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Abstract— Spin Transfer Torque-Magnetic RAM

(STT-MRAM) is a promising alternative for SRAMs

in on-chip cache memories. Besides all its advantages,

high error rate in STT-MRAM is a major limiting fac-

tor for on-chip cache memories. In this paper, we first

present a comprehensive analysis that reveals that the

conventional Error-Correcting Codes (ECCs) lose their

efficiency due to data-dependent error patterns, and

then propose a near-optimal ECC configuration, so-

called ROBIN, to maximize the correction capability.

The evaluations show that the inefficiency of conven-

tional ECC increases the cache error rate by an av-

erage of 151.7% while ROBIN reduces this value by

more than 28.6x.

I. Introduction

Spin Transfer Torque-Magnetic RAM (STT-MRAM)
has attracted considerable research interests and efforts
in recent years. Non-volatility, near-zero leakage power,
high density, and immunity to radiation-induced parti-
cle strike persuade the designers to replace conventional
SRAM technology with STT-MRAM in Last-Level Caches
(LLCs) [1, 2]. Beside all of STT-MRAM technology ad-
vantages, it suffers from three error types: write failure
(i.e., unsuccessful cell flip during a write operation), read
disturbance (i.e., unintentional cell flip during a read oper-
ation), and retention failure (i.e., stochastic cell flip dur-
ing cell idle interval) [3, 4]. To make STT-MRAM tech-
nology commercialized in on-chip caches, these reliability
challenges should be carefully addressed by designers.

Considering the three mentioned error types, the rate
of write failure is significantly higher than the two other
errors in nanoscale technology feature size. Due to short
lifetime of data blocks in LLCs, retention failure is an
extremely rare event in STT-MRAM cells with 10 years
retention time. Meanwhile, the read disturbance rate is
negligible compared to write failure rate since the read
current is much lower than the write current [5, 6]. There-
fore, write failure is the major reliability challenge in STT-

MRAM caches.

Employing Error-Correcting Codes (ECCs) is the most
conventional scheme to overcome write failure in STT-
MRAM LLCs [7, 8, 9, 10, 11]. Conventionally, each N -
bit cache block is divided into several k -bit datawords,
each of which is protected by an r -bit ECC. There are
two common configurations for partitioning cache block
cells to construct (k+r)-bit codewords. In per-word ECC
configuration, a codeword is generated by k consecutive
bit positions and in interleaved ECC configuration, bit
positions with distance of N/k contribute in generating
each codeword.

Since write failure is likely to occur only in cache cells
that need to flip in a write operation, the write failure
rate is proportional to the number of transitions required.
When partitioning a block into multiple codewords, each
capable of correcting single bit error, the probability of a
correct write operation is dominated by a codeword with
the maximum number of transitions. This number should
be minimized for maximizing the ECC efficiency, which
can be achieved by uniformly distributing the total num-
ber of transitions between the codewords. This uniformity
is addressed in neither per-word nor interleaved ECCs. To
improve the efficiency of ECCs and provide higher error
correction capabilities, the ECC configuration should be
redesigned based on STT-MRAM error patterns and cus-
tomized according to its characteristics and requirements,
which has been addressed in none of the previous studies.

In this paper, we first demonstrate the inefficiency of
existing ECC configurations and then propose a near-
optimal ECC configuration that effectively improve the
reliability of STT-MRAM LLCs. In the first contribu-
tion, we conduct a deep investigation on the distribution
of transitions between codewords of cache blocks in write
operations and observe a large variations between the
number of transitions in different codewords for both per-
word and interleaved configurations, which cause a signif-
icant reliability degradation. In the second contribution,
we propose Incremental Oblique Interleaved (ROBIN)



ECC configuration to uniformly distribute the transitions
between the codewords. ROBIN selects the data bits of
each codeword in such a way that all bytes of a cache block
as well as all bit positions in all bytes equally contribute in
all codewords. Meanwhile, the bit positions of the bytes
in each word are shifted in such a way that bits of differ-
ent byte positions in all words uniformly contribute in all
codewords. The uniformity achieved by ROBIN signifi-
cantly improves the ECCs efficiency and provides higher
error correction capability.

We evaluate ROBIN using gem5 cycle-accurate simu-
lator [12] and compare it with per-word ECC and inter-
leaved ECC. The evaluations show that the error rate in
per-word and interleaved ECCs is higher than the error
rate in optimal ECC by 151.7% and 42.3%, respectively,
which is reduced to 5.3% by ROBIN (equivalent to 28.6x
and 8.0x improvements, respectively). These significant
improvements are achieved without increasing the over-
heads and complexity of ECCs.

The rest of this paper is organized as follows. Section II
describes the preliminaries of STT-MRAM memory and
write failure. In Section III, the motivation and the pro-
posed method is presented. In Section IV, the simulation
framework and the results are given. Finally, we conclude
the paper in Section V.

II. STT-MRAM Basics

STT-MRAM memories consist of an access transistor
and a Magnetic Tunnel Junction (MTJ), which has three
layers: Reference layer, which its magnetization direction
is fix, free layer, which its magnetization direction can be
changed and determines the stored data, and the middle
layer is oxide barrier layer, which separates these two fer-
romagnetic layers. The magnetization of free layer due to
spin-polarized current flow can be in the same or oppo-
site direction as reference layer spin direction. This par-
allelism and anti-parallelism of two layers generates low
and high resistance in MTJ that is interpreted as logic
value ‘0’ and ‘1’ in the cell, respectively [13].

A data is written into a STT-MRAM cell by applying
a write current (Iwrite) for a predetermined pulse width.
Based on its direction, this current flow changes the mag-
netic field direction of the free layer and generates high or
low resistance in the MTJ. Changing this direction from
parallel to anti-parallel (or vice-versa) is a stochastic pro-
cess. This means that by applying write current, it is
probable that the cell remains unflipped. This unsuccess-
ful write operation is named write failure [7, 9, 14]. The
probability of a write failure in a STT-MRAM cell is ac-
cording to (1):

PWrite−Failure = 1− Pwrite = exp(−twrite×
2× µβ × p× (Iwrite − IC0

)

c+ loge(π
2 ×∆/4)× (e×m× (1 + p2))

)
(1)

where, Pwrite is the probability of cell transition, Iwrite
is write current, c is Euler constant, e is electron charge,

m is magnetic momentum of the free layer, p is tunneling
spin polarization, µβ is Bohr magneton, and twrite is write
pulse width.

To increase the probability of bit transition and reduce
the write failure rate, previous studies increase the ampli-
tude and/or width of write pulse [15, 16, 17]. In addition
to imposing high latency and energy overhead, these tech-
niques increase the probability of oxide barrier breakdown
in STT-MRAM cells. Another method is verifying each
write operation by reading and comparing the written cell
with incoming value and repeating the write operation on
a mismatch [18]. Extra read operations increase the oc-
currence probability of read disturbance in this technique
and higher dynamic energy is imposed due to extra write
operations. Some studies try to reduce the number of bit
transitions in write operations by encoding the incoming
data or writing into a cache block with the minimum ham-
ming distance [19, 20]. These techniques complicate the
design and increase the read disturbance rate.

The most conventional and widely-used scheme to
overcome write failures is to employ ECCs in cache
blocks [8, 7, 9, 10, 11]. ECC have been used in SRAM
caches for decades and are the predominated protection
scheme in modern processors. This scheme is inherited
by STT-MRAM caches and several studies utilized ECCs
for overcoming write failure. For an ECC-protected STT-
MRAM cache block, a write operation is successful as long
as the number of erroneous cells due to write failure is not
larger than the number of correctable errors.

III. Motivation and Proposed Method

An ECC-protected LLC block is conventionally parti-
tioned into M codewords each consist of a k -bit logical
dataword and an r -bit ECC generated by that dataword
capable of correcting up to t bits errors. A codeword is
written correctly if the number of write failures in its k+r
bits is less than or equal to t and the write operation of a
cache block is successful if and only if all its codewords are
written correctly. In this section, we formulate the prob-
ability of correct write operation for STT-MRAM caches
protected by the existing ECC schemes and demonstrate
their shortcomings in correcting write failure, based on
our observations and investigations.

A. Problem Formulation

In today’s processors, a cache block conventionally con-
sists of eight 64-bit dataword each protected by an 8-bit
Single Error Correction-Double Error Detection (SEC-
DED (72, 64)) code. For the sake of simplicity, we limit
our discussion to the mentioned structure hereafter. How-
ever, the formulations, discussions, configurations, and
proposed method are generally valid and applicable and
not limited to this structure.

There are two configurations for generating eight SEC-
DED(72, 64) codes in a cache block with 512 bits data. In
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Fig. 1. ECC configuration schematic: (a) per-word configuration and (b) interleaved configuration.

the first configuration, known as per-word ECC, eight con-
secutive data bytes are grouped to generate a SEC-DED
code. In the second configuration, known as interleaved
ECC, bits with similar position in all 64 bytes contribute
in generating each SEC-DED code. Interleaved ECC is
capable of correcting Multi-Bit Upsets (MBUs) in SRAM
caches by preventing the adjacent data bits to be grouped
in the same logical dataword. The configuration of per-
word and interleaved SEC-DED(72, 64) is illustrated in
Fig. 1(a) and Fig. 1(b), respectively.

Both per-word and interleaved ECCs are applicable to
STT-MRAM LLCs and none of the recent studies has
differentiated between these two configurations in term of
error correction capability. The advantage of interleaved
ECC over per-word ECC in SRAM LLCs for correcting
MBUs is not valid for STT-MRAM LLCs, because write
failure in the cells is independent of the cells adjacency.
A codeword is written correctly if write failure occurs in
none of its bits or only in a single bit. Assuming 64-bit
dataword protected by an 8-bit SEC-DED, the probability
of a correct write operation is according to (2):

Pword = pkwrite +

(
k

1

)
× p(k−1)

write (1− pwrite) (2)

where, Pwrite is the probability of successful transition
of single bit (calculated in (1)) and k is the number of
bits in the codeword that must be flipped. All codewords
must be written correctly in writing a cache block. The
probability of a successful write operation for a block is
according to (3):

Pblock = Pw0 × Pw1 × ...× Pw7 =

7∏
i=1

Pwi

=

7∏
i=1

[P kiwrite +

(
ki
1

)
× P (ki−1)

write (1− Pwrite)]

(3)

where, wi is codeword i in the block and ki is the number
of transitions in wi.
Pblock depends on the total number of transitions re-

quired for the target block as well as the distribution

TABLE I
Configuration of On-Chip Caches

 

L1 Cache      32KB, 4-way associative, 64B block size, write-back, SRAM

L2 Cache     1MB, 8-way associative, 64B block size, write-back, STT-MRAM 

of these transitions between the codewords. The higher
number of transitions and/or the larger variation in dis-
tribution of transitions, the lower probability of successful
write operation is experienced. While the former depends
on the data content and applications behavior, the latter
depends on the partitioning the data bits between code-
words, which is directly determined by the ECC configu-
ration.

When the total number of required transitions in a
block (K =

∑7
i=1 ki) is fixed, it can be easily proven that

the maximum value of Pblock in (3), which is the multipli-
cation of probability of successful write of all codewords,
is obtained when all kis are the same and equal to K/8.
Therefore, Pblock increases by more uniform distribution
of total transitions between the codewords and degrades
by larger variance of that distribution.

B. Observation and Motivation

To investigate the capability of per-word and inter-
leaved ECC configurations in evenly distributing the block
transitions between their codewords, we conduct a set of
simulations on SPEC CPU2006 benchmark suite using
gem5 cycle-accurate simulator [12]. The details of simu-
lation is described in Table I. Fig. 2 shows the total num-
ber of transitions for write operations in all bit positions
of cache blocks during the workload execution. Consid-
ering the transitions of bwaves workload in Fig. 1(a), the
number of transitions in 20% of upper part of each 64-bit
word is by 4x larger than of lower part of each word. On
the other hand, the transition pattern in all eight 64-bit
words are almost similar. For workloads with this write
pattern, which is the case for floating-point workloads, the
distribution of transitions in per-word ECC can be more
uniform than that in interleaved ECC.

Fig. 2(b) depicts another write pattern in which similar
behavior is observed for every 32-bit data. In this pattern,
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Fig. 2. Number of transitions in all bit positions of cache blocks:
(a) bwaves, (b) calculix, (c) cactusADM, and (d) mcf workloads.

which corresponds to calculix as an integer workload, the
number of transitions sharply drops in such a way that
the low part of data is more active than the upper part
by 14x. The write pattern of each 64-bit data in Fig. 2(c)
is almost similar to that of Fig. 2(a), while the number
of transitions in different words is largely different. In
this workload, the probability of existing a valid data in
a block decreases by increasing the position number of
words and a fraction of the block containing invalid data.
Considering mcf workload, an irregular behavior is ob-
served in the write pattern depicted in Fig. 2(d). In this
pattern, the number of transitions is almost randomly dis-
tributed. Even in this random pattern, a sharp drop can
be observed is in bit positions near 32, 64, 96, and so on.

The capability of both per-word and interleaved ECC
configuration is not easy to predict and strongly depends
on per write pattern. An optimal ECC configuration,
which provides the maximum probability of correct write
operation, is the one that can evenly distribute the transi-
tions between codewords in all write patterns. To demon-
strate how the non-uniformity in transition distribution
degrades the cache reliability, we calculate the cache er-
ror rate for per-word and interleaved configurations and
compare the results with error rate of optimal configura-
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Fig. 3. Cache error rate in per-word and interleaved ECC
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tion. Fig. 3 depicts the normalized error rate for three
mentioned ECC configurations. The results show that
the error rate in per-word and interleaved configurations is
higher than that of optimal by 151.7% and 42.3%, respec-
tively. This value for per-word ECC is as high as 544.0%
in cactusADM and as low as 10.5% in astar workload.
The worst-case error rate for interleaved ECC is 225.1%,
which is observed in h264ref workload.

C. Proposed Method

Write patterns vary in different applications and even in
different write accesses per application. We have already
observed that this variation leads to non-uniform distri-
bution of bit transitions and inefficiency of both per-word
and interleaved ECCs in correcting errors. An optimal
ECC, which evenly distribute the total number of transi-
tions between codewords in all write accesses minimizes
the cache error rate and provides the maximum reliability.

As observed in Fig. 3, for the majority of workloads,
the error rate in per-word and interleaved configurations
is significantly higher than that of optimal configura-
tion. An efficient ECC should provide a near-optimal
error rate for all workloads and all write accesses within
a workload. Our proposed ECC configuration, so-called
Incremental Oblique Interleaved (ROBIN) ECC, gen-
erates the codewords in such a way that variation in work-
loads behaviors has minimum impact on the ECC effi-
ciency and its error rate is not more than 10% higher
than that of the optimal ECC.

Prior to explain the architectural details of ROBIN,
here we elaborate how various workload behaviors cause
different transition distributions. This discussion clari-
fies the key idea behind ROBIN and highlights its capa-
bility in uniformly distributing the transitions in various
write patterns. The transition patterns of write opera-
tions are data-dependent and beside the content, differ-
ent data types cause different patterns. As an example,
in floating-point applications, the number of transitions
in exponent part is significantly larger than that in the
mantissa part. Our observations in Fig. 2(a) and Fig.
2(c) for bwaves and cactusADM workloads confirm this
intuition.

Considering integer applications, cache blocks contain
multiple 32-bit data words in which the transition prob-
ability in lower order bits is larger than that in higher
order bits. Majority of integer data are narrow-width val-
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Fig. 4. ECC configuration schematic for ROBIN ECC.

ues [21], which confirm our intuition on larger number
of transitions in lower order bits. We have already ob-
served this behavior in Fig. 2(b) for calculix workload.
Applications with large fraction of string data type have
their unique write pattern, which strongly depends on the
character coding standards. Besides the type of data, the
validity of cache block words affects the transition pat-
tern. There can be blocks in which all their words contain
valid data, e.g., bwaves workload in Fig. 2(a), and blocks
with several invalid words, e.g., some written blocks for
cactusADM as shown in Fig. 2(c).

An efficient ECC configuration should be capable of
evenly distributing the total transitions between all code-
words. To this aim, ROBIN partitions the data bits in
such a way that all 64-bit words in a block as well as
all eight bytes of these words contribute in generating all
ECC words. In addition, all bit positions of all bytes
within a word contribute similarly in each codeword.

Fig. 4 illustrates the ROBIN policy in constructing
codewords and generating ECCs. Considering a 512-bit
cache block consisting eight 64-bit data words, eight bits
from each data word contribute in generating each ECC.
From another aspect, all 64 bytes contribute in generating
all ECCs (one bit from each byte for each ECC). In addi-
tion, eight bit positions in each eight bytes of the word are
similarly distributed between the ECCs. For byte0 in the
words, all bit positions b0, b1, ..., b7 each selected from
byte0 of a unique word are in the same group. To bal-
ance the variation between bit positions of different bytes
inside a word, a unique bit position from each byte of a
word is selected for generating each ECC. Mathematically
speaking, each ECC word ECCn (n ∈ {0, ,1, ...,7}) is a
function of 64 data bits selected according to (4):

ECCn = f({bi,j,(i+j+n)| ∀i, j{0, 1, ..., 7}}) (4)

where, bi,j,(i+j+n) is a data bit in position (i+j+n)mod(8)
in bytej of wordi. Using this policy in grouping data
bits to generate ECCs, ROBIN is capable of distribut-
ing transition variations between data words, between
bytes of each word, and between bit positions of each
byte. For the sake of clarity, we focused on 512-bit cache
blocks protected by eight 8-bit SEC-DED codes. How-
ever, ROBIN configuration is generally independent of
data and ECC size as well as coding scheme. It is scalable
in term of block size and is also applicable to other ECCs.

This method has no effect on the complexity of ECC en-
coder/decoder logic and its overhead is almost the same
as those of interleaved ECC.

IV. Simulation Setup and Results

To evaluate the efficiency of the proposed ROBIN ECC,
we implement it in gem5 cycle-accurate simulator [12]
and use SPEC CPU2006 benchmark suite as workloads.
The first 100 million instructions are skipped as warm-up
phase and the results are extracted for the next one billion
instructions. The details of simulation was shown in Ta-
ble I. ROBIN is compared with per-word and interleaved
ECC in terms of transitions distribution and error rates.
The results are normalized to optimal ECC.

Fig. 5 depicts the variation in the total number of tran-
sitions in cache blocks. For all write accesses in a work-
load, we sort the number of transitions in eight codewords
in a block and the summation of these values are normal-
ized to the average of transitions in codewords (which is
the number of transitions in optimal ECC). In Fig. 5,
the number of transitions in codewords with minimum
and maximum transitions is depicted for per-word, inter-
leaved, and ROBIN configurations. Normalizing to the
number of transitions in a codeword for uniform distri-
bution (optimal), the results show that the number of
transitions in codewords of per-word ECC is from 41.1%
to 208.8%, on average. This interval is smaller for inter-
leaved ECC and the minimum and maximum transitions
in codewords are 43.6% and 169.2%, respectively. ROBIN
significantly reduces this gap by limiting the number of
transitions in codewords between 73.7% to 128.4%, on av-
erage. The interesting achievement is that in the worst
case, the minimum and maximum transitions of codeword
in ROBIN is larger than 61.8% and lower than 146.1%,
respectively. These values for per-word ECC are 7.4%
and 390.4%, respectively, and for interleaved ECC are
17.8% and 222.2%, respectively. The wider gap between
the number of transitions in codewords indicates larger
non-uniformity, which result in higher cache error rate
compared to uniform distribution (optimal ECC).

Fig. 6 depicts the cache error rate in three evaluated
ECC configurations. The results illustrate the increase
in cache error rate due to non-uniformity of transitions
distributions compared to the optimal ECC. On average,
per-word and interleaved ECC increases the error rate by
151.7% and 42.3%, respectively. This value is reduced to
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Fig. 5. Variation in number of transitions between codewords of cache blocks (minimum, average, and maximum).
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Fig. 6. Cache error rate increase for per-word, interleaved, and
ROBIN ECC configurations normalized to the optimal ECC.

5.3% in ROBIN. Therefore, ROBIN reduces the error rate
for per-word and interleaved ECC due to non-uniformity
of transitions by 28.6x and 8.0x, respectively. For some
workloads, error rate in per-word increases by even more
than 300%, e.g., cactusADM , sjeng, and libquantum. In
the worst-case, interleaved ECC increases the error rate
by 225.1% in h264ref . The error rate increase in ROBIN
is less than 10% for all workloads. This value is even less
than 1% for some workloads, e.g., cactusADM , namd,
sjeng, and astar, which is almost the same as optimal
ECC.

It is worth noting that ROBIN provides this near-
optimal reliability with the same cost as per-word and
interleaved ECC. Its area and energy consumption is sim-
ilar to those of conventional ECC configurations. In ad-
dition, it has no impact on a cache access time compared
to existing configurations.

V. Summary and Conclusions

Write failure is the main reliability challenge in emerg-
ing STT-MRAM caches. Data dependency and variations
in different codewords of a block significantly degrade the
efficiency of conventional ECCs. This paper 1) investi-
gated the commonly used per-word and interleaved ECCs
and revealed that these schemes increase the cache error
rate by 151.7% and 42.3%, respectively, and 2) proposed
near-optimal ROBIN ECC to reduce the cache error rate
to as low as 5.3%. This significant improvement in cache
reliability is achieved with no increase in ECC overheads.
ROBIN is a promising alternative for conventional per-
word and interleaved configurations to maximize the effi-
ciency of ECCs in emerging STT-MRAM caches.
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