IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

Dependability Analysis of Data Storage Systems in Presence of Soft Errors

Mostafa Kishani, Mehdi Tahoori, Senior Member, IEEE, and Hossein Asadi, Senior Member, IEEE

Abstract—In recent years, high availability and reliability of
Data Storage Systems (DSS) have been significantly threatened by
soft errors occurring in storage controllers. Due to their specific
functionality and hardware-software stack, error propagation
and manifestation in DSS is quite different from general-purpose
computing architectures. To our knowledge, no previous study
has examined the system-level effects of soft errors on the
availability and reliability of data storage systems. In this paper,
we first analyze the effects of soft errors occurring in the server
processors of storage controllers on the entire storage system
dependability. To this end, we implement the major functions of
a typical data storage system controller, running on a full stack
of storage system operating system, and develop a framework to
perform fault injection experiments using a full system simulator.
We then propose a new metric, Storage System Vulnerability
Factor (SSVF), to accurately capture the impact of soft errors
in storage systems. By conducting extensive experiments, it is
revealed that depending on the controller configuration, up
to 40% of cache memory contains end-user data where any
unrecoverable soft errors in this part will result in Data Loss (DL)
in an irreversible manner. However, soft errors in the rest of cache
memory filled by Operating System (OS) and storage applications
will result in Data Unavailability (DU) at the storage system level.
Our analysis also shows that Detectable Unrecoverable Errors
(DUESs) on the cache data field are the major cause of DU in
storage systems, while Silent Data Corruptions (SDCs) in the cache
tag and data field are mainly the cause of DL in storage systems.

Index Terms—Data Storage System, Dependability, Data Un-
availability, Data Loss, SSVF, AVF, Fault Injection, Soft Error,
Cache Memory.

I. INTRODUCTION

The increasing demands of data intensive applications have
made IT infrastructures mainly rely on Data Storage Systems
(DSS), which tend to assure the storage of data with high
dependability and performance'. According to International
Data Corporation (IDC) Worldwide Quarterly Enterprise Stor-
age System Tracker, the worldwide enterprise storage sys-
tem revenue reached $10.8 billion in the second quarter of
2017 [4], while another report by MarketsandMarkets fore-
casts storage market is valued at $144.76 billion by 2022 [5].
Meanwhile, the cost of downtime and data loss is the most
critical challenge of storage systems [6], [7]. A survey by CA

Manuscript is submitted for review in October 2017.

Mostafa Kishani is a PhD student in Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran (e-mail: kishani @ce.sharif.edu).

Mehdi Tahoori is a full professor and Chair of Dependable Nano-Computing
(CDNC) at the Institute of Computer Science & Engineering (ITEC), Depart-
ment of Computer Science, Karlsruhe Institute of Technology (KIT), Germany.
(e-mail: mehdi.tahoori @kit.edu)

Hossein Asadi is an Associate Professor in Department of Computer
Engineering, Sharif University of Technology, Tehran, Iran (corresponding
author, e-mail: asadi@sharif.edu).

"High dependability and performance of data storage system is achieved by
mechanisms such as system- and component-level redundancy, caching [1],
[2], and data tiering [3].

Technologies shows that North American businesses are annu-
ally losing $26.5 billion in revenue through downtime and data
recovery, while the average loss of each company is $160,000
per year [8]. Another survey reports $273 million downtime
cost in 2007-2013 for 28 Cloud service providers [9].

The architecture of DSS has been evolved in time, while
it can be roughly categorized into three generations [10]. The
first generation, Monolithic Storage Systems, is attributed by its
centralized storage controller, custom designed hardware for
controllers, and embedded software, providing a high level of
reliability for demanding environments at a huge design and
manufacturing cost which makes its market very limited. The
second generation, Modular Storage Systems, typically use
active-active dual controller, providing redundant access to at-
tached storage devices via independent host interfaces. Due to
employing off-the-shelf hardware/software components, these
systems have a reduced cost, making them the most popular
choice for enterprise markets. This architecture is also popular
in mid-tier markets when high dependability is demanded.
Due to its dominance in the storage market, this architecture
has been our reference in this study. The third generation,
Scale-out Storage Systems, is named after using a cluster of
independent, networked, storage nodes. Each node can have
an architecture similar to the modular systems, with single
or dual controller, dedicated cache, and dedicated or shared
storage. Regardless of the generation of storage systems, the
end-user data may reside in the controller local cache memory,
DSS Global Memory (GM), or storage (disk) subsystem [11],
[12], [13]. Due to such architectures, unlike general purpose
systems, failures in the server processor of storage controllers
can result in the irreversible loss of end-user data.

Field studies show that among all root causes of storage
failures, including software errors and hardware malfunctions
(in disks, interconnects, processors, power system [14], and
cooling system), soft errors in the server processors integrated
in the storage controllers have a considerable contribution in
the storage failures [15], [16]. Soft errors, also known as
Single Event Upsets (SEUs), are transient errors in the memory
cells (such as SRAMs) and combinational logic, caused by
cosmic rays and alpha particles from impurities in packaging
materials [17], [18], [19]. The occurrence of soft errors in
memory systems can result in a single bit flip or multiple
bit flips, called Multiple Bit Upset (MBU). Shazli et al. show
that more than 15% of drastic processor failures in storage
controllers are caused by soft errors initiated by SEUs on
the processor cache memory [15]. Meanwhile, continuous
down-scaling of transistor feature size has increased the soft
error rate per SRAM cell as well as the rate of MBUs [20],
[21], [22]. This challenge is getting more pronounced by the
tremendous increase of cache memory size in the state-of-the-
art processors, and the increased number of processor cores in

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

the new generations of storage systems.

A large body of research investigates the effect of soft
errors, including accelerated testing of SRAM and DRAM
technologies [20], [21], [23], field studies [24], [25], and
Architectural Vulnerability Factor (AVF) and Mean Time To
Failure (MTTF) analysis [26], [27], [22], [28]. These stud-
ies shed light on the soft error problem from circuit level
to micro-architecture and application level. At the micro-
architecture/application level, these methods classify the out-
comes of unmasked errors to two types of incidences, De-
tectable Unrecoverable Errors (DUESs) and Silent Data Cor-
ruptions (SDCs). This categorization, despite being useful, is
insufficient for data storage systems, where the effect of soft
errors should be classified to the failure types observable at the
end-user side. Major types of storage failures affecting end-
users are Data Loss (DL)? and Data Unavailability (DU)3.
However, the existing studies mostly focus on the soft error
analysis in general purpose computing architectures that is
not necessarily applicable to DSS, due to its unique hard-
ware/software stack and dependability measurement require-
ments. This necessitates reviewing the applicability of existing
art in the case of DSS.

In this paper, we offer the following contributions:

o We propose a new metric, Storage System Vulnerability
Factor (SSVF), defined as the probability that a soft error
results in DU/DL at the storage system level. This metric
captures the dependability parameters of a storage system
(DU and DL), as opposed to conventional AVF, which
is primarily developed for traditional general-purpose
computing architectures.

o Since the memory arrays are by far the most vulnerable
components to soft errors [20], [21], using statistical
fault injections we investigate the effect of soft errors
in the cache memory of storage controller processors.
For conducting our experiments, we implement the major
functions of a typical storage controller, running on a
full stack of storage system operating system, and use a
full system simulator which is modified to simulate the
hardware/software stack of DSS.

o The proposed analysis framework can cope with MBUs,
technology dependent error characteristics such as bit
error rate and the probability of MBU, different cache
error protection schemes, and different redundancy ar-
chitectures of storage controller.

e We carefully analyze the effect of soft errors at the
cache memory, controller, and storage level to classify
the failure cases (DU and DL) at the storage system
level. Our analysis shows that 1) a considerable fraction
of cache memory (by up to 40%) holds the data of storage
system users (called user data). Soft errors on such data
can result in DL. 2) Soft errors in the rest of cache
memory, occupied by Operating System (OS) and storage
applications, at the worst case will result in DU, and in
some rare cases may result in DL. 3) SDCs are the only

2DL is defined as the irreversible loss of stored user data.
3DU is defined as the unavailability of storage system (hence, unavailability
of user data) while the user data is not lost.

causes of DL in the user side, while the contribution of
SDCs in the storage unavailability is less than DUE:s.
This analysis concludes that conventional AVF is not a
meaningful metric for demonstrating the susceptibility of
data storage systems to soft errors.

o The effect of protection mechanism is investigated at both
cache memory level and controller level. We examine dif-
ferent cache memory protections including linear Parity,
interleaved Parity, linear Single Error Correction Double
Error Detection (SECDED), interleaved SECDED, and
linear Double Error Correction Triple Error Detection
(DECTED). At the controller level, we examine single
controller and dual controller configurations.

o The workload effect is studied by examining both syn-
thetic and real workloads. The examined synthetic work-
loads capture the effect of different workload characteris-
tics including randomness, inter-arrival time, and request
size on DSS susceptibility to soft errors.

The rest of this paper is organized as follows. Section II
presents our proposed method for evaluating DU and DL
using fault injections. Section III presents our proposed SSVF
analysis and related discussions. Section IV presents our
experimental results and observations. Finally, Section V con-
cludes the paper.

II. SOFT ERROR IN DSS
A. Data Storage System Controller Simulation

The overall data flow in storage systems starts by receiving
requests from end-user side which are queued by Front-End
logic through a storage network interface, using employed
queue management algorithm. Read requests are responded by
accessing the controller local cache, Global Memory (GM),
or disk subsystem, depending on the data residency. Write
requests, however, are typically responded after commitment
on a mirrored GM, to assure the storage reliability. A detailed
description of data flow in DSS can be found in [11], [12],
[13].

We simulate the main task of a storage controller, including
protocol management, request queue management, and disk
management on the full stack of storage system operating
system (Ubuntu 11.04, kernel version 2.6.38, ext4 file system)
running on an X86 machine using MARSSx86 full system
simulator [29]. These tasks, servicing during mission time, are
necessary to simulate the full stack of data flow in a real-world
storage system. Figure 1 shows the overall hardware/software
stack of the simulated storage system.

MARSSx86 simulator enables us to simulate the full hard-
ware stack, including processor, memory system, and I/O.
MARSSx86 can also integrate with Disksim [30] which sim-
ulates the behavior of disk subsystem and is able to simulate
both disk and Solid Disk Drive (SSD) arrays. For simulating
GM, we define two memory controllers, one responsible
for communication with local controller memory, that holds
OS/applications code/data as well as user data input/output
buffer. The second memory controller is communicating with
GM which contains user data/meta-data. For disk subsystem,
we define one or multiple /O ports, controlled by disk

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

iSCSI Port

iSCSI Port @ iSCSI Port | iSCSI Port

| 99
Q| T e T

B

[J]

€|/ |8 v
S| g 0O
S Queue Manager ?

E / i ’ Controller
o Disk Manager ¥ ,,,,,,,,,,,,,,,,,,,, Local
- (o] or:]
) | [SCSIPort| |SCSIPort } Memory

A

0S/Applications
Code/Data
and User Data

{Global Memory}
User Data/Metadata

I

Disk
Subsystem

Fig. 1. Hardware/software stack of simulated storage system.

manager software. As our focus in this work is on the behavior
of storage controller, and integrating MARSSx86 with Disksim
increases the simulation time significantly, we simulate the
effect of disk subsystem access by considering an average
delay, statically obtained by Disksim. Finally, we define one
or multiple iSCSI ports which are responsible for receiving
the storage commands from the end-user and sending the
responses.

A major component in storage software stack, as shown
in Fig. 1, is protocol management, which is responsible for
receiving and responding the read/write requests via storage
network protocols such as iSCSI and Fiber Channel. Here we
employ iSCSI protocol and use commercial IET [31] tool to
simulate the rarget of the iSCSI protocol. The iSCSI target,
as named after, is the end-point of an iSCSI session that
provides the input/output transfers initiated by iSCSI initiator.
We initiate the requests, regarding the desired workload, via a
remote Virtual Machine (VM) through iSCSI protocol. These
requests are received by our simulated storage controller
machine. Each protocol manager thread is responsible for
data communication of a single iSCSI port, while we can
configure the controller with more than one port, each of
which is handled by a separate thread. The second task is the
request queue management, which is responsible for queuing
the requests received from iSCSI port(s) and launching them
to the disk manager or GM, regarding the storage system
policies and data residency. The request queue management
program has been developed in-house for First In First Out
(FIFO) algorithm. Finally for disk management, we use Linux
Generic SCSI [32]. Algorithm 1 shows the pseudo-code of data
read/write stack in the DSS controller. This platform enables
us to examine the DSS controller under desired workloads.

B. Statistical Fault Injection

Fault injection on the simulated machine has been the
subject of many works [33], [34], [35], [36], [37], [38]. These
studies have developed the knowledge required to perform

Algorithm 1 Storage Controller Pseudo Code

1: procedure PROTOCOL MANAGER

2: INIT(1ISCSI)
3: while 1 do
4: RECEIVE(REQUEST)
5: SEND(RESPONSE)
6: procedure QUEUE MANAGER
7: INIT()
8: while 1 do
9: currentRequest =FIFO()
10: if current Request = Read then
11: if processor local cache hit then
12: Data = Cache Access
13: else
14: if GM hit then //GM: Global Memory
15: Data = GM Access
16: else
17: Data = Disk Access (SCSI)
18: iSCSI <— Data
19: Receive ACK
20: else //currentRequest = Write
21: Data < iSCSI
22: GM Access //Write Data to GM
23: Send ACK
24: PREFETCH()
25: procedure DISK MANAGER
26: INIT(SCSI)
27: while 1 do
28: RECEIVE(DISK REQUEST)
29: SEND(RESPONSE)

30: return Statistics

statistical fault injection in a simulated environment, which is
adopted to our framework. Some fault injection extensions for
known machine simulators are also developed, such as fault
injection tool for Ruby [39], and MaFIN for MARSSx86 [40].
However, MaFIN tool provides some trivial features and
does not support our needs of detecting fault consequences
from storage end-user sight. It also does not provide fault
diagnostics in the resolution of individual threads, which is a
necessity for our analysis. Moreover, this tool is not publicly
available to download and is not supported by its developers
any longer.

Fig. 2 shows the overall flow of our fault injection pro-
cedure. We modified the MARSSx86 simulator to add the
possibility of fault injection. For each cache block, we add
the fault information including the fault type (single bit-flip
or MBU) and the location of erroneous bit(s). In our fault
injection experiments, we recognize whether the affected cache
block belongs to the user or OS/application. Hence, we need
to translate the physical memory address of affected block to
the logical memory address, and then check the ownership of
that logical address. To this end, we record the page table of
simulated OS, and send it to the host OS (the OS that is hosting
MARSSx86), using a facility of MARSSx86, named PTLCall.
As the page table is dynamically changing during runtime, we
need to send the page table back at the same machine cycle
the fault is injected and recognize the ownership of the faulty
block.

As shown in Fig. 2, the machine cycle of fault injection, as
well as the address and spatial characteristics of the injected
fault, are determined depending on the desired rate of soft error
and the probability of MBU. We describe the target error bit
patterns in Section II-C. On every access to a cache word,
we check the status of tag and data and take further actions
if it is faulty. Depending on the protection scheme, error bit
pattern, and the cache access type (read or write), the ECC may
correct, detect, or not detect the error. For each error case, the
controller takes suitable actions clarified in Section II-D. We
finally record the failure (DU/DL) statistics.

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

Simulation . .
Start cycle limit = End Simulation
. . S
Slmulatlon — —DSS | Continue Controller Operation
] 1
L Q
Determine Determine Determine Fault Ez < DCE Determine Maghed
number and| | Injection in 2l (= 5 - controller
next fault [Pftarget cache . 2 = DUE
evele location pattern of | | determined | {| 21O £|1" 5 level
¥ bit upset cycle 2 E Access faulty| SDC consequence
.é ©|| Controller block
L[|]lL_Il Memory Controller Reboot

Continuous Machine Run

Fig. 2. Fault Injection Scheme (Single Controller)

C. Cache Architecture and Error Bit Pattern Assumptions

Hereby we note the assumption we take about processor
cache protection scheme and the error bit pattern. Note that
in the models described in this work and all the simulations,
we assume MESI* write-back cache replacement policy [41]
for both L1 and L2 caches.

The effect of MBU in the cache memory depends on the em-
ployed error protection scheme and the error bit pattern (also
called as fault geometry) [22]. Error protection schemes such
as parity and ECC can be linear or interleaved (interleaving
can be logical, way physical, and index physical [22]). In this
work we consider linear ECC, which protects a data word via a
single ECC word along all bits, and logical k-way interleaved
ECC, which splits data word into % interleaved ECCs. The
study by [22] shows that using logical interleaving results in
many times lower vulnerability factor than that of physical
interleaving.

Error bit pattern can be contiguous and non-contiguous with
different size and geometries [21]. The focus of this work is on
the most common and problematic pattern, contiguous M x 1
pattern [21], [22], which modifies M contiguous bits in a word
line. Hence, the spatial characteristic of each fault incidence
in a cache line can be recorded by the location of the first
faulty bit L and the size of contiguous error M. We assume
the probability that a cache block is affected more than one
time in a fault injection experiment is zero (note that it also
never happened in our fault injection experiments). Hence, we
can ignore the possibility of the fault accumulation and record
one fault incidence per cache data field and cache tag field.
Fig 3 shows how we record the fault attributes for each cache
block.

D. Impact of Soft Errors at Controller Level

The soft error in a cache block can propagate to the
controller, and further manifest itself at the storage level as DU
and DL, under different cache access and error characteristic
scenarios, which is analyzed next. Fig. 4 summarizes the
different error cases and the corresponding outcomes at the
controller level upon an access to a faulty cache block.
As the consequences of errors in tag field and data field
are different, we separate them in our analysis. The errors

4MESI is an acronym representing four possible cache line states, Modified
(M), Exclusive (E), Shared (S), and Invalid (I).

63 64 65

I O O A T
i |

FM L~~~

FML

Fig. 3. Recording fault attributes for tag and data fields of each cache block.
Each cache block has a 32-bit tag field and 512 bit data field, while data field
is divided to 8 words of 64-bit. The F' field is 1 when the block tag/data is
faulty. The M field shows the size of contiguous error and L is the location of
the first faulty bit. For example, in this figure the tag F field is 0, indicating
that the tag field is fault free. Meanwhile, data F’ field is 1, indicating that the
data field is faulty. M = 3 shows that the size of contiguous error is 3 and
L = 63 shows the location of the first faulty bit. Hence, the bits 63, 64, and
65 are faulty. Assuming that each data word size is 8 bytes, this fault targets
two adjacent data words, Word 0 and Word 1, known as MCU [42]. As we
assume that each data word is protected with a separate ECC, this error bit
pattern is interpreted to a single error in Word 0 and a double error in Word

Wnrd 0 Word 1

1.
SEU on Data SEU on Tag
Read Read/Write
Overwrite | [Non-dirty] [Dirty] [Dirty/Non-dirty|
Faulty Data \
‘ Not Detect ‘ ‘Detect ‘
Acquire Correct Data
From Lower
Memory Hierarchies
‘ User Data ‘ Non-user Data ‘
Fig. 4. Impact of soft errors at Controller Level (Single Controller)

that are correctable, detectable, and not detectable by ECC
are called Detectable Correctable Error (DCE), DUE, and
SDC, respectively. Note that in the case of DCE, the error
can be corrected immediately and there will be no further
consequences.

1) Read Access to Non-dirty Blocks: Upon a read access
to a non-dirty cache block with faulty dara field, if the error
is detected (DUE), the correct data can be fetched from lower
memory hierarchies. Otherwise, in case of SDC (undetected
error), the error results in DL, if happened on a user block.

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

In the case that SDC happens on a non-user block (belonging
to OS/applications data), there is a possibility that the SDC is
either Not Activated (if the SDC targets a code location never
accessed by OS/applications) or Not Manifested (if the SDC
is activated but does not manifest as system level failure, with
PnotManifest), called Benign SDC. However, the SDC can
possibly result in software malfunctions, finally resulting in
controller reboot. In some rare conditions, the OS/application
malfunctions can even harm the end-user data’, resulting in
DL (with Posp,)-

Upon a read access to a non-dirty cache block with faulty
tag field, the controller cannot assure whether the faulty block
was originally dirty or not. In that case, the controller takes
the most conservative action and reboots itself, no matter the
error happened on the user data or non-user data. Note that the
occurrence of DUE on the user data does not result in DL if the
controller is immediately rebooted after the cache access. The
reason behind is the conventional behavior of DSS controllers
in responding to data write requests. For the sake of reliability,
the write requests are responded once the data is written back
to the Global Memory (GM) of the storage system. Hence, if
the controller is rebooted in the case of DUE, the write request
is not responded and the user needs to resubmit its request,
preventing DL.

2) Read Access to Dirty Blocks: Upon a DUE on the
data/tag field of a dirty cache block (Fig. 4), the correct data
is not obtainable from lower memory hierarchies. In that case,
the controller reboots itself to remove the chance of data loss,
no matter the error happened on the user data or non-user data.
Finally, in the case of SDC on dirty blocks the controller takes
the same action as non-dirty blocks.

3) Write Access: Upon a write access to a cache word with
faulty data field, the faulty word would be replaced by the new
word and the error is masked. In the case of write access to
a cache block with faulty rag field, however, the following
actions are taken; Suppose that address A (containing D 4) is
changed to address B (containing Dpg) due to an error on the
tag field. After the error occurrence, the address B contains
D 4, which is wrong. Write access to address B replaces just
one word of the wrong data (D 4) with the new correct data
word (D’;), while the rest of address B still contains the
wrong data D 4. Moreover, the block A is now disappeared
from the cache memory; As A does not exist in the cache
memory (as its address have changed to B), the controller has
no information whether A was originally dirty or non-dirty.
Hence, if the error in the tag field is detected (DUE), for the
sake of storage reliability, the controller takes the conservative
assumption that A was originally dirty. Consequently, similar
to the case of DUE on read accesses, a system reboot is
necessary to prevent DL (as discussed in Section II-D2).
Finally in the case of SDC (undetected error) on the tag field,
the consequences and further actions depend on whether the
affected block belongs to user data or OS/applications, as
discussed in Section II-D1.

5Gu et al. performed a deep characterization of Linux kernel behavior under
errors [43].

E. Impact of Soft Errors at the System Level

In our study, we investigate two common architectures,
single controller and Dual Initiated (Duln) controller for
the storage system. However, other redundancy architectures
such as Triple Modular Redundancy (TMR) and N-Modular
Redundancy (NMR) can also be analyzed similarly.

1) Single Controller: In the case of single controller,
during the time the controller is being rebooted (discussed
in Section II-D), the storage system is unavailable (DU).
We aggregate all DU periods during system simulation. The
unavailability of the system would be the fraction of this
value over the total simulation time. The DL per simulation
is also reported by the aggregation of all DL events (number
of lost bytes) happened during the simulation. In calculating
DL bytes, one has to consider the difference between the
consequences of SDC on tag and data fields, separately.
SDC on the data field results in DL of one data word, or
eventually two adjacent data words, known as Multiple Cell
Upset (MCU) [42], while SDC on the tag field results in DL
of the entire block.

2) Dual Controller: In the case of dual initiated controllers,
two controllers are simultaneously and independently running.
In the case one controller is rebooted, the other operating
controller takes over the tasks. However, when the failure
of dual initiated controllers coincide, the storage system is
unavailable (DU). Similar to the case of single controller, total
DU and DL per simulation is obtained by the aggregation of
individual DU and DL incidences, respectively.

III. STORAGE SYSTEM VULNERABILITY FACTOR (SSVF)

Using our storage simulation and fault injection method, in
this section we analyze AVF of storage controller and show
that AVF analysis is not sufficient to quantify the DU and DL.
We further propose a new metric, SSVF, to better represent the
effect of soft errors in storage systems.

A. AVF Analysis

AVF is defined as the fraction of faults (soft errors in
our case) that become errors. We define AVFSPC as the
fraction of faults that leads to SDC, and AVEFPUE g5 the
fraction of faults that leads to DUE. As discussed in Section II,
SDC has different consequences, regarding the fault location
(either on tag or data field) and whether it belongs to user or
OS/application (non-user). Hereby, we propose differentiating
AV FSPC regarding the fault location (tag and data field)
and data ownership (user and non-user). We define AV FSP¢
of faults happening on Tag Field (TF) of User Data (UD)

(AVEZR) as follows:

N
Zé:l[SDCs on TF of UD at cycle i| (SDCrFy)

N
> [Faults injected on TF of UD at cycle i)
i=1

(1)

Where N is the number of machine cycles of storage
service. Similarly, we define AV F SIQUCD as the fraction of
faults in Data Field (DF) of user data that leads to SDC.

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

AVEZRC s also defined as the fraction of faults in tag
field of Non-User Data (NUD) that leads to SDC. Similarly,
AVFERC s defined as the fraction of faults in data field
of non-user data that leads to SDC.

The analysis of storage system failure breakdown in Sec-
tion II shows that DUE results in controller reboot, no matter
the fault occurs on the user data or non-user data. Hereby we
define AVF:,Q}] P as the fraction of faults on tag field that
leads to DUE, and AV FEY¥ as the fraction of faults on data
field that leads to DUE, as follows:

N
ST[DUEs on TF at cycle i| (DUETF)
AVFDUE _ i
TF

z|lL

[Faults injected on TF at cycle i]
i=1
2

In Section IV-D, we present AVF values obtained by fault
injection experiments for different cache protection schemes,
and show that it cannot represent the DU/DL of the storage
system, as DU in storage system is caused by both SDC and
DUE events at the controller level. In the next section, we
present SSVF that projects the effect of soft errors on DU/DL
at the storage system level, rather than DUE and SDC at the
controller level.

o
Il

B. SSVF Analysis

While AV EFSPC and AVFPUE are defined as the pro-
cessor vulnerability to SDC and DUE, in the case of stor-
age systems, the storage vulnerability can be defined as the
fraction of soft errors resulting in DU and DL. Hereby, we
define SSV FPL as the probability that soft error in cache
memory results in DL at the storage level. Similarly, we define
SSV FPU as the probability that soft error in cache memory
results in DU at the storage level. Modeling SSV F' in terms of
AVFPUE and AV FSPC is very challenging, as the analysis
in Section II as well as the results of Section IV-D show that
DU and DL are caused by both DUEs and SDCs, and AVF
cannot address the final consequence of a soft error at the
storage level.

As our analysis in Section II shows (also confirmed by the
results provided in Fig. 5), errors on tag and data fields have
different system level consequences and different chance to
result in a failure. Hence, we define different SSVF values for
tag and data fields.

We define SSVERE as the probability that a soft error
in the tag field of cache memory results in DL according to
Equation 3.

M=z

[DL on TF at cycle i]
SSVERE = =1 3)

N
> [Faults injected on TF at cycle 1|
i=1

Similarly, we define SSV FSL as the probability that a soft
error in the data field of cache memory results in DL. We also
define SSV ERY as the probability that a soft error in the tag
field of cache memory results in DU according to Equation 4.

Similarly, we define SSV FEY as the probability that a soft
error in the data field of cache memory results in DU.

IXV: [DU on TF at cycle 1]
SSVERY = =1 4)

N
> [Faults injected on TF at cycle 1]
i=1

IV. RESULTS AND OBSERVATIONS

A. Experimental Setup

In the experiments presented in this section, we assume each
controller has one processor with four Out-of-Order (000)
cores with shared L2 cache memory with 45nm technology
node. The system configuration, as well as the configuration of
each core, cache memory, main memory, and interconnections
is appeared in Table I. For the rate of MBU, we use the MBU
rate reported by Dixit et al. [20] for 45nm technology node
(1-bit: 62%, 2-bit: 25%, 3-bit: 7%, 4-bit: 6%). The cache
protections include linear parity (parity), linear SECDED,
two-way interleaved parity, two-way interleaved SECDED,
and linear DECTED. We obtain the suitable number of fault
injection experiments per processor/workload configuration,
n, using the approach presented by Leveugle et al. [36]. As
Leveugle et al. suggest, the number of fault injections (n) is
computed using Equation 5 [36].

N

N-1 ®)

n = 5
L+ e X

Where N is the population of faults (all possible fault
incidences in different time/location, infinite in our case), p
is the estimated probability of faults resulting a failure (as
this value is usually unknown, it is recommended to take the
most conservative value, p = 0.5, as we did), e is the margin of
error, and ¢ is the cut-off point corresponding to the confidence
level with respect to Normal distribution. Assuming N = oo,
we evaluate n by considering 1% error interval (e = 0.01),
confidence level of 95% (¢t = 1.96), and the most conservative
value for p (p = 0.5) that results in n = 9604. Accordingly, we
conduct 10, 000 fault injection experiments per configuration.
The fault injection is verified to have uniform distribution over
both time and location.

B. Fault Tracking

In the proposed fault injection environment, we need to
carefully track the sequence of accesses to the faulty cache
blocks to accurately extract processor-level and system-level
failure statistics. The injected faults are tracked in the follow-
ing steps:

« Fault Injection: Once the fault is injected, statistics such
as target cache hierarchy/number, target cache line (way
and set), whether fault is on tag or data, type of MBU
(number of bit flips), fault location in the cache line, and
whether the fault targets user data, OS/application data,
or an invalid cache line, is recorded.

o Initial DL Collection: Once the fault results in SDC
and targets user data, an initial DL is possible in some
scenarios.

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

TABLE I
MARSSx86 SIMULATION CONFIGURATION

st_FUs: 2
frontend_width: 4
dispatch_width: 4

‘ pending_queue_size: 256 ‘
coherence: MESI

type: dram_cont
RAM_size: 134217728
number_of_banks: 64

name: shared_12
cpu_contexts: 4

freq: 1600000000 issue_width: 4 type: cache latency: 80
000_0_0 writeback_width: 4 size: 131072 latency_ns: 50
type: core commit_width: 4 sets: 256 pending_queue_size: 128
threads: 1 max_branch_in_flight: 24 ways: 8 p2p_core L1 1 0
iq_size: 64 per_thread: line_size: 64 type: interconnect
phys_reg_files: 4 rob_size: 128 latency: 2 latency: 0
phys_reg_file_int_size: 256 Isq_size: 96 pending_queue_size: 256 p2p_core_L1_D_0

phys_reg_file_fp_size: 256
phys_reg_file_st_size: 48

core_0_cont
type: core_controller

coherence: MEST | type intercomect. |
120

phys_reg_file_br_size: 24 | pending_queue_size: 128 type: cache p2p_L2_0_MEM_00
fetch_q_size: 48 icache_buffer_size: 32 size: 2097152 type: interconnect
sets: 4096 latency: 0

itlb_size: 32 type: cache ways: 8 split_bus_00

dtlb_size: 32 size: 131072 line_size: 64 type: interconnect
total_FUs: 8 sets: 256 latency: S latency: 6
int_FUs: 2 ways: 8 pending_queue_size: 128 arbitrate_latency: 1
fp_FUs: 2 line_size: 64 config: writeback per_cont_queue_size: 16
1d_FUs: 2 latency: 2

« DL Propagation: The DL propagation is recorded once
the faulty data is either read or written back to the lower
memory hierarchy.

o Fault Masking: We carefully consider the fault masking
scenarios upon cache write, cache update, cache evict,
processor reboot, ECC correction, and ECC detection
when the cache line is clean.

« SDC, DUE, and DCE Incidences: Upon an access to a
faulty cache line, the incidence of SDC, DUE, and DCE
is recorded®.

C. Examined Workloads

To measure the effect of different storage workloads, we
conduct our fault injection experiments for synthesized and
real workloads. The synthetic workloads are attributed by
Inter Arrival Time, defined as the average time between two
successive requests, Request Size, defined as the average size
of the requests, and Randomness’. The synthetic workload
includes different inter-arrival times (average of 10, 100, and
1000 microseconds with exponential distribution), different
request size (average of 1, 10, 100, and 1000 kilobytes
with exponential distribution), and different randomness (se-
quential requests versus random requests, while the random
request address is generated with uniform distribution over
all storage space). The real workloads include Financial I
and Financial_2 (I/O traces from OLTP applications running
at two large financial institutions) [46] and Websearch_1,
Websearch_2, and Websearch_3 (I/O traces from a popular
search engine) [46]. The software stack which handles the
storage workloads is described in Section II-A.

D. AVF Analysis

Fig. 5 shows AVF values evaluated by using fault injection
experiments for different cache protection schemes (under

6Please note that we follow the definition of SDC suggested by Mukherjee
et al. [44], in which both SDC and DUE occur as an outcome of faulty
cache access. Hence, a never accessed faulty cache line is not counted in our
SDC/DUE stats.

7A recent study presented in [45] classifies the storage I/O to Sequential,
Overlapped, and Strided. A sequence of requests is recognized as Random
when it does not follow sequential, overlapped, and strided characteristics.

B AVF-SDC-TF-UD

En B AVF-SDC-DF-UD

N AVF-SDC-TF-NUD
= AVF-SDC-DF-NUD
B AVF-SDC
O AVF-DUE-TF
E AVF-DUE-DF
W AVF-DUE

BuEge §§§ Snguozing

Ss°ss 38888

Ao M 5522 ||

0.6

0.48382
0.48391
0.48390

0.5

S5~ cs®ceo
: eeesse EEN:ZN |
interleaved interleaved dected
parity secded
SDC: Silent Data Corruption TF: Tag Field

UD: User Data
NUD: Non-User Data

DUE: Detectable Unrecoverable Error
DF: Data Field

Fig. 5. AVF for Different Cache Error Protection Schemes (Financial_1
workload)

Financial 1 workload). As shown in Fig. 5, different protection
schemes result in totally different AVF values, regarding their
differences in detection/correction capability. The results show
that the tag fields targeted by DUEs have almost the same
vulnerability as data fields. In the case of SDCs, however, tag
fields show a slightly greater vulnerability than data fields.
This observation is described by the fact that SDCs on the
data field and tag field have different sources of masking, while
the masking in the data field is more effective. SDCs on the
tag field may possibly have no consequence if the affected
cache line is originally non-dirty. In that case, if the soft-error
changes the tag value to an invalid memory address or an
address that has never been accessed in runtime, the fault is
masked. Meanwhile, SDCs on the data field just pollute one
single word (or two adjacent words), while the SDCs on the
tag field pollute the entire cache line. In the former case, the
possibility of fault masking is greater, as there is a chance
that the faulty word is either never accessed or overwritten.
Moreover, Fig. 5 shows zero AV FPC values for interleaved
SECDED. The reason is that in our fault injection experiments,
the largest MBU is 4-bit upset. Hence, the two way interleaved
SECDED can either correct or detect all the errors and there
is no chance of SDC. Another observation from AVF results
(Fig. 5) is that AVF does not represent the chance of DU
and DL in data storage systems. As an example, AV F5P¢
for parity code is 0.22, meaning that 22% of soft errors lead
to SDC when using parity code. Meanwhile, our experiments
show that only 2% of soft-errors result in DL. Hence, the SDC
reported by AVF metric is one order of magnitude greater than
the actual DL at the end-user side.

E. SSVF Analysis

Fig. 6 shows the SSVF values for different cache pro-
tection schemes (under Financial_1 workload). By definition,
SSVFPU and SSV FPL values are representing the fraction
of SEU events resulting in DU and DL, respectively. The
results show that parity protection has the highest chance of
DL, due to having the greatest SSV F' DL yalue. Moreover,

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

for all protection schemes the SSV EFRE is slightly greater
than SSV FEE, showing that SEUs on the tag field have more
chance to result in DL, compared to SDCs on the data field. We
can describe this observation by the way SDC is propagated in
tag and data field. In the case SDC targets the cache data field,
there is a possibility it is shared between two adjacent data
words and goes detected/corrected in each individual word.
Hence, in those cases the SDC may have less impact on data
field compared to tag field.

After parity, SECDED has the second greatest SSV FPL
value, followed by interleaved parity and DECTED that show
very near SSV FPL. Interleaved parity and DECTED both
have equal detection capabilities (both cannot detect 4-bit
MBUs). Hence, it was expected that both protections perform
similar in terms of DL, while the experiment results also
confirmed our expectation (interleaved parity and DECTED
respectively had 43 and 40 initial DL incidences). Finally,
we observed zero SSVEFPL for interleaved SECDED, as
interleaved SECDED can detect up to 4-bit MBUs, hence, no
chance of DL.

SSV FPU results, however, do not have the same trend
as SSVFPL, The greatest SSV FPUY value belongs to inter-
leaved parity. Interleaved parity has no correction capability,
but when considering M x 1 error bit pattern (as described in
Section II-C) it has a higher detection capability than both
parity and SECDED. Hence, interleaved parity is expected
to have a lower SSV FPL than both parity and SECDED,
as the chart shows. Meanwhile, due to having no correction
capability, all detected faults (DUEs) result in DU. In specific,
2-bit MBUs on user data lead to DL in parity protection, while
in the case of interleaved parity they are detected and result
in DU. Similarly, 3-bit MBUs on user data lead to DL in
SECDED protection, while interleaved parity can detect 3-bit
MBUs, resulting in DU. Interleaved SECDED and DECTED
protections both perform better than interleaved parity in terms
of error correction, while interleaved SECDED has also a
better detection capability than both DECTED and interleaved
parity (interleaved SECDED can detect up to 4-bit MBUs). So
it was expected that both interleaved SECDED and DECTED
have better SSV FPU and SSV FPL than interleaved parity,
as the results show.

F. Comparison of Cache Protection Mechanisms

Fig. 7 shows the DU (minutes per year) and DL (bytes
per year) values for different cache protection schemes (the
same protection is assumed for both tag and data fields).
These values are obtained using our fault injection experiments
under Financial_1, Financial_2, Websearch_1, Websearch_2,
and Websearch_3 workloads, for both single and dual con-
troller architectures. Note that both single and dual controller
architectures perform similar in terms of DL (as discussed
in Section II-E2). The reason is that unlike Duplication With
Comparison (DWC) architecture in which the execution is
duplicated on two redundant processing units and the output is
verified by comparing two redundant results, in dual controller
architecture, two controllers are independently performing
different tasks (when both controllers are operational). Hence,

dual controller architecture is not designed to detect/correct
DL happening in individual controllers. However, this archi-
tecture can prevent DU incidence upon the failure of one
controller, by redirecting the tasks of the failed controller to
the operational one.

As the results show, none of the examined cache protections
schemes can outperform the others in terms of both DU and
DL. For example, interleaved SECDED shows the lowest
DL (zero), as it can detect all errors in our experiments
while it shows higher DU compared to DECTED in both
Financial 1 and Websearch_1 workloads. Both interleaved
SECDED and DECTED protections perform the same in the
case of 3-bit MBUs (detect) when considering M x 1 error
bit pattern (as described in Section II-C). Greater DU of
interleaved SECDED compared to DECTED can be described
by the fact that 4-bit MBUs, resulting in DL in the case of
DECTED, are detected by interleaved SECDED and result
in DU. Meanwhile, both linear parity and interleaved parity
schemes show a relatively high DU among all schemes. This
observation is described by the fact that parity has a relatively
high detection capability, but zero correction. Hence, DUEs
will result in a high rate of controller reboot, resulting in DU.

An important observation is that the ranking of protection
schemes in both DU and DL is the same as their SSV FPV
and SSV FPL ranking, showing that SSV F can be an effec-
tive representative for comparing different protection schemes
in terms of data unavailability and data loss. Regarding the
relationship between DU and SSV FPY, we can observe an
analogous shape of diagram. This observation is described
by the fact that the reported DU (in terms of minutes) is
simply number of DU incidences multiplied by reboot time,
while SSV FPU is formulated as the number DU incidences
divided by the number of fault injections. The relationship
between DL (in terms of bytes) and SSV FPL however, is
more complicated. DL caused by soft-errors on tag and data
field do not have the same magnitude (tag soft-error results in
the whole line, 64 bytes, loss while soft-errors on the data
field pollute only one data word, 8 bytes, or two adjacent
data words). Meanwhile in calculating DL we also collect
the DL propagation statistics (by checking data re-use and
propagation of polluted data to other memory hierarchies) that
is not included in SSV FPL calculation. Consequently, DL
values of different protection schemes do not relate exactly
the same as SSV FPL,

Fig. 8 shows the breakdown of DU (hours) and DL (bytes)
at the storage level, showing the fraction of DU and DL caused
by DUE and SDC (for Financial_1 workload). DL chart shows
that in all protection schemes, the most data loss is caused
by SDC on the data field of user data. Investigating the DU
breakdown shows that DUE on data field is the major source
of DU in all protection schemes. The second source of DU is
SDC on data field of non-user cache blocks. Hence, here we
also can conclude that soft-errors on the cache data field are
the major source of DU.

Fig. 9(a) shows the fraction of DU and DL incidences
caused by single and multiple bit upsets. A notable point in
Fig. 9(a) is non-zero DL caused by 3-bit MBUs when having
parity protection. The first impression is that parity can detect

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

o o
N oo
o
S o
1.

parity

0.0250 SSVF_DL
0.0200
0.0150

0.0100

0.0050

' I 00212

I 0.0037
I o.0020

0.0102

I 0.0082

I 0.0083

o 0085

0043

0.0000
0.0000
0.0000

0.0085

° =}
interleaved interleaved
parity secded

0.0000

secded dected

OSSVF-DL-TF @ SSVF-DL-DF W SSVF-DL

0.3500

0J3220

SSVF_DU
0.3000

0.2500
0.2000
0.1500

0.1000

0158

0.0500

0.2572
I 0.2023
I 02209
0.0460
I 0.0273
I o.0284

T 0.1222
I 0.1817

<
S S
0 0
=3 o
S So
M=l

dected

I 0.0802

~
n
w0
o
S

secded

0.0698

0.0000
interleaved interleaved
parity secded

parity

OSSVF-DU-TF m@SSVF-DU-DF W SSVF-DU

Fig. 6. SSVFPU and SSV FPL for different cache protection schemes (Financial_1 workload)

3-bit MBUs and no DL is expected by this type of MBU.
However, there is a possibility that 3-bit MBU targets two
adjacent words (MCU). In that case, one word is polluted by
a single bit flip while its adjacent word is polluted by two bit
flips which is not detectable by parity code, resulting in DL.

Fig. 9(b) shows the number of DU and DL incidences by
different types of MBU, normalized to the number of injected
faults from each type of MBU. As the results show, in the case
of parity code, 2-bit and 4-bit MBUs have almost the same
chance to result in DL. This observation was predictable as the
parity code fails to detect even number of bit flips, including
both 2-bit and 4-bit MBUs. However, 2-bit MBUs have a
slightly less chance than 4-bit MBUs to result in DL, described
by the cases in which 2-bit MBU targets two adjacent words
(MCU). In such cases, each individual word is polluted by
a single bit flip that is detected using parity code. The same
happens in the case of 3-bit and 4-bit MBUs for SECDED
protection.

In the case of interleaved parity, 1-bit, 2-bit, and 3-bit upsets
have almost the same chance leading to DU, as they are
all detectable. We also observe that 4-bit MBUs, resulting
in SDC in the case of interleaved parity, also have a high
chance becoming DU. This observation can be described by
the fact that SDCs targeting non-user data have also the chance
to result in DU. The same happens about 2-bit and 4-bit
MBUs when using parity protection, 3-bit and 4-bit MBUs
when using SECDED protection, and 4-bit MBUs when using
DECTED protection. In the case of interleaved SECDED, we
observe that detectable errors caused by 3-bit and 4-bit MBUs
have almost the same chance to result in DU.

G. DL Propagation

We consider the effect of DL propagation, as noted in
Section IV-B. To clarify the contribution of DL propagation in
total DL, Fig. 10 shows the number of different DL incidences
for 10,000 injected faults (Financial_1 workload). DL_Line
shows the initial DL caused by SDCs targeting tag field
of user cache blocks, resulting in the loss of entire cache
line. Similarly, DL_Word shows the initial DL caused by
SDCs targeting data field of user cache blocks, resulting
in the loss of one (or in the most intense scenario, two)
data word. DL_Line_Propagate is named after the case the
DL in the entire line (caused by soft-error on tag field)
is propagated by accessing the entire line. This case never

happens, as the access resolution to cache blocks is one data
word. The entire line is updated just in the case of line
Update and Evict operations. DL._Word_Propagate refers to
the DL propagation caused by reusing (reading) the faulty data.
Note despite the fault targets either of tag field or data field,
reading a faulty word is recognized as a DL_Word_Propagate.
DL_Line_Propagate_Lower_Hierarchy is named after the case
a faulty line (caused by soft-error on the tag field) is evicted,
while it has LINE_MODIFIED (or MESI_MODIFIED in
the case of coherent cache) status. In that case, the faulty
line should be written back to the lower memory hierarchy.
Hence, the DL is propagated to the lower hierarchy. Finally,
DL_Word_Propagate_Lower_Hierarchy stands for the case a
cache line holding a faulty word (caused by soft-error on
the data field) is evicted, while it has LINE_MODIFIED (or
MESI_MODIFIED in the case of coherent cache) status. In
this case, a one-word DL is propagated to the lower memory
hierarchy. As the results show, DL_Word_Propagate has the
most contribution in total DL for all protection schemes. The
results also show that the effect of DL propagation is one order
of magnitude greater than initial DL.

H. Masking Effect

In the fault injection experiments, we track and report the
error masking cases, as noted in Section IV-B. Fig. 11 shows
the number of error masking incidences observed in 10,000
fault injections for Financial_1 workload. Mask_Write refers
to the case an error is masked by overwriting the faulty data.
Mask_Update is named after the case a cache line is updated
and the error (in data field) is totally masked. Mask_Insert
refers to the case a new line is inserted and the faulty cache
line is evicted (in this case, the error is masked if the cache
line does not have LINE_MODIFIED status. In the case
of LINE_MODIFIED statues, the error is propagated to the
lower hierarchy). Mask_Reboot refers to the faults that cause
controller reboot. In that case, the faulty data is removed after
the controller new startup. Mask_Detect_Valid refers to the
case an error in a valid cache line (i.e., a clean cache line
whose copy exists in either of lower memory hierarchies) is
detected. In that case, the correct data is obtained from lower
memory hierarchy and the error is masked at no DU/DL cost.
The final case, Mask_Correct, refers to the case an error is
correctable. In that case, the error is corrected at no DU/DL
cost. As the results show, in parity, SECDED, and interleaved

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

2500.0 3! 3261

g

2093

3000
2000.0

3 <
> - 3 2500
] a o
2 15000 ﬁ & 2000
o 3
2 @
8
2 1000.0 - £ 1500 1089
E A s = 1000
3 S0 - 2 2 2 50 346 318
8 3 8 4 S 0
w o Kl =il "l °m o m |

SECDED Interleaved Interleaved DECTED
SECDED

SECDED Interleaved Interleaved DECTED
Parity SECDED

ODual Controller @ Single Controler

(a) Financial_1 Workload

Parity Parity
Parity

@ Dual and Single Controller

2500.0 2000

1800
= 1600

g
2
]

§ 1400

5 1200

2 1000

£ 800

2 600

~ o

o] g 8w

3 n n = 200

= “ll cm o

SECDED Interleaved Interleaved DECTED
Parity SECDED

ODual Controller B Single Controler

(b) Financial_2 Workload

2500

1772

746
456
I 353
I

SECDED Interleaved Interleaved ~DECTED
Parity SECDED

2000.0

1500.0
1000.0

3
8
£
n
i
i
N a
r—|| ui I
0.0

DU (minutes per year)

500.0

52.7

Parity Parity

BDual and Single Controller

2500.0

2053

2067

762
I 493 202
- n

SECDED Interleaved Interleaved DECTED
Parity SECDED

2000.0

N
8
3
3

1500.0

-
&
8
3

1000.0

DL (bytes per year)
n
B
8
8

500.0

DU (minutes per year)
@
g
]

g
g g
o n -
W cm
SECDED Interleaved Interleaved DECTED
Parity SECDED
ODual Controller mSingle Controler

(c) Websearch_1 Workload

2500

°

By

] 311

e s
537

] 802

n
w

°

Parity Parity

@Dual and Single Controller

2500.0

2161

2049
2000.0

1537
N
8
8

1500.0

g

1064

5
8

1000.0

DL (bytes per year)

543 514
I o I

SECDED Interleaved Interleaved DECTED
Parity SECDED

500.0

DU (minutes per year)
@
g
8

@

< ~

< “
0w =

Parity

I s
] 888
279

o

w <9

"l cSm

SECDED Interleaved Interleaved DECTED
Parity SECDED

ODual Controller @ Single Controler

(d) Websearch_2 Workload

3000

°

Parity

B Dual and Single Controller

2500.0

2097

2402

bl
8

2000.0

1653

8
8

1500.0

g

1185

I 334 23
H ° =

SECDED Interleaved Interleaved ~DECTED
Parity SECDED

1000.0

DL (bytes per year)
8
8

)
2
-

-
; 5
® < =
= hal l Sm
SECDED Interleaved Interleaved DECTED
Parity SECDED

ODual Controller @ Single Controler

(e) Websearch_3 Workload

500.0

DU (minutes per year)
@
8
8

]
w

I ss3
83.7

] 520

°

Parity Parity

@ Dual and Single Controller

Fig. 7. DU (minutes) and DL (bytes) in one year mission (assuming 1000
SEU/year) for single and dual controller with different cache protection
schemes (simulation configuration appeared in Table I).

parity protections, Mask_Insert has the most contribution in
error masking. Please note that these stats are presented for
all injected faults, including the faults injected on invalid
cache lines. In Interleaved SECDED and DECTED protections
which have the greatest correction capability (both can correct
up to 2-bit MBUs), we observe Mask_Correction has the most
contribution in error masking.

1. Impact of Workloads

In this section, we investigate the effect of workload (dis-
cussed in Section IV-C) on data unavailability and data loss.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

SECDED Interleaved Interleaved = DECTED

Parity SECDED

Parity

@SDC-TF-NUD [OSDC-DF-NUD @ DUE-TF HDUE-DF
(a) DU

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

||
SECDED

Interleaved Interleaved = DECTED

Parity SECDED

Parity

@SDC-TF-UD O SDC-DF-UD
(b) DL

Fig. 8. DU/DL breakdown for different cache protection schemes (Financial_1
workload). DUE-TF is reported as the aggregation of DUE-TF on user data
(DUE-TF-UD) and DUE-TF on non-user data (DUE-TF-NUD). Similarly,
DUE-DF is reported as the aggregation of DUE-DF on user data (DUE-DF-
UD) and DUE-DF on non-user data (DUE-DF-NUD).

Fig 12 shows the average fraction of cache memory occupied
by end-user data, non-user data, and invalid data. The part of
cache memory that is occupied by end-user data is susceptible
to data loss at storage system level (in the case a soft error
results in SDC in the cache memory). The results show that
when running Financial_1 workload, respectively 44% and
37% of L1 and L2 cache memory is (on average) occupied by
end-user data. For Websearch_1 workload, respectively 46%
and 39% of L1 and L2 cache memory is occupied by end-
user data. In some periods of mission time, usually when the
storage system is handling a burst of requests, we observe that
more than 80% of cache memory is occupied by the end-user
data, in both Financial_1 and Websearch_1 workloads.

Fig. 13 shows the effect of request size (KB), inter-arrival
time (micro seconds), and randomness, on the number of
failures (aggregation of DU and DL incidences). As the figure
shows, the number of failures is directly proportional to the
request size (the left-most chart). By increasing the request
size from 1KB to 1000KB, the failure rate is increased by
up to 2.3 times. The impact of inter-arrival time, however,
is not significant (the middle chart). Increasing inter-arrival
time results in up to 10% variation in number of failures.
We also observe that number of failures is not a monotonic
function of inter-arrival time. For 2MB and 4MB L2 size,
the number of failures is slightly ascending with inter-arrival
time, while for 8MB and 16M L2 size, number of failures
is a descending function of inter-arrival time. The results
also show that randomness has a negligible effect on the

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

100% DL kS £ 100% DU
90% o 90% X
~] = X
80% 80% - $)
70% S 70% 8 8 e
60% aQ 60% b
50% < 50% <
40% & a0% 3 R
30% 1] 30%] 28
R s
20% opsll wx sxx| | mssx ossx 20% IN e~ |
10% Sl (=X-) [SX-X-) S6oo 6.0 10% ro o =X}
0% - 0%
Parity SECDED Interleaved Interleaved DECTED Parity SECDED Interleaved Interleaved DECTED
Parity SECDED Parity SECDED
@ 1-bit upset M 2-bit upset M 3-bit upset [4-bit upset E1-bitupset M 2-bit upset M 3-bit upset [4-bit upset
(a) Share of MBU in total DU/DL for different cache protection schemes
~ -] 0o
o 0.09 . s ° g o o 025 & R
S 0.08 3 e nm 1> 0 H ~
[S 28 = S i
3 0.07 o g =1 =3 B 0.20
§o0s L1
£ 0.05 £015
S 0.04 a
g ¢ 0.10
£ 0.03 g
- 0.02 g 2
E 0.01 8 E 0.05
a oM° oo ococo ocoo ooo 2
0.00 = 0.00
Parity SECDED Interleaved Interleaved DECTED Parity SECDED Interleaved Interleaved DECTED
Parity SECDED Parity SECDED
E1-bit upset W 2-bitupset K 3-bitupset [4-bit upset @ 1-bit upset M2-bitupset M 3-bitupset [D4-bit upset

(b) Number of DU and DL incidences by different types of MBU, normalized to the number of injected faults

from each type of MBU

Fig. 9. Effect of different MBU types on DU/DL of data storage system (Financial_1 workload).

4000 e
o
o0
@ 3500
e
@ 3000
2
O 2500
£
4= 2000
o
& 1500 3
n -
€ 1000
2 [12] o
500 5 © - -] ?
2.0 ~® o ol«B mgolmm cococooo mmoINS
0 — M - = - e - -
Parity SECDED Interleaved Interleaved DECTED
Parity SECDED
EDL_Line EDL_Word

DL_Line_Propagate @ DL_Word_Propagate

EDL_Line_Propagate_Lower_Hierarchy ODL_Word_Propagate_Lower_Hierarchy

Fig. 10. The effect of DL propagation (Financial_1 workload)

number of failures (the right-most chart). In L2 = 4M B and
L2 = 8MB configurations, sequential requests show 0.4%
and 0.5% greater number of failures compared to random re-
quests, while in L2 = 16 M B configuration, random requests
show 4% greater number of failures compared to sequential
requests. Hence we can conclude that the failure rate is almost
independent of request randomness.

J. Impact of PNot]VIanifest and POSDL

In this section, we investigate the effect of Pnotaranifest
and Ppg,, (both defined in Section II-D1. Please note that

8000

7000

6000

5000

4000

3000

2000

Number of Incidence

1000

o~

77774 981

o~
N

0 2256

8
I 1050

DECTED

Interleaved
SECDED

Interleaved
Parity

SECDED

Parity

E Mask Write Mask Insert

@ Mask Reboot

W Mask Update

B Mask Detect Valid O Mask Correct

Fig. 11. The effect of fault masking (Financial_1 workload)

in the experiments, we do not capture Pno¢iranifest, a5 We
assume once an SDC on non-user data is activated it will
result in OS/application malfunction. Our simulations also do
not capture Ppgs,,, which is the probability of SDC on non-
user data leading to DL, due to OS/applications malfunction.
Here we use the empirical data obtained by Gu et al. [43]
that reports both Pno¢nranifest and Pos,,, by injecting fault
on important modules of Linux kernel. In summary, Gu et
al. report 30.4% of SDCs injected to four most important
subsystems of Linux OS (representing more than 95% of
kernel usage) are not manifested (Pno¢aranifest 1S equal to
30.4%). This study also shows that out of 35000 faults injected

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

100%
80%
60%
40%
20%

0%

L1-D-0 L1-D-1 L1-D-2 L1-D-3 L2
W User O Nuser @lInvalid
(a) Financial_1 Workload
100%
80%
60%
40%
20%
0%
L1-D-0 L1-D-1 L1-D-2 L1-D-3 L2
W User [ONuser @lInvalid

(b) Websearch_1 Workload

Fig. 12. The average fraction of cache memory occupied by end-user data
(User), non-user data (Nuser), and invalid data (Invalid) in storage controller
processors.

to Linux subsystems, 9 cases result in filesystem crashes.
Despite all observed crashes in this study target OS addressing
space, there is a possibility that they also target user space in
some cases and result in user data loss (hence, Pog,,, is equal
to 0.00025).

Fig. 14 compares our baseline results with results gathered
by considering the effect of Pyotaranifest and Pos,,, (ob-
tained by [43]). As the results show, considering Ppg,,, has
a negligible effect on total DL (it results in less than 0.02%
DL increase in all protection schemes). However, the effect of
PnotManifest 1s more considerable, as it decreases DU by up
to 13% (in the case of DECTED). Hence, we can conclude
that ignoring Pnotafanifest may result in DU overestimation
in our experiments.

K. Impact of Soft-Errors in Cache Control Logic

In this section, we investigate the effect of soft-errors in
cache control logic. The errors of cache control logic are not
detectable/correctable by ECC and affect the entire cache line,
rather than a single data word. To this end, we estimate the
area of cache control logic using CACTI 7.0 tool [47]. We
also use the data from Shivakumar et al. [48] for Soft-Error
Rate (SER) on combinational logic, resulting from high-energy
Neutrons. This study does not consider the effect of logical
masking and simply reports SER as a function of number of
combinational logic chains (logics using 2-input NAND gates
with Fan-Out 4, FO4) and the length of logic chain (i.e. the
working frequency). Using the area of cache control logic, we
estimate the number of logic chains and evaluate the SER
of cache controller, in terms of Failure in Time (FIT)® as

8The number of failures per 109 hours of operation.

TABLE 11
NUMBER OF FO4 LOGICS WITH LENGTH OF 12 AND SER OF CACHE
MEMORY CONTROLLER

L1 L2 Total (4-Core, dedicated IL1/DL1, shared L2)

Number of 12-FO4 Logics | 125232 | 756499 1758362

70.33

SER (FIT/Controller) 5.00 30.25

summarized in Table II.

Using the SER estimated for the entire cache controller
(Table II), we inject faults to the processor cache controller
assuming that the errors injected to the control logic are neither
correctable nor detectable by the cache ECC. Hence, each
fault in the control logic is interpreted as an undetectable
tag fault. We perform 10,000 fault injection experiments and
normalize DU/DL results to the number of soft-errors expected
in one year mission time. Using FIT/Controller (Table II), the
annual expected number of soft-errors per cache controller
is 0.000616. Accordingly, the expected DU/DL per year for
different real benchmarks is shown in Fig. 15. This figure also
shows the expected DU/DL per year caused by soft-errors on
cache SRAM cells (obtained by using FIT/SRAM reported by
Shivakumar et al. [48]), for SECDED cache protection. As
the results show, the expected DU caused by soft-errors in the
controller logic is more than two times greater than SRAM
cells. In the case of DL, the difference is even more, as we
observe DL caused by soft-errors in controller logic is one
order of magnitude greater than SRAM cells. The significant
impact on DL is described by the fact that all soft-errors in
the controller logic go undetected, resulting DL if they target
end-user data. This observation shows that cache controller re-
liability has a great importance in DU/DL prevention, seeking
for more detailed studies and investigations.

V. CONCLUSION AND DISCUSSION

In this paper, we modeled the storage system level effects of
soft errors occurring in the controller cache memory. We set
up our framework by first implementing the major functions
of storage controller, running on a full stack of Linux kernel,
and then developing a framework to perform fault injection
experiments using a full system simulator. We proposed a new
metric, called SSVF, defined as the probability that a soft error
results in DU/DL at the storage level, as an alternative to AVF
that cannot directly represent the DU/DL of a specific storage
design. We can conclude the main findings of this work as
follows:

e Comparing AVF results with SSVF results shows that
AVF does not correctly represent the chance of DU and
DL in data storage systems.

o Cache protection schemes with greater detection capa-
bility always experience lower DL. However, improving
error detection may have an ascending effect on DU, as
the controller reboots itself upon a detectable unrecover-
able error to prevent data loss.

o Interleaved SECDED is the most reliable protection
scheme, leading to lowest amount of DL, while DECTED
is the most efficient protection schemes in terms of
availability.

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

W 2.5 . 1.05 . 1.01

9] 4] i) — —

5 5 5 1

5 2 7 ! Z 0.99

o 15 > 0.95 2 0.98

2 2 2 0.97

£ 1 E 09 EO.

z z Z 0.96

g o5 g 0.85 %095

E 0 E 08 £ 0.94

3 2M am 8M 16M 3 2M am 8M 16M 3 2M am 8 16M
L2 Size L2 Size L2 Size

Inter-arrvial Time: @ 1
Request Size: 1

Request Size:@1 [J10 W100 W 1000

Inter-arrival Time: 1

010 m100 m1000

Request Size: 1

Inter-arrival Time: 1 BRandom O Sequential

Fig. 13. Effect of request size (KB), inter-arrival time (micro seconds), and randomness, on the number of failures (aggregation of DU and DL incidences).
Request size results (the left-most chart) are obtained by considering Inter-arrival Time = 1us and sequential workload, and are normalized to 1K B request
size. Inter-arrival time results (the middle chart) are obtained by considering Request Size = IKB and sequential workload, and are normalized to 1pus.
Randomness results (the right-most chart) are obtained by considering Inter-arrival Time = 1ps and Request Size = 1KB, and are normalized to Random.
The experiments are conducted for different sizes of L2 cache (from 2MB to 16MB) by considering single storage controller. In the experiments we consider
No Protection for the cache memory and 10,000 faults are injected per configuration.

25000 35000

21737
32610.0

o «
g 2
2 2
]
- 2 30000
T 20000 &8 P
o 8 &
g) S 25000
a—) >
2. 15000 @ 20000
2 o @
5 o I 0 0
2 10000 S5 5, 15000 g8
£ 8 8 2 R
£ oo @ = 10000 < "
>] a g © g
. H RE Y 200 23 E5
<
o LN o mn -3 Wm0
Parity SECDED Interleaved Interleaved DECTED Parity SECDED Interleaved Interleaved DECTED
Parity SECDED Parity SECDED
B Considering P_NotManifest & P_OS_DL [IBaseline B Considering P_NotManifest & P_0S_DL [JBaseline
Fig. 14. Effect of Pnotnanifest and Pos,, (Financial_1 workload)
0.0025 0.035
- 0.030
=
§ 00020 T
3 S 0.025
] >
2 0.0015 5 0.020
s o
o o
Q
2 0.0010 g 0015
£ 2
£ = 0.010
=
0.0005
e 0.005
0.0000 0.000 = = L = m
N 4 5 1 » RN 5 1 »
E."’V b’b\/ &7 &7 &7 & & &7 &7 &7
& (@o & & & ‘(9“ A(@o & & &
&< & & ¢ & LA N 4

OController Logic B SRAM Cells OController Logic B SRAM Cells

Fig. 15. Expected annual DU and DL caused by soft-errors in cache controller
logic and SRAM cells (considering SECDED protection) for different real
workloads

o Tag fields targeted by soft-errors are more vulnerable to
both DU and DL compared to data fields.

o DUEs on the cache data field are the major cause of DU
in all protection schemes, while SDCs on the data field
of user cache blocks contribute to the most DL.

e The DL propagated by reusing the faulty data has the
most contribution in total DL reported, while the effect
of DL propagation is one order of magnitude greater than
the initial DL.

e We observed different sources of error masking in our
experiments. For parity, SECDED, and interleaved parity
protection, inserting a new cache line (cache evict) is the
major source of masking, while for interleaved SECDED

and DECTED protections, the error correction has the
most contribution in error masking.

« By increasing the average request size, the storage failure
rate considerably increases, while request inter-arrival
time and randomness do not have significant effect on
the failure rate.

o While this work is mainly focused on soft-errors in cache
SRAM cells, our approximations on the effect of soft-
errors in cache controller logic have been so motivative.
We observe the expected DU caused by soft-errors in the
controller logic is more than twice greater than SRAM
cells. In the case of DL, we approximate DL caused
by soft-errors in the controller logic is one order of
magnitude greater than SRAM cells. This observation is
described by the fact that soft-errors in the controller logic
go undetected, resulting in DL if they target end-user
data.

In the future work, we will investigate the effect of software
robustness and software-level protections on the reliability and
availability of storage controllers.

VI. ACKNOWLEDGMENTS

This work has been partially supported by Iran National
Science Foundation (INSF) under grant number 96006071 and
by HPDS Corp.

REFERENCES

[1] R. Salkhordeh, S. Ebrahimi, and H. Asadi, “Reca: An efficient recon-
figurable cache architecture for storage systems with online workload
characterization,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 29, no. 7, pp. 1605-1620, July 2018.

[2] S. Ahmadian, O. Mutlu, and H. Asadi, “ECI-Cache: A High-Endurance
and Cost-Efficient I/O Caching Scheme for Virtualized Platforms,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems (POMACS), vol. 2, no. 1, pp. 9:1-9:34, 2018.

[3] R. Salkhordeh, H. Asadi, and S. Ebrahimi, “Operating system level
data tiering using online workload characterization,” The Journal of
Supercomputing, vol. 71, no. 4, pp. 1534-1562, 2015.

[4] Worldwide Enterprise Storage Market Grew 2.9% in the Second
Quarter, According to IDC. [Online]. Available: https://www.idc.com/
getdoc.jsp?containerld=prUS42913717

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Next-Generation Data Storage Market by System, Architecture,
Technology, and Industry - Global Forecast to 2022. [On-
line]. Available: https://www.marketsandmarkets.com/Market-Reports/
next-generation-data- storage-market- 12592401.html

M. Kishani and H. Asadi, “Modeling Impact of Human Errors on
the Data Unavailability and Data Loss of Storage Systems,” IEEE
Transactions on Reliability (TR), vol. 67, no. 3, pp. 1111-1127, 2018.
M. Kishani, R. Eftekhari, and H. Asadi, “Evaluating impact of human
errors on the availability of data storage systems,” in Design, Automation
and Test in Europe Conference (DATE). Lausanne, Switzerland:
IEEE/ACM, 2017.

“CA Technologies, The Avoidable Cost of Downtime,” Tech. Rep.,
2010. [Online]. Available: http://m.softchoice.com/files/pdf/brands/ca/
ACOD_REPORT.pdf

M. Gagnaire, F. Diaz, C. Coti, C. Cerin, K. Shiozaki, Y. Xu, P. Delort,
J.-P. Smets, J. Le Lous, S. Lubiarz et al., “Downtime statistics of current
cloud solutions,” Tech. Rep., 2012. [Online]. Available: http://iwgcr.
org/wp-content/uploads/2012/06/IW GCR-Paris.Ranking-002-en.pdf

R. Kerns, “Storage System Generations ,” Tech. Rep.,
2014. [Online]. Available: http://www.evaluatorgroup.com/document/
storage-system-generations- free

S. Gnanasundaram and A. Shrivastava, Information Storage and Man-
agement: Storing, Managing, and Protecting Digital Information in
Classic, Virtualized, and Cloud Environments. John Wiley & Sons,
2012.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache
at facebook,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Lombard, IL, USA, 2013, pp. 385-398.

S. Ahmadian, F. Taheri, M. Lotfi, M. Karimi, and H. Asadi, “Inves-
tigating Power Outage Effects on Reliability of Solid-State Drives,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
Dresden, Germany, March 2018, pp. 207-212.

S. Shazli, M. Abdul-Aziz, M. Tahoori, and D. Kaeli, “A Field Analysis
of System-level Effects of Soft Errors Occurring in Microprocessors
Used in Information Systems.” Santa Clara, CA, USA: IEEE, October
2008, pp. 1-10.

W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are Disks the Dominant
Contributor for Storage Failures?: A Comprehensive Study of Stor-
age Subsystem Failure Characteristics,” ACM Transactions on Storage
(TOS), vol. 4, no. 3, pp. 1-25, 2008.

M. Zhang, Q. Shi, and K. S. Kim, “Robust system design with built-in
soft-error resilience,” IEEE Computer, vol. 38, pp. 43-52, 2005.

L. Lantz, “Soft errors induced by alpha particles,” IEEE Transactions
on Reliability (TR), vol. 45, no. 2, pp. 174-179, 1996.

A. Dasgupta and M. Pecht, “Material failure mechanisms and damage
models,” IEEE Transactions on Reliability (TR), vol. 40, no. 5, pp. 531-
536, 1991.

A. Dixit and A. Wood, “The Impact of New Technology on Soft
Error Rates,” in International Reliability Physics Symposium (IRPS).
Monterey, CA, USA: IEEE, 2011, pp. 5B.4.1-5B.4.7.

E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba, “Impact of
Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a
22 nm Design Rule,” IEEE Transactions on Electron Devices, vol. 57,
no. 7, pp. 1527-1538, 2010.

M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and
D. R. Kaeli, “Calculating architectural vulnerability factors for spatial
multi-bit transient faults,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO). Cambridge, United Kingdom: IEEE, 2014,
pp. 293-305.

C. Ogden and M. Mascagni, “The impact of soft error event topogra-
phy on the reliability of computer memories,” IEEE Transactions on
Reliability (TR), vol. 66, no. 4, pp. 966-979, 2017.

A. Dixit, R. Heald, and A. Wood, “Trends from ten years of soft
error experimentation,” in System Effects of Logic Soft Errors (SELSE).
Stanford, CA, USA: IEEE, 2009, pp. 24-25.

V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Guru-
murthi, “Feng shui of supercomputer memory positional effects in dram
and sram faults,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). Denver, CO, USA:
IEEE, 2013, pp. 1-11.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability

[27]

[28]

[29]

[30]

[31]
(32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

factors for a high-performance microprocessor,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). San Diego, CA,
USA: IEEE, 2003, pp. 29-42.

V. Sridharan and D. R. Kaeli, “Using hardware vulnerability factors
to enhance avf analysis,” in International Symposium on Computer
Architecture (ISCA), vol. 38, no. 3. Saint-Malo, France: IEEE/ACM,
2010, pp. 461-472.

J. Suh, M. Annavaram, and M. Dubois, “Macau: A markov model for
reliability evaluations of caches under single-bit and multi-bit upsets,” in
International Symposium on High-Performance Computer Architecture
(HPCA). New Orleans, LA, USA: IEEE, 2012, pp. 1-12.

A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: A full system
simulator for multicore x86 cpus,” in Design Automation Conference
(DAC). San Diego, CA, USA: ACM, 2011, pp. 1050-1055.

J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The
disksim simulation environment version 4.0 reference manual (cmu-pdl-
08-101),” Parallel Data Laboratory, pp. 1-26, 2008.

(2016) iSCSI Enterprise Target. [Online]. Available: http://iscsitarget.
sourceforge.net/

(2016) Linux Generic SCSI. [Online]. Available: https://www.kernel.
org/doc/Documentation/scsi/scsi- generic.txt

J. A. Clark and D. K. Pradhan, “Fault injection: A method for validating
computer-system dependability,” Computer, vol. 28, no. 6, pp. 47-56,
1995.

J. Wei, L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Comparing
the effects of intermittent and transient hardware faults on programs,”
in Dependable Systems and Networks (DSN), Annual IEEE/IFIP Inter-
national Conference on. Hong Kong, China: IEEE, 2011, pp. 53-58.
P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda,
“Statistical fault injection,” in Dependable Systems and Networks (DSN),
Annual IEEFE/IFIP International Conference on. Anchorage, AK, USA:
IEEE, 2008, pp. 122-127.

R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Conference on Design,
Automation and Test in Europe (DATE). Nice, France: ACM, 2009,
pp- 502-506.

A. Benso and P. Prinetto, Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation. Springer Science & Business
Media, 2003, vol. 23.

J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
injection and dependability evaluation of fault-tolerant systems,” IEEE
Transactions on Computers, vol. 42, no. 8, pp. 913-923, 1993.

Fault Injection Tool for Ruby. [Online]. Available: http://www.rubydoc.
info/gems/faultinjection/0.0.2

M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, and D. Gizopoulos, “Ac-
celerated microarchitectural fault injection-based reliability assessment,”
in Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFTS), IEEE International Symposium on. Amherst, MA, USA: IEEE,
2015, pp. 47-52.

M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ACM SIGARCH
Computer Architecture News, vol. 12, no. 3, pp. 348-354, 1984.

D. A. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation
and mitigation of radiation-induced soft errors in graphics processing
units,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 791-804,
2016.

W. Gu, Z. Kalbarczyk, R. K. Iyer, Z.-Y. Yang et al., “Characterization
of Linux Kernel Behavior under Errors.” in Dependable Systems and
Networks (DSN), Annual IEEE/IFIP International Conference on, vol. 3.
San Francisco, CA, USA: IEEE, 2003, pp. 22-25.

S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in International Symposium on High-
Performance Computer Architecture (HPCA). San Francisco, CA, USA:
IEEE, 2005, pp. 243-247.

M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-
Azad, “A hybrid non-volatile cache design for solid-state drives using
comprehensive i/o characterization,” IEEE Transactions on Computers,
vol. 65, no. 6, pp. 1678-1691, 2016.

UMass Trace Repository. [Online]. Available: http://traces.cs.umass.
edu/index.php/Storage/Storage

CACTI 7: New Tools for Interconnect Exploration in Innovative Off-
Chip Memories. [Online]. Available: https://vlsicad.ucsd.edu/CACTL/
P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Dependable Systems and Networks (DSN),
Annual IEEE/IFIP International Conference on. Washington, DC,
USA: IEEE, 2002, pp. 389-398.

IEEE TRANSACTIONS ON RELIABILITY, VOL. ??, NO. ??, OCTOBER 2017

Mostafa Kishani received the B.S. degree in
computer engineering from Ferdowsi University of
Mashhad, Mashhad, Iran, in 2008, and M.Sc. degree
in computer Engineering from Amirkabir University
of Technology (AUT), Tehran, Iran, in 2010. He is
currently a PhD student of computer engineering in
the Sharif University of Technology (SUT), Tehran,
Iran, since 2012. He was a hardware engineer in
Iranian Space Research Center (ISRC) from 2010 to
2012. He was also a member of Institute for Re-
search in Fundamental Sciences (IPM) Memocode

team in 2010. From September 2015 to April 2016 he was a research assistant
in Computer Science and Engineering department of the Chinese University
of Hong Kong (CUHK), Hong Kong. He was also a research associate in the
Hong Kong Polytechnic University (PolyU), Hong Kong, from April 2016 to
February 2017.

Mehdi Tahoori Mehdi Tahoori is a full professor
and Chair of Dependable Nano-Computing (CDNC)
at the Institute of Computer Science & Engineering
(ITEC), Department of Computer Science, Karlsruhe
Institute of Technology (KIT), Germany. He received
his PhD and M.S. degrees in Electrical Engineer-
ing from Stanford University in 2003 and 2002,
respectively, and a B.S. in Computer Engineering
from Sharif University of Technology in Iran, in
2000. In 2003, he joined the Electrical and Computer
Engineering Department at the Northeastern Univer-
sity as an assistant professor where he promoted to the rank of associate
professor with tenure in 2009. From August to December 2015, he was a
visiting professor at VLSI Design and Education Center (VDEC), University
of Tokyo, Japan. From 2002 to 2003, he was a Research Scientist with
Fujitsu Laboratories of America, Sunnyvale, CA, in the area of advanced
computer-aided research, engaged in reliability issues in deep-submicrometer
mixed-signal very large-scale integration (VLSI) designs. He holds several
pending and granted U.S. and international patents. He has authored over 250
publications in major journals and conference proceedings on a wide range of
topics, from dependable computing and emerging nanotechnologies to system
biology. His current research interests include nanocomputing, reliable com-
puting, VLSI testing, reconfigurable computing, emerging nanotechnologies,
and systems biology. Prof. Tahoori was a recipient of the National Science
Foundation Early Faculty Development (CAREER) Award. He has bee a
program committee member, organizing committee member, track and topic
chair, as well as workshop, panel, and special session organizer of various
conferences and symposia in the areas of VLSI design automation, testing,
reliability, and emerging nanotechnologies, such as ITC, VTS, DAC, ICCAD,
DATE, ETS, ICCD, ASP-DAC, GLSVLSI, and VLSI Design. He is currently
an associate editor for IEEE Design and Test Magazine (D&T), coordinating
editor for Springer Journal of Electronic Testing (JETTA), associate editor
of VLSI Integration Journal, and associate editor of IET Computers and
Digital Techniques. He was an associate editor of ACM Journal of Emerging
Technologies for Computing. He received a number of best paper nominations
and awards at various conferences and journals, including ICCAD 2015 and
TODAES 2017. He is the Chair of the ACM SIGDA Technical Committee
on Test and Reliability.

Hossein Asadi (M’08, SM’14) received the B.Sc.
and M.Sc. degrees in computer engineering from the
SUT, Tehran, Iran, in 2000 and 2002, respectively,
and the Ph.D. degree in electrical and computer
engineering from Northeastern University, Boston,
MA, USA, in 2007.

He was with EMC Corporation, Hopkinton, MA,
USA, as a Research Scientist and Senior Hardware
Engineer, from 2006 to 2009. From 2002 to 2003, he
was a member of the Dependable Systems Labora-
tory, SUT, where he researched hardware verification
techniques. From 2001 to 2002, he was a member of the Sharif Rescue
Robots Group. He has been with the Department of Computer Engineering,
SUT, since 2009, where he is currently a tenured Associate Professor. He is
the Founder and Director of the DSN Laboratory, Director of Sharif High-
Performance Computing (HPC) Center, the Director of Sharif Information and
Communications Technology Center (ICTC), and the President of Sharif ICT
Innovation Center. He spent three months in the summer 2015 as a Visiting
Professor at the School of Computer and Communication Sciences at the Ecole
Poly-technique Federele de Lausanne (EPFL). He is also the co-founder of
HPDS corp., designing and fabricating midrange and high-end data storage
systems. He has authored and co-authored more than eighty technical papers
in reputed journals and conference proceedings. His current research interests
include data storage systems and networks, solid-state drives, operating system
support for I/O and memory management, and reconfigurable and dependable
computing.

Dr. Asadi was a recipient of the Technical Award for the Best Robot Design
from the International RoboCup Rescue Competition, organized by AAAI
and RoboCup, a recipient of Best Paper Award at the 15th CSI International
Symposium on Computer Architecture & Digital Systems (CADS), the Dis-
tinguished Lecturer Award from SUT in 2010, the Distinguished Researcher
Award and the Distinguished Research Institute Award from SUT in 2016, and
the Distinguished Technology Award from SUT in 2017. He is also recipient
of Extraordinary Ability in Science visa from US Citizenship and Immigration
Services in 2008. He has also served as the publication chair of several
national and international conferences including CNDS2013, AISP2013, and
CSSE2013 during the past four years. Most recently, he has served as a
Guest Editor of IEEE Transactions on Computers, an Associate Editor of
Microelectronics Reliability, a Program Co-Chair of CADS2015, and the
Program Chair of CSI National Computer Conference (CSICC2017).

