (MSST), June 2014, pp. 1–11.

[19] X. Chen, W. Chen, Z. Lu, P. Long, S. Yang, and Z. Wang, “A
duplication-aware SSD-Based cache architecture for primary stor-
age in virtualization environment,” IEEE Systems Journal, vol. 11,
no. 4, pp. 2578–2589, Dec 2017.

[20] Z. Chen, N. Xiao, Y. Lu, and F. Liu, “Me-CLOCK:a memory-
efficient framework to implement replacement policies for large
caches,” IEEE Transactions on Computers (TC), vol. 65, no. 8, pp.
2665–2671, Aug 2016.

[21] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li, “RIPQ:
Advanced photo caching on flash for facebook,” in Proceedings of
the 13th Usenix Conference on File and Storage Technologies (FAST),
2015, pp. 373–386.

[22] Y. Chai, Z. Du, X. Qin, and D. Bader, “WEC: Improving dura-
bility of ssd cache drives by caching write-efficient data,” IEEE
Transactions on Computers (TC), vol. PP, no. 99, pp. 1–1, 2015.

[23] J. Levandoski, D. Lomet, and S. Sengupta, “LLAMA: A
cache/storage subsystem for modern hardware,” Proceedings of
the VLDB Endowment, vol. 6, no. 10, pp. 877–888, Aug. 2013.
[Online]. Available: http://dx.doi.org/10.14778/2536206.2536215

[24] J. Wang, Z. Guo, and X. Meng, “An efficient design and imple-
mentation of multi-level cache for database systems,” in Database
Systems for Advanced Applications. Springer International Publish-
ing, 2015, pp. 160–174.

[25] C. Yuxia, C. Wenzhi, W. Zonghui, Y. Xinjie, and X. Yang,
“AMC: an adaptive multi-level cache algorithm in hybrid storage
filesystems,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 16, pp. 4230–4246, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3530

[26] D. Jiang, Y. Che, J. Xiong, and X. Ma, “uCache: A utility-aware
multilevel SSD cache management policy,” in IEEE 10th Inter-
national Conference on High Performance Computing and Communi-
cations, IEEE International Conference on Embedded and Ubiquitous
Computing, Nov 2013, pp. 391–398.

[27] S. K. Yoon, Y. S. Youn, S. J. Nam, M. H. Son, and S. D. Kim,
“Optimized memory-disk integrated system with DRAM and
nonvolatile memory,” IEEE Transactions on Multi-Scale Computing
Systems, vol. PP, no. 99, pp. 1–1, 2016.

[28] H. Liu and H. H. Huang, “Graphene: Fine-grained IO manage-
ment for graph computing,” in Proceedings of the 15th Usenix
Conference on File and Storage Technologies (FAST). USENIX
Association, 2017, pp. 285–299.

[29] S. He, Y. Wang, and X. H. Sun, “Improving performance of paral-
lel I/O systems through selective and layout-aware SSD cache,”
IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 27, no. 10, pp. 2940–2952, Oct 2016.

[30] E. Kakoulli and H. Herodotou, “OctopusFS: A distributed file
system with tiered storage management,” in Proceedings of the
ACM International Conference on Management of Data (SIGMOD),
2017, pp. 65–78.

[31] L. Wu, Q. Zhuge, E. H. M. Sha, X. Chen, and L. Cheng, “BOSS:
An efficient data distribution strategy for object storage systems
with hybrid devices,” IEEE Access, vol. 5, pp. 23 979–23 993, 2017.

[32] S. He, Y. Wang, Z. Li, X. H. Sun, and C. Xu, “Cost-aware region-
level data placement in multi-tiered parallel I/O systems,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 28,
no. 7, pp. 1853–1865, July 2017.

[33] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao,
“CloudCache: On-demand flash cache management for cloud
computing,” in Proceedings of the 14th Usenix Conference on File
and Storage Technologies (FAST), ser. FAST’16. Berkeley, CA, USA:
USENIX Association, 2016, pp. 355–369. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2930583.2930610

[34] Z. Shen, F. Chen, Y. Jia, and Z. Shao, “DIDACache: a deep
integration of device and application for flash based key-value
caching,” in Proceedings of the 15th Usenix Conference on File and
Storage Technologies (FAST). USENIX Association, 2017, pp. 391–
405.

[35] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Wisckey: Separating keys from values in ssd-conscious
storage,” in Proceedings of the 14th Usenix Conference on File and
Storage Technologies (FAST), 2016, pp. 133–148.

[36] W. Li, G. Jean-Baptise, J. Riveros, G. Narasimhan, T. Zhang, and
M. Zhao, “CacheDedup: In-line deduplication for flash caching,”
in Proceedings of the 14th Usenix Conference on File and Storage
Technologies (FAST). USENIX Association, 2016, pp. 301–314.

[37] H. Wu, C. Wang, Y. Fu, S. Sakr, K. Lu, and L. Zhu, “A differenti-
ated caching mechanism to enable primary storage deduplication
in clouds,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 29, no. 6, pp. 1202–1216, June 2018.

[38] X. Zhang, J. Li, H. Wang, K. Zhao, and T. Zhang, “Reducing solid-
state storage device write stress through opportunistic in-place
delta compression,” in Proceedings of the 14th Usenix Conference on
File and Storage Technologies (FAST). USENIX Association, 2016,
pp. 111–124.

[39] M. Saxena and M. M. Swift, “Design and prototype of a solid-
state cache,” Transactions on Storage (TOS), vol. 10, no. 3, pp. 1–34,
2014.

[40] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind, “Application-
managed flash,” in Proceedings of the 14th Usenix Conference on File
and Storage Technologies (FAST), 2016, pp. 339–353.

[41] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new file system



14

for flash storage,” in Proceedings of the 13th Usenix Conference on
File and Storage Technologies (FAST), 2015, pp. 273–286.

[42] Y. Jin, H. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML: A
flexible, high-performance key-value SSD,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2017, pp. 373–384.

[43] E. Rho, K. Joshi, S.-U. Shin, N. J. Shetty, J. Hwang, S. Cho, D. D.
Lee, and J. Jeong, “FStream: Managing flash streams in the file
system,” in Proceedings of the 16th Usenix Conference on File and
Storage Technologies (FAST), 2018, pp. 257–264.

[44] Q. Xia and W. Xiao, “High-performance and endurable cache
management for flash-based read caching,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 27, no. 12, pp. 3518–
3531, Dec 2016.

[45] J. Wan, W. Wu, L. Zhan, Q. Yang, X. Qu, and C. Xie, “DEFT-Cache:
A cost-effective and highly reliable SSD cache for RAID storage,”
in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2017, pp. 102–111.

[46] A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo, Y. Wang,
N. M. Ghiasi, L. Orosa, J. Gmez-Luna, and O. Mutlu, “FLIN:
enabling fairness and enhancing performance in modern NVMe
solid state drives,” in ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), June 2018, pp. 397–410.

[47] N. Elyasi, M. Arjomand, A. Sivasubramaniam, M. T. Kandemir,
C. R. Das, and M. Jung, “Exploiting intra-request slack to im-
prove SSD performance,” in Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2017, pp. 375–388.

[48] H. Kim, D. Shin, Y. H. Jeong, and K. H. Kim, “SHRD: Improving
spatial locality in flash storage accesses by sequentializing in
host and randomizng in device,” in Proceedings of the 15th Usenix
Conference on File and Storage Technologies (FAST), 2017, pp. 271–
283.

[49] Q. Li, L. Shi, C. J. Xue, K. Wu, C. Ji, Q. Zhuge, and E. H.-M. Sha,
“Access characteristic guided read and write cost regulation for
performance improvement on flash memory,” in Proceedings of the
14th Usenix Conference on File and Storage Technologies (FAST), 2016,
pp. 125–132.

[50] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study
of flash memory failures in the field,” in Proceedings of the ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems. ACM, 2015, pp. 177–190.

[51] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry,
“The evicted-address filter: A unified mechanism to address
both cache pollution and thrashing,” in Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2012, pp. 355–366. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370868

[52] A. D. Brunelle, “Block I/O layer tracing: blktrace,” in Gelato-
Itanium Conference and Expo (gelato-ICE), 2006.

[53] J. Lienig and H. Bruemmer, Fundamentals of Electronic Systems
Design. Springer International Publishing, 2017.

[54] E. Dubrova, Fault-Tolerant Design. Springer Publishing Company,
Incorporated, 2013.

[55] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Siva-
subramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD
failures in datacenters: What? when? and why?” in Proceedings
of the 9th ACM International on Systems and Storage Conference
(SYSTOR), 2016, pp. 7:1–7:11.

[56] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in
production: The expected and the unexpected,” in 14th USENIX
Conference on File and Storage Technologies (FAST), 2016, pp. 67–80.

[57] M. Kishani and H. Asadi, “Modeling impact of human errors on
the data unavailability and data loss of storage systems,” IEEE
Transactions on Reliability (TR), vol. 67, no. 3, pp. 1111–1127, Sept
2018.

Reza Salkhordeh received the B.Sc. degree in
computer engineering from Ferdowsi University
of Mashhad in 2011, and M.Sc. degree in com-
puter engineering from Sharif University of Tech-
nology (SUT) in 2013. He has been a member of
Data Storage, Networks, and Processing (DSN)
lab since 2011. He was also a member of Iran
National Elites Foundation from 2012 to 2015.
He has been the director of Software division in
HPDS corporation since 2015. He is currently a
Ph.D. candidate at SUT. His research interests

include operating systems, solid-state drives, memory systems, and
data storage systems.

Mostafa Hadizadeh received the B.Sc. degree
in computer engineering from Shahid Beheshti
University (SBU), Tehran, Iran, in 2016. He is
currently pursuing the M.Sc. degree in computer
engineering at Sharif University of Technology
(SUT), Tehran, Iran. He is a member of Data
Storage, Networks, and Processing (DSN) Lab-
oratory from 2017. From December 2016 to
May 2017, he was a member of Dependable
Systems Laboratory (DSL) at SUT. His research
interests include computer architecture, memory

systems, dependable systems and systems on chip.

Hossein Asadi (M’08, SM’14) received the
B.Sc. and M.Sc. degrees in computer engineer-
ing from the SUT, Tehran, Iran, in 2000 and
2002, respectively, and the Ph.D. degree in elec-
trical and computer engineering from Northeast-
ern University, Boston, MA, USA, in 2007.

He was with EMC Corporation, Hopkinton,
MA, USA, as a Research Scientist and Senior
Hardware Engineer, from 2006 to 2009. From
2002 to 2003, he was a member of the De-
pendable Systems Laboratory, SUT, where he

researched hardware verification techniques. From 2001 to 2002, he
was a member of the Sharif Rescue Robots Group. He has been with
the Department of Computer Engineering, SUT, since 2009, where
he is currently a tenured Associate Professor. He is the Founder and
Director of the Data Storage, Networks, and Processing (DSN) Labora-
tory, Director of Sharif High-Performance Computing (HPC) Center, the
Director of Sharif Information and Communications Technology Center
(ICTC), and the President of Sharif ICT Innovation Center. He spent
three months in the summer 2015 as a Visiting Professor at the School
of Computer and Communication Sciences at the Ecole Poly-technique
Federele de Lausanne (EPFL). He is also the co-founder of HPDS corp.,
designing and fabricating midrange and high-end data storage systems.
He has authored and co-authored more than eighty technical papers
in reputed journals and conference proceedings. His current research
interests include data storage systems and networks, solid-state drives,
operating system support for I/O and memory management, and recon-
figurable and dependable computing.

Dr. Asadi was a recipient of the Technical Award for the Best Robot
Design from the International RoboCup Rescue Competition, organized
by AAAI and RoboCup, a recipient of Best Paper Award at the 15th CSI
International Symposium on Computer Architecture & Digital Systems
(CADS), the Distinguished Lecturer Award from SUT in 2010, the Dis-
tinguished Researcher Award and the Distinguished Research Institute
Award from SUT in 2016, and the Distinguished Technology Award from
SUT in 2017. He is also recipient of Extraordinary Ability in Science
visa from US Citizenship and Immigration Services in 2008. He has
also served as the publication chair of several national and international
conferences including CNDS2013, AISP2013, and CSSE2013 during
the past four years. Most recently, he has served as a Guest Editor
of IEEE Transactions on Computers, an Associate Editor of Microelec-
tronics Reliability, a Program Co-Chair of CADS2015, and the Program
Chair of CSI National Computer Conference (CSICC2017).


