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Abstract—In recent years, increased /O demand of Virtual Machines (VMs) in large-scale data centers and cloud computing has
encouraged system architects to design high-performance storage systems. One common approach to improving performance is to employ
fast storage devices such as Solid-State Drives (SSDs) as an I/O caching layer for slower storage devices. SSDs provide high performance,
especially on random requests, but they also have limited endurance: they support only a limited number of write operations and can
therefore wear out relatively fast due to write operations. In addition to the write requests generated by the applications, each read miss
in the SSD cache is served at the cost of imposing a write operation to the SSD (to copy the data block into the cache), resulting in an
even larger number of writes into the SSD. Previous I/O caching schemes on virtualized platforms only partially mitigate the endurance
limitations of SSD-based I/O caches; they mainly focus on assigning efficient cache write policies and cache space to the VMs. Moreover,
existing cache space allocation schemes have inefficiencies: they do not take into account the impact of cache write policy in reuse distance
calculation of the running workloads and hence, reserve cache blocks for accesses that would not be served by cache.

In this paper, we propose an Efficient Two-Level I/O Caching Architecture (ETICA) for virtualized platforms that can significantly improve
1/0 latency, endurance, and cost (in terms of cache size) while preserving the reliability of write-pending data blocks. As opposed to previous
one-level 1/0 caching schemes in virtualized platforms, our proposed architecture 1) provides two levels of cache by employing both Dynamic
Random-Access Memory (DRAM) and SSD in the I/O caching layer of virtualized platforms and 2) effectively partitions the cache space
between running VMs to achieve maximum performance and minimum cache size. To manage the two-level cache, unlike the previous
reuse distance calculation schemes such as Useful Reuse Distance (URD), which only consider the request type and neglect the impact of
cache write policy, we propose a new metric, Policy Optimized reuse Distance (POD). The key idea of POD is to effectively calculate the
reuse distance and estimate the amount of two-level DRAM+SSD cache space to allocate by considering both 1) the request type and 2)
the cache write policy. Doing so results in enhanced performance and reduced cache size due to the allocation of cache blocks only for the
requests that would be served by the 1/0 cache. ETICA maintains the reliability of write-pending data blocks and improves performance by
1) assigning an effective and fixed write policy at each level of the 1/O cache hierarchy and 2) employing effective promotion and eviction
methods between cache levels. Our extensive experiments conducted with a real implementation of the proposed two-level storage caching
architecture show that ETICA provides 45% higher performance, compared to the state-of-the-art caching schemes in virtualized platforms,
while improving both cache size and SSD endurance by 51.7% and 33.8%, respectively.
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INTRODUCTION A
L I B
Virtualized platforms are widely used in large scale data @mox ;
centers to provide significantly improved availability and

flexibility. In such platforms, multiple Virtual Machines (VMs)
provide different services on shared hardware. VM manage-
ment and resource partitioning between VMs are performed
by the hypervisor, which plays a major role in the virtualized
platforms and aims to maximize performance and system
utilization. The key advantages of virtualized platforms that
are continuously evolving in computing industry are: 1) high
flexibility due to the ability to run multiple VMs with dif-
ferent Operating Systems (OS), 2) high resource utilization, 3)
resource isolation between different VMs, and 4) allocation of
dynamically adjustable resources to the VMs [1].

The growing popularity of I/O intensive applications in
data centers, such as Online Transaction Processing (OLIP),
banking, data analysis, and other big data workloads, greatly
increases the demand for high-performance storage subsys-
tems. Existing storage systems still mainly consist of high-
capacity and low-performance Hard Disk Drives (HDDs) with
the goal of storing very large amounts of data at low cost.
Such storage systems have become the performance bottle-
neck in large-scale data centers due to the growing per-
formance gap between HDDs and processing elements in
enterprise servers (as depicted by I/O Operations Per Second
(IOPS) performance in Fig. 1).

To alleviate the performance shortcomings of such HDD-
based storage systems, enterprise manufacturers, such as Dell
EMC, HP, and NetApp [3], [4], [5], and various research works
on emerging storage architectures, such as [6], [7], [8], [9], [10],
(11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], propose I/O caching schemes that accelerate the response
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Fig. 1: Comparison of different storage devices in terms of
cost ($/GB) and performance (IOPS). SSD-C: Consumer SSD,
SSD-M: Midrange SSD, SSD-E: Enterprise SSD, DDR4 DRAM:
Double Data Rate 4" generation, HDD-7K: HDD with 7K
Revolutions Per Minute (RPM), HDD-10K: HDD with 10K RPM
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time of I/O requests. High-performance storage devices such
as Dynamic Random Access Memories (DRAMSs) and Solid-State
Drives (SSDs) can be employed in the I/O caching layer to
alleviate the low performance of HDDs. As depicted in Fig.
1, DRAM provides the highest performance among many
types of storage/memory devices [24] and thus seems to
be the best candidate to employ in the I/O caching layer.
However, DRAM is expensive, and using volatile DRAM as
a cache comes with reliability hurdles for write requests. A
DRAM-based I/O cache requires additional battery backups
to correctly maintain the data buffered in DRAM to survive



power outages and system failures. Compared to DRAM,
enterprise SSDs have about 12X lower cost and offer 20X
less performance but they provide 500X higher performance
than HDDs. In contrast to DRAM, SSDs are non-volatile and
typically do not suffer from data loss due to power outages,
but they support only a limited number of reliable writes
[25], [26], [27], [28], [29], [30]. Thus, the main shortcoming
of SSDs is their endurance limitation where both performance
and reliability are significantly degraded when the number
of committed writes exceeds the endurance limit (i.e., when
the SSD wears out, as shown in Fig. 1). In addition, frequent
replacement of such expensive SSDs imposes significant cost
and reliability issues! in storage systems. Recent studies, such
as [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [32], propose 1/O caching schemes based on SSDs.
Among such studies, only few are applicable to virtualized
platforms [6], [9], [10], [11], [32]. Such I/O caching schemes
aim to either only improve performance without considering
the endurance of the SSD [7], [10], [11], [12], [13], [14], [32]
or attempt to improve performance with minimum overhead
on SSD endurance [6], [8], [9]. In addition, such studies
suffer from two main shortcomings: 1) their performance
improvement is limited by the high SSD latency (relative to
DRAM) and 2) their endurance-preserving techniques lead to
performance degradation.

Another approach to improving the performance of stor-
age systems is to use hybrid techniques that take advantage
of both DRAM and SSDs in the I/O caching layer. Multiple
industrial approaches (e.g., the Dell EMC FAST cache [3]
and ZFS L2ARC cache [33], [34], [35], [36]) and academic
studies [37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53] employ two levels of I/O
caching using both DRAM and emerging Non-Volatile Memo-
ries (NVMs)/SSDs in their storage architectures. Such caching
schemes, however, suffer from several important shortcom-
ings: 1) They cannot provide cache space partitioning across
VMs, which results in poor performance and high cost in
virtualized platforms. 2) Buffered data in DRAM cache is at
risk of loss due to sudden power outage; additional battery
backups add significant cost overhead to the caching scheme.
3) The employed mechanisms for detecting hot data blocks
are not accurate since they do not consider any workload
characteristics, such as reuse distance of the accesses. 4) Past
works do not provide write policy management at DRAM or
SSD levels and most schemes configure both cache levels to
use the Write Back (WB)? policy. 5) Such schemes only focus
on detecting and promoting hot data blocks to the cache while
there is no specified method to detect and evict cold data
blocks (i.e., least recently accessed data blocks) from cache.

Most recent cache space partitioning schemes in virtual-
ized platforms employ reuse distance analysis to estimate
each VM'’s cache size, but they neglect key parameters such as
request type and cache write policy [6], [11]. The state-of-the-art
scheme, ECI-Cache [6], proposes Useful Reuse Distance (URD)
and considers the request type in reuse distance calculation.
However, it neglects the impact of cache write policy on the
reuse distance calculation, and, as a result, it over-estimates
the cache sizes for caches with write policies other than WB
and Write Through (WT). ECI-Cache estimates the cache sizes
of the VMs based on the URD metric and assigns a cache write
policy on a per-VM basis. As such, it results in improved
SSD endurance and performance-per-cost. The URD metric

1. Due to the degraded mode of Redundant Array of Independent Disks
(RAID) [31] during the rebuild process in SSDs.

2.In a WB cache, the data block is written into the cache but the
corresponding location in the hard disk is updated only when the data
block is evicted from the cache, or at specific time intervals.
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is optimized for caches with WB and WT policies. It over-
estimates the cache size for caches with other write policies
(e.g., Read Only (RO)). If we use the URD metric in a cache
with the RO policy, cache blocks would be allocated for write
requests that would not be buffered in the RO cache, and thus
the allocated blocks remain unused.

In this paper, we first propose a new metric, called Policy
Optimized reuse Distance (POD), which considers the impact
of the cache write policy in addition to request type in reuse
distance calculation. POD, unlike URD, does not reserve
cache blocks for accesses that would not be supplied by
the cache and, hence, allocates much smaller cache space
for a VM, compared to URD, while preserving the VM'’s
performance. Second, we propose the Efficient Two-Level 1/O
Caching Architecture (ETICA) for virtualized platforms. ETICA
employs two levels of cache, with DRAM at the first and SSD
at the second level. Using the POD metric, the proposed
architecture effectively partitions the space of both levels of
cache between VMs and improves both performance and
endurance.

In our proposal, we first assign an effective and fixed
write policy to each cache level that provides high reliability
and high endurance in DRAM and SSD levels, respectively.
Second, using the POD metric, we partition the cache space
by assigning an efficient cache size to each VM, which max-
imizes performance-per-cost. Third, we propose promotion
and eviction methods to effectively transfer popular (i.e., hot)
and unpopular (i.e., cold) data blocks between the two cache
levels. Unlike previous I/O caching schemes, our proposed
two-level cache does not evict popular data blocks from the
cache until they become unpopular. Via online monitoring
of I/O characteristics of the running workload, we extract
several metrics such as 1) frequency, 2) type, and 3) POD of
accesses in the running VMs. The extracted information is
used to 1) estimate an efficient cache size for each VM and 2)
detect popular and unpopular data blocks. To summarize, our
proposed two-level I/O caching scheme aims to: 1) enhance
both read and write performance, 2) overcome the reliability
issues of the volatile DRAM cache, 3) improve the lifetime of
the SSD cache, and 4) reduce the overall cost of the two-level
cache (in terms of cache size allocated to each VM).

We implement our proposed two-level I/O caching
mechanism on a real virtualized system including: 1) per-
VM cache size estimation, 2) write policy assignment, 3)
popular/unpopular data block detection, and 4) promo-
tion/eviction mechanisms. We evaluate ETICA with more
than 10 VMs running real application workloads from SNIA
[54], [55]. Our experimental results show that the proposed
architecture provides 45% lower 1/0O latency while also im-
proving effective cache size and SSD endurance by 51.7%
and 33.8%, respectively, compared to the best state-of-the-art
caching scheme in virtualized platforms.

We make the following contributions.

e We propose a novel two-level 1/O cache for virtualized
platforms, using DRAM and SSD, that resolves reliability,
endurance, and performance issues without any additional
high-cost peripherals such as battery backups or internal
disks.

e We propose a new metric, Policy Optimized reuse Distance
(POD), which refines the concept of useful reuse distance
calculation based on cache write policy. This metric does not
allocate cache space for accesses that would not be served
by the cache. Thus, it assigns a smaller cache space to each
VM, resulting in lower cost.

o We propose a mechanism to assign efficient write poli-
cies for different cache levels to balance endurance and
reliability of the I/O cache. Our mechanism enables read



requests to be supplied from DRAM and write requests to
be supplied from the SSD.

« Via online characterization of I/O requests, our technique
effectively determines popular and unpopular data blocks.
Our proposed promotion and eviction methods buffer and
hold data blocks in the cache while they remain popular.

o We implement the proposed two-level I/O cache in a real
system and evaluate the performance and endurance of our
scheme by performing extensive experiments with more
than 10 VMs running real application workloads on an
open-source hypervisor, QEMU [56].

o We find ETICA to provide higher performance, higher
efficiency, and higher endurance than the state-of-the art
I/0 caching schemes for virtualized platforms [6].

2 RELATED WORK

In this section, we first describe and analyze the previous
I/0 caching architectures in virtualized platforms. Second, we
analyze the existing I/O cache architectures in two groups: 1)
single level and 2) multi level, which are mainly employed in
non-virtualized platforms.

2.1 1/0 Caching in Virtualized Platforms

S-CAVE [10], vCacheShare [9], Centaur [11], and ECI-Cache
[6] are the most state-of-the-art hypervisor-based I/O caching
schemes in virtualized platforms. Such schemes employ a
single level of SSD cache and mainly focus on dynamic and
efficient cache space partitioning between running VMs. S-
CAVE [10] uses the Working Set Size (WSS) of the VMs for
cache space estimation. To preserve the reliability of write
requests, the write policy of the SSD cache is set to Write
Through (WT). Such cache size estimation (based on WSS) is
deprecated and fails to accurately estimate the cache space
needed for workloads with sequential access patterns [6].

vCacheShare [9] estimates the cache size of the VMs based
on locality and reuse intensity (i.e., workloads’ burstiness).
vCacheShare considers both reliability and endurance by ap-
plying Write Around (WA) or Read Only (RO) write policies
which direct the write requests to the disk subsystem and
only improve the performance of read accesses via caching.
The cache size estimation scheme used in vCacheShare is
applicable to CPU caches, but its assumptions (e.g., reuse
intensity) cannot be applied in I/O caches [11]. vCacheShare
does not improve the performance of write requests.

Centaur [11] assigns cache space to the running VMs based
on reuse distance analysis, which is an effective approach to
cache size estimation. The write policy of the SSD cache is
simply set to Write Back (WB). Such a cache size estimation
scheme does not consider either the request type or the cache
write policy, which leads to over-estimation of the cache sizes,
negatively impacting cost. In addition, by using the WB
policy, Centaur negatively affects both storage reliability and
the endurance of the SSD cache.

ECI-Cache [6] is the latest state-of-the-art I/O caching
scheme for virtualized platforms, which overcomes the short-
comings of previous schemes. It proposes the Useful Reuse
Distance (URD) metric, which considers request type in cache
size estimation and reduces the allocated cache space while
preserving performance, enabling lower cost. ECI-Cache dy-
namically assigns either the WB or the RO policies for each
VM and thus provides higher performance and endurance for
the SSD cache. There are four issues with ECI-Cache, which
we aim to overcome with our new design. First, ECI-Cache
dynamically assigns RO and WB policies on the VM’s cache,
while URD-based cache size estimation does not consider the
cache write policy and only works for WB and WT caches.
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URD reserves cache blocks for the accesses that would not
be served by the cache due to different cache write policies,
and therefore, it over-estimates the size of the caches using
other policies, such as RO. For instance, in an RO cache,
URD reserves cache blocks for write accesses that would
not be buffered in the cache. Second, ECI-Cache is only a
one-level (i.e., SSD-only) I/O cache where the performance
improvement is limited by the performance of the SSD. Third,
ECI-Cache updates the cache content on each cache miss and
therefore imposes a large number of unnecessary writes into
the SSD cache. Fourth, ECI-Cache’s cache update scheme is
supposed to promote any missed data blocks into the cache.
Such scheme may evict a hot data block to promote a data
block without any future references into the cache, resulting
in performance degradation.

To summarize, existing hypervisor-based 1/0O caching ar-
chitectures suffer from three major shortcomings: 1) they
employ only an SSD in the caching layer, and thus their
performance improvement is limited by the performance of
the SSD (which is much lower than that of DRAM), 2) they
fail in cache size estimation under different workloads and
different cache write policies, and 3) they fail in balancing
performance and endurance.

2.2 /O Caching in Non-Virtualized Platforms

2.2.1 Single Level I/O Caches

A relatively high-performance memory device, such as
DRAM or SSD is employed in the caching layer to close
the performance gap between the processing units and
the storage subsystem (which is mainly composed of low-
performance HDDs) [7], [8], [12], [14], [18], [19], [57]. Such 1/O
caching schemes improve the performance of I/O requests by
providing efficient cache space allocation and configuration.
However, they neglect other key parameters such as storage
reliability and endurance of the SSDs. Argon [57] aims to
efficiently partition the DRAM cache space between different
services to maximize the cache hit ratio. Janus [12] allocates
SSD space based on the ratio of read accesses of the workload
and aims to improve the performance of read requests. Hystor
[7] employs an SSD cache to improve the performance of
read and write accesses and aims to identify and buffer the
data blocks, which helps in improving the hit ratio. ReCA
[8] characterizes the workloads of running applications and
provides a per-application cache configuration. This scheme
aims to improve both performance and endurance by as-
signing different cache policies to different applications, but
it cannot minimize the number of SSD writes (mainly the
writes due to read misses) because it uses a single SSD in the
caching layer. ReCA is able to reconfigure 1) cache line size,
2) write policy, and 3) eviction policy. This scheme allocates
cache space globally and neglects the cache management
in case of running multiple workloads (i.e., services). Such
scheme cannot be applied in virtualized platforms, where
multiple VMs are running on the system. Since this approach
only employs SSDs in the caching layer, the performance
improvement is limited by the highest performance of the
SSDs. SHARDS [58] presents a hashed approximate reuse
distance sampling scheme to be used in cache size estimation.
This scheme improves the performance of reuse distance
calculation without considering requests type and cache write
policy in reuse distance calculation.



2.2.2 Multi Level I/O Caches

Such schemes employ both SSD and DRAM in the I/O
caching layer.® uCache [37] provides a simple two-level I/O
cache design by employing DRAM and SSD. In this scheme,
data blocks are kept in DRAM until they are evicted, and
after eviction they are moved to the SSD. uCache improves
the process of demoting data blocks from DRAM to SSD
by aggregating a large number of small writes and, hence,
improves the endurance of the SSD. However, write-pending
data blocks are kept in the volatile DRAM cache, which results
in data loss in case of power failure. Molar [38] presents
a simulator-based hybrid I/O cache without any improve-
ment in eviction/promotion methods. This scheme consists
of DRAM, SSD, and HDD tiers and migrates data blocks
between them. Molar aims to predict the future accesses and
decides which data block should be evicted from DRAM
based on this prediction. This scheme does not employ any
cache write policy management on different tiers and hence
cannot preserve 1) the reliability of buffered data blocks in the
volatile DRAM cache, and 2) the endurance of the SSD cache.

In [22], DRAM, Write Optimized SSD (WO-SSD), and Read
Optimized SSD (RO-SSD) are used in the caching layer. Write
requests are buffered in both DRAM and WO-SSD, read
misses are promoted to DRAM, and evictions from DRAM
are directed into the RO-SSD. The main shortcomings of this
architecture are: 1) Write requests are directed to both DRAM
and WO-5SD, hence, they experience the write latency of the
SSD. Using DRAM to buffer the write accesses has no impact
on the performance of writes and only helps to improve the
latency of future reads that may hit in DRAM (i.e., RAW
accesses). The limited DRAM space and small ratio of RAW
accesses lead to very small performance improvement by this
architecture. 2) This architecture prevents buffering write ac-
cesses in the RO-SSD (to preserve the lifetime of RO-5SD), but
on the other hand, evictions from the DRAM and promotions
of read misses are performed on RO-SSD which impose extra
writes and have a negative impact on the limited lifetime of
RO-SSDs. 3) This method is a global cache which cannot assign
efficient cache space for the running services, and hence, is not
applicable in virtualized platforms.

Zettabyte File System (ZFS) Level 2 Adaptive Replacement
Cache (L2ARC) [33], [34], [35], [36] is a file system level cache,
which improves upon Adaptive Replacement Cache (ARC) [69]
by employing an SSD between DRAM and HDD (i.e., disk
subsystem), thereby reducing the latency of read misses.
L2ARC works in a simple First In First Out (FIFO) mode and
only improves the performance of read requests. As shown
in Fig. 2a*, read requests may be supplied from DRAM or
SSD (i.e., hit), and read misses are supplied from the disk
subsystem and promoted into DRAM. L2ARC predicts to-
be-evicted data blocks from DRAM and pushes them to the
SSD (before they have to be evicted). The major shortcomings
of L2ARC are: 1) it lacks an efficient promotion/eviction
method: only a simple FIFO manages the contents of the SSD,
2) it could waste the SSD space by pushing data blocks from
DRAM to SSD before their eviction, 3) by keeping evicted

3. Many recent works examine DRAM cache design [59], [60], [61], [62],
[63], [64], [65] for hybrid main memory systems, e.g., those combining
DRAM and Phase Change Memory (PCM) 6159], [66], [67] or Spin-Transfer
Torque Ma$netic Random-Access Memory (STT-MRAM) [68]. Our work is
significantly different, since none of these recent works 1) are applicable
to I/O caching in virtualized storage systems (as they focus on main
memory), 2) develop the new reuse distance metric we introduce and
evaluate. As such, our work is orthogonal to such hybrid main memory
system designs, and the reuse distance metric we introduce can be useful
within the hybrid main memory system context — an avenue we leave for
future work.

4. L2ARC does not buffer write requests in the SSD and, hence, we do
not provide the flow of write accesses in Fig. 2.
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blocks in the SSD, L2ZARC mainly improves the performance
of Read After Read (RAR) accesses with a reuse distance larger
than the DRAM size (i.e., non-popular blocks), which has a
relatively small impact on overall performance.

Dell EMC Fully Automated Storage Tiering (FAST) cache
[3] is an enterprise approach that employs a two-level I/O
cache in storage products. This scheme sets the write policy
of the DRAM cache (called SP® cache) to Write Back (WB) to
accelerate the performance of write requests and uses battery
backups to maintain reliability in the presence of power and
system failures. The write policy of the SSD cache is also set
to WB. Fig. 2b and Fig. 2c show how FAST handles read and
write requests. It employs a very simplistic method to identify
hot data blocks where a block with more than three accesses
in a recent time interval is identified as hot. Hot blocks are
promoted to the SSD cache. There is no specified rule for
evicting data blocks from cache. Thus, FAST may evict hot
data blocks early from the cache (due to promoting new data
blocks), which affects both performance and endurance of the
SSD. In this case, promotion of the evicted hot data block
again imposes additional write operations on the SSD.

1: DRAM Read 1: DRAM Read
CPU 2: DRAM Hit 2: DRAM Hit CPU
1“ 3 3: SSD Read 3: SSD Read 1
4: SSD Hit 4: SSD Hit .
v 5: Disk Read 5: Disk Read 1: DRAM Write
6: Cache 6: Cache DRAM 2: ACK
e: Evict 7: Promote e: Evict
SSD
L1z
Disk Subsystem | Disk Subsystem | Disk Subsystem |

(a) L2ARC (b) FAST (Read) (c) FAST (Write)

Fig. 2: Architecture of two-level I/O caches employed in
enterprise storage systems.

Table 1 summarizes the previously discussed architec-
tures. Among all previous proposals, uCache [37], L2ZARC
[33], [34], [35], [36], and FAST [3] as two-level caching schemes
and ECI-Cache [6] as a hypervisor-based I/O caching scheme
are close to our proposal. However, the previous two-level
caching schemes neglect cache write policy assignment on
different cache levels and hence, fail to provide storage re-
liability and high endurance for the SSD cache. L2ZARC works
in the file system level and only improves read performance
without considering the endurance of the SSDs. L2ARC fails
in detecting popular blocks and does not provide efficient
eviction/promotion methods where the cache is managed
in a simple FIFO mode. FAST cache keeps write pending
data blocks in volatile DRAM cache and employs additional
battery backups to provide reliability and hence imposes
additional cost. However, such scheme cannot guarantee the
reliability of write pending data blocks. In addition, FAST
cache employs a simple method to recognize hot data blocks
which fails in different types of workloads. uCache keeps
both read and write data blocks in DRAM. Thus, a power
failure leads to data loss. On the other hand, the DRAM cache
becomes polluted due to caching all requests in such small
space. In addition, uCache does not consider the popularity
of data blocks in the proposed caching scheme. ECI-Cache
dynamically assigns different write policies on different VMs
caches but does not take into account the impact of cache
write policy on cache size estimation and hence, overestimates
cache sizes for the VMs that use write policies other than
WB. ECI-Cache imposes additional write operations to the
SSD cache by updating the cache on each miss operation. In

5. SP: Storage Processor



addition, it is one level: it employs only an SSD, no DRAM.
Buffering both read and write requests in the SSD reduces the
SSD endurance.

TABLE 1: Summary of previous architectures (WSS: Working
Set Size, RI: Reuse Intensity, TRD: Traditional Reuse Distance,
URD: Useful Reuse Distance, and POD: Policy Optimized
reuse Distance).
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3 MOTIVATION AND ILLUSTRATIVE EXAMPLE

I/0O caches are employed to enhance the performance of
storage systems. High-locality data blocks are kept in the
cache to serve future requests to them faster and hence
reduce the response time significantly. Currently, enterprise
storage systems employ high-performance SSDs in the 1/O
caching layer. SSDs provide more than 500X the performance
provided by HDDs (in terms of IOPS for random requests)
but SSDs wear out fast due to write operations. Depending
on the cache write policy, both read and write requests from
the application layer may impose write operations on the
SSD. Four different write policies can be used on the cache.
We elaborate on how 1) requests are supplied by the cache,
and 2) performance, reliability, and endurance are affected by
different write policies:

« Write Back (WB) (with write allocate and no read through®)
buffers write requests in the I/O cache and writes them
back to the storage subsystem when the dirty blocks are
evicted. Read requests are also buffered in a WB cache. Each
miss from the cache imposes an additional write operation
into the cache to store the read block. The WB policy reduces
write accesses to the disk subsystem and thus improves
both read and write performance. WB policy may lose the
write-pending data before they can be written back to the
storage subsystem, on power failure. In addition, an SSD
WB cache wears out fast due to the large number of write
operations induced on the cache.

6. A read through cache buffers read misses in the cache, and hence,
serves further read accesses to that address.
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o Write Through (WT) (with write allocate and no read
through) buffers write requests in the I/O cache and at the
same time also commits them to the storage subsystem. In
addition to writes, WT cache buffers also read requests. WT
does not improve write performance and only helps read
performance. WT policy preserves the reliability of writes
since it does not buffer any write-pending data (i.e., dirty
blocks). WT policy has the same negative impact on the
endurance of the SSD as the WB policy.

e Write Only (WO) (with write allocate and read through)
handles the write requests in a similar way to the WB
policy. Read requests are not buffered in the WO cache.
Hence, this policy improves the performance of only write
and Read After Write (RAW) operations. WO does not incur
additional write operations due to read misses in the cache
and, therefore, significantly improves the endurance of an
SSD cache.

e Read Only (RO) (with no read through) buffers only read
requests and directs writes to the storage subsystem. RO
improves only read performance and preserves the relia-
bility of write requests. RO has a positive impact on SSD
cache endurance because it does not expose the I/O write
requests to the cache.

We conduct comprehensive experiments to examine the
impact of these write policies on the performance and en-
durance of the SSD cache (in terms of number of write oper-
ations on the SSD). The results of these experiments motivate
us in selecting the optimized cache policies to provide higher
performance, endurance, and reliability in our proposed 1/0
caching architecture. In these experiments, we study the use
of an SSD as a caching layer for the HDD-based storage
subsystem with three types of write policies: 1) WB, 2) RO,
and 3) WBWO (i.e.,, WB and WO). WT cache compared to WB
(as described earlier) provides similar performance for read
accesses and degraded performance for write accesses (due to
simultaneous writes in both SSD and HDD devices). Hence,
we do not report WT cache performance in our evaluations.

To do so, we perform experiments on a real system. The
experimental setup and the running workloads are reported
in Table 2. We use an open-source EnhancelO cache module
[70] to implement our I/O caching scheme. The system is
warmed up for 30 minutes and then we run the workload
for one hour.

TABLE 2: Setup of the motivational experiments.

Hardware
HDD

6x 4TB SAS 7.2K Seagate HDD in R5 (5+1) configuration

Disk Partition size: 200GB

3SD 4x 2TB Samsung 863a SSD in R10 (2+2) configuration
Disk Partition size: 50GB

DRAM 128GB Samsung DDR4

CPU 32xIntel(R) Xeon (R) 2.1GHz CPU core

Software |
OS [ CentOS7 (kernel version: 3.10.327) |

Workloads ]
Access 10 10

Req. Req.

FIO [71] Threads

RandRW Size Type é’at;ern Depth Engine
Read/Write sandom o
8KB (Read: 70%) (dlsAtrﬁ.)uhon: 16 16 Libaio
zipf:1.1)
FileBench Req. Req. Access .
[72] Size Type Pattern Threads WsS
;V eb 64KB Read/Write Random 100 65GB
erver
g‘deo 256KB Read Sequential 48 120GB
erver
Varmail 64KB Read/Write Random 16 62GB

Fig. 3 shows the results of the experiments, in terms of
both performance (measured as Input/Output Operations Per
Second (IOPS)) and endurance (measured in terms of com-
mitted write operations on the SSD). We make four major
observations:

1) In the FIO-RandRW workload, WB achieves the highest
performance. But, WB also imposes the highest number of
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Fig. 3: Effect of the cache write policy on the performance of workloads and endurance of the SSD cache (WB: Write Back, RO:
Read Only, WBWO: Write Back and Write Only, and IOPS: Input/Output Operations Per Second).

2)

3)

write operations on the SSD compared to other policies.
As shown in Fig. 3a, by using WBWO cache, performance
decreases by 10.7% while the number of write operations
on the SSD also decreases by 32%. The RO cache pro-
vides about 78% lower performance compared to the WB
cache while it decreases the SSD writes by 82%. This is
because the FIO-RandRW workload mainly includes Read
After Write (RAW) operations (70% read operations), where
buffering the write requests in the cache (as in the WB
and WBWO policies) significantly improves both read and
write performance. WBWO policy does not cache read
misses and hence decreases the number of SSD writes by
32% with only 10% performance degradation, compared
to the WB cache. On the other hand, RO does not help
the performance of RAW operations and, therefore, cannot
provide good performance. In addition, RO does not cache
I/O write requests and hence, provides no performance
improvement for them.

In the Web Server workload, the WB policy achieves the
highest performance while also having the highest number
of write operations on the SSD. The difference in perfor-
mance provided by the three policies is very low: Fig.
3b shows that the WB cache achieves about 15% higher
performance compared to WBWO by imposing 98% more
writes on the SSD. Compared to RO, WB only marginally
improves performance (by 2.7%) at the cost of imposing
11.3% more writes on the SSD. This is because the Web
Server workload mainly includes random cold reads (i.e.,
the first read access to an address) with low locality of
reference, and keeping such data blocks in the SSD cache
does not help in improving read performance. The WB
and WO caches keep read miss data blocks in the SSD
cache and impose about 178M and 158M writes on the
SSDs, respectively, while WBWO, compared to WB, does
not cache read misses and achieves almost similar read
performance (about 15% lower) with a significantly smaller
number of writes on the SSDs (about 98% lower).

In the Video Server workload, all three polices achieve
the same read and write performance with considerable
difference in the number of SSD writes. As shown in Fig.
3c, WB, RO, and WBWO achieve 382 IOPS in read and
0 IOPS in write requests (the running workload includes
only read requests). WB and RO impose about 29M writes
on the SSD cache while WBWO does not perform any
write operations on the SSD cache. This is because the
Video Server includes sequential read requests without
any locality of reference. Thus, WB and RO perform a
large number of unnecessary writes (due to read misses)
into the SSD cache without any performance gain. WBWO
imposes no writes to the SSD cache and achieves the same

performance as WB and RO. Note that for such a sequential
read workload, all requests are supplied from the HDD
and the cache hit ratio is equal to 0.

In the Varmail workload, WB has the highest performance
and SSD writes. Both WBWO and RO reduce performance
and SSD writes over WB. This is because the RO and
WBWO caches fail in serving RAW and RAR accesses,
respectively. Fig. 3d shows that both read and write per-
formance of WB are about 41% more than WBWO while
WBWO imposes about 40% fewer writes on the SSD.
Compared to RO, WB achieves 61% higher performance
by imposing 73% more writes into the SSD. The reason
is that Varmail includes an equal number of random read
and write requests. WBWO does not cache read misses
and hence cannot help the RAR requests, but it reduces
the number of writes on the SSD. RO does not buffer write
requests and thus RAW requests, but it reduces the number
of writes on the SSD.

Our main experimental conclusions are:

1) In most of the workloads, WB cache achieves the highest
performance for read and write requests, however it also
imposes the highest number of writes on the SSD. Hence,
WB does not balance performance and endurance.

In workloads with a large number of cold reads (such
as Web Server and Video Server), WBWO has almost the
same performance as WB while it imposes a much smaller
number of writes on the SSD cache.

In workloads with a large number of read requests (such
as FIO-RandRW), WBWO cannot provide as good read
or write performance as WB, but it results in a smaller
number of SSD writes.

RO cache can be employed in read-intensive workloads
with a large number of re-references to greatly extend
the SSD lifetime with negligible performance impact com-
pared to WB.

In workloads such as Video Server and Web Server, cache
read misses impose a large number of write operations on
the SSD, affecting both endurance and performance.

4)

2)

3)

4)

5)

4 ETICA ARCHITECTURE

In this section, we present the architecture of our proposed
two-level 1/0O cache, ETICA. ETICA has four major charac-
teristics. It: 1) employs both DRAM and SSD in the caching
layer of virtualized platforms, 2) assigns effective cache write
policies to the two levels of cache, 3) effectively detects the
popular data blocks and aims to evict only unpopular blocks
from the cache, and 4) allocates efficient cache space for the
VMs using the Policy Optimized reuse Distance (POD) metric.
Fig. 4 provides an overview of the proposed two-level
cache for virtualized platforms. The I/O cache employs two



levels including DRAM in the first and the SSDs in the second
level. The information about the content of cache levels is kept
in a table called Map. The hypervisor receives the I/ O requests
of the VMs, and routes them to the storage subsystem. The
two-level cache resides on the path of requests to the disk
subsystem. The cache searches the destination address of the
requests in Map and finds out whether the corresponding data
is located in the 1°! level (i.e., DRAM hit) or the 2"% level (i.e.,
SSD hit). If neither is the case, the request is supplied by the
disk subsystem (i.e., cache miss).”
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Fig. 4: Architecture of ETICA.

We aim to take advantage of the different merits of both
the DRAM technology and SSDs while minimizing the nega-
tive characteristics of each. DRAM provides high performance
but comes with 1) reliability issues (due to volatility) and
2) high cost. SSDs preserve reliability (due to non-volatility)
and have 20X lower cost than DRAM, but they have 1) lower
performance and 2) limited endurance (i.e., write cycles). As
shown in Fig. 4, DRAM in the first level of the proposed cache
mainly improves performance (and endurance) while the SSD
in the second level avoids the performance spikes due to the
large performance gap between DRAM and the disk subsys-
tem and provides reliability. In Section 4.1, we describe how
we assign different write policies at different levels of cache to
address the shortcomings and exploit the advantages of each
technology. In Section 4.2, we propose popular/unpopular
block detection and our promotion/eviction schemes to man-
age the two-level cache even more efficiently. In Section 4.3,
we describe how ETICA estimates efficient cache sizes for
different VMs.

4.1 Write Policy Management

We use DRAM in the first level of our I/O cache architecture
to enable high performance. Using such a volatile storage
technology increases the risk of data loss under different types
of failures, such as power failures. We use SSDs in the second
level of our I/O cache architecture. SSDs mainly suffer from
endurance, i.e., they can support only a limited number of
reliable writes. This section shows how we 1) preserve storage
reliability in the presence of DRAM and 2) enhance SSD
endurance in our proposed two-level I/O cache by applying
effective write policies on both levels. Previously, in Section
3, we described the different types of cache write policies and
their impact on performance, reliability, and endurance.

To address the storage reliability issue with using DRAM,
we assign the RO policy to the first level of cache (ie., the
DRAM level). In this case, no write requests are served (i.e.,

7. Each cache level works based on set-associative mapping scheme
where each set size is 512 blocks (the set size is configurable to other
sizes, but to have a fair comparison, in our experiments the associativity
configuration in ETICA is done the same as ECI-Cache).
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supplied) by DRAM and hence, there is no write-pending
request (i.e., dirty block) in DRAM. Write requests are directed
immediately to the non-volatile second level (i.e., the SSD
level), which is able to protect the write-pending data in case
of power outage (it is important to note that in our scheme,
we use SSDs in the RAID10 configuration [73], which tolerates
the failure of up to two SSDs). In this scheme, the DRAM level
is responsible for buffering and serving only read requests.
Buffering only read requests in DRAM guarantees that any
data block in the DRAM level has a copy in another level
(i.e., the SSD level or the disk subsystem). Thus, losing data
in DRAM has no negative reliability impact.

To address the endurance issue of the SSDs, we assign
the WBWO policy to the second level (i.e., the SSD level).
Recall that in Section 3, we observed the significant negative
impact of buffering read misses on the endurance of the SSD
cache. The WBWO policy buffers only write requests in the
cache and does not buffer read requests. Buffering only write
requests in the SSDs effectively improves the endurance of the
SSDs by reducing the number of unnecessary write operations
on the SSDs (that would otherwise be needed to buffer read
requests). Using WBWO at the SSD level does not degrade
performance because read requests are buffered and served
at the DRAM level.

In summary, the key advantages of our heterogeneous
write policy assignment for two different cache levels are:

1) We preserve the reliability of write requests by bypassing
DRAM and buffering them only in SSDs (in RAID10 con-
figuration).

2) We improve the endurance of the SSDs by buffering only
write requests while read misses (which would impose a
large number of write operations on the SSDs) are only
cached in the DRAM level.

3) The DRAM level improves the performance of read re-
quests while the SSD level improves the performance of
write requests, compared to HDDs. The read misses from
DRAM that happen to be supplied by the SSDs (due to
RAW requests) also experience the higher performance of
SSDs versus the disk subsystem.

We now provide an example and show how the proposed
write policy assignment approach in our two-level cache 1)
improves the endurance of SSDs, 2) preserves the reliability of
I/0 requests, and 3) keeps performance intact. In the example
of Fig. 5, we compare a one-level WB SSD cache (Fig. 5a) with
our two-level cache where the write policy of the DRAM and
SSD levels are RO and WBWO, respectively (Fig. 5b). Each
cache level has a capacity of 3 data pages. Note that in this
example, no cache size estimation algorithm is employed.

When one-level SSD caching is used, as shown in Fig. 5a,
Req, reads the data of sector 1 and buffers the corresponding
data block into the cache (due to read miss) by imposing one
write operation on the SSD. Similarly, Reqs and Regs are read
misses that are buffered in the cache and each one imposes an
additional write on the SSD. Req4 overwrites the data content
of the cache (sector 1 in cache block 1) and Regs writes the
contents of sector 4 into the cache (in cache block 2). Regg hits
in the cache and reads sector 1 from cache block 1, which was
previously written by Regy. Similarly, Req; reads data from
cache as it is a read hit. We observe that, in the one-level WB
SSD cache, the sample workload imposes 5 write operations
to the SSD and obtains 2 read hits.

Fig. 5b shows how the two-level cache design of ETICA
(with RO DRAM and WBWO SSD levels) supplies the 1/O
requests with a much smaller number of write operations on
the SSD. In the two-level cache, Reqi, Reqs, and Regs buffer
data blocks into the DRAM level (due to read misses) without
imposing any write operations on the SSD. Regy overwrites



REQ ID 1 2 3 4 5 6 7
TYPE Read Read | Read | Write | Wri Read Read
SECTOR 1 2 3 4 1 4
STATE Miss Miss Miss Hit Miss Hit Hit
CBT S CBI S CBI S CBI S CBI S CBI S CB S
o) I 111 1 1137 111 111 111
a2 212 21 212 2 1242 21 4 21z
3 3 313 313 313 313 313
SSD Writes: 5. Read Hits: 2
(a) One-level SSD Cache
REQ ID 1 2 3 4 5 6 7
TYPE Read Read | Read | Write | Write | Read Read
SECTOR 2 4 1 4
STATE Miss Miss Miss Hit Miss Hit Hit
s[CETS CBI S CBI S S CBI S CBI S CBI S
b= I 111 111 1 1 1
x[2 212 212 2 212 212 212
o3 3 3 3 313 313 313
CRI S CBI S CBI S CBI S CBI S CBI S CBI S
a1 1 1 111 111 111 111
= 2 2 2 2 12 21 4 2 1 4
3 3 3 3 3 3 3

SSD Wirites: 2. Read Hits: 2
(b) Proposed two-level DRAM+SSD cache

Fig. 5: Comparison of a) one-level and b) the proposed two-
level cache in terms of endurance, reliability, and performance
(CB: Cache Block and S: Sector).

the cache content (sector 1): the write request is served by
the SSD and the existing data block in DRAM is marked as
invalid. Regs is a write request that bypasses DRAM and
writes data directly into the SSD. Finally, Regs and Regy are
read requests that hit in the cache and read the data blocks
from the SSD level. Unlike the one-level SSD cache, our two-
level cache design imposes only 2 write operations on the
SSD (60% fewer than one-level) while providing the same hit
ratio as one-level does. In summary, compared to the one-level
SSD cache, our two-level DRAM+SSD cache with intelligent
cache write policy assignment reduces the number of write
operations on the SSD while preserving the reliability of write
requests and achieving similar performance.®

4.2 Promotion/Eviction Optimization

In this section, we propose another approach for improv-
ing both endurance and performance in our two-level I/O
cache, in which we mainly focus on improving performance
(in terms of hit ratio) with the minimum number of write
operations into the SSD. The proposed approach is mainly
adopted from pull mode caches (i.e., non-datapath caches), where
the content of the SSD cache is not updated during handling
of miss accesses (as opposed to push mode caches or datapath
caches) [74]. Updating cache blocks on each cache miss (as
push mode caches such as LRU’ and LFU! caches do) leads
to promoting new blocks to the cache which could easily be
less popular than the evicted ones. Instead, periodically, we
detect unpopular data blocks and evict them from the SSD
and promote popular ones. Thus, we minimize the probability
of evicting popular blocks from the cache, thereby avoiding
performance (due to cache miss) and endurance (due to pro-
moting new data blocks into the cache) overheads associated
with the churn caused by the pollution due to unpopular
blocks. To do so, we first detect popular and unpopular data
blocks and then decide when to promote and evict them
to/from the SSD level.

We aim to detect popular and unpopular data blocks via
online characterization of the running workload on the VMs.
To this end, in specific time intervals (which are determined

8. Performance of our scheme would be higher when requests hit in the
DRAM level.

9. Least Recently Used
10. Least Frequently Used
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based on the number of requests, e.g., after observing N
I/0 requests), we analyze the characteristics of the running
workloads based on the collected information such as 1)
request type, 2) number of accesses, and 3) POD of data
blocks. In Section 4.2.1, we describe how we detect popular
and unpopular data blocks.

Fig. 6 shows the flow of I/O requests in our proposed two-
level I/O cache for both read and write accesses. As shown in
this figure, we employ two queues in our scheme: 1) promotion
queue in the disk subsystem level and 2) eviction queue in the
SSD cache level. The data blocks in the disk subsystem that are
recognized as popular are pushed into the promotion queue
while the unpopular ones in the SSD cache are inserted into
the eviction queue. Periodically, we evict the blocks in the
eviction queue from the SSD cache to the disk subsystem and
promote the blocks in the promotion queue into the SSD cache
(only when there is free space in SSD). This approach greatly
increases the likelihood that 1) data blocks are evicted from
the SSD when they become unpopular, 2) only popular data
blocks are buffered in the SSD cache, and 3) we do not replace
a data block in the SSD cache with a less popular one. Hence,
the proposal improves both performance and SSD endurance.

=) Sync. =) Sync. l Hypervisor l
l_—_D Async. I 1 l_—_D Async. I
( ETICA i Y ( ETICA R

iLeveI / D’RAM L/ DRAM L/ DRAM ﬂ :
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@
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emmmmmm————

(Disk Subsystem) ( .

(a) Read Requests

(b) Write Requests

Fig. 6: Examples showing how ETICA handles requests.

We now elaborate on how our proposed promotion and
eviction approach in our two-level I/O cache handles the I/O
requests. Fig. 6a and Fig. 6b provide the detailed flow of read
and write requests, respectively.

42.0.1 Read: As shown in Fig. 6a, the read request
is first received in the DRAM level (@). If the corresponding
data block is found in the DRAM cache (i.e., DRAM hit), the
request is served via the DRAM level (@). Otherwise, the
request is sent to the SSD in the second level (@). In the case
of an SSD hit, we first promote the data block to the DRAM
level (@) and then serve the request. Otherwise, in case of
an SSD miss (@) we read the data from the disk subsystem
and promote it directly to the DRAM level without buffering
in the SSD level (@). Recall that the write policy management
scheme presented in Section 4.1 sets the policy of the SSD
level to WBWO, where no read miss is buffered in the SSD.
However, any data block that is detected as popular in the
disk subsystem (listed in the promotion queue) is promoted
to the SSD level to accelerate future accesses. Furthermore,
unpopular data blocks in the SSD are evicted through the
eviction queue.

42.0.2 Write: Fig. 6b shows how we handle write
requests in the proposed two-level I/O cache. Write requests



(in case of both hit or miss) bypass the DRAM (since the write
policy of the first level is set to RO). In case of an SSD miss
(@), the data block is directly written to the disk subsystem.
Otherwise, in the case of an SSD hit where the corresponding
data block is located in the second level (as a popular block),
the data is written to the SSD level (@). Note that in case
of data block update in any level (SSD and disk subsystem),
we invalidate the corresponding data block in upper level
(DRAM and SSD, respectively). The operation of the eviction
queue in handling writes is the same as that of the eviction
queue in handling read requests.

To summarize, the proposed eviction/promotion scheme
provides the following key benefits:

1) Performance improvement by keeping popular data blocks
in the SSD cache as long as possible.

2) SSD endurance improvement (reduced number of SSD
cache updates) by periodically promoting only popular
data blocks into the SSD cache.

4.2.1 Popular and Unpopular Block Detection

In this section, we provide our approach to detecting popular
and unpopular data blocks. Our proposal decides the popular-
ity of data blocks based on two key parameters: 1) POD and
2) frequency of accesses. Hence, we consider both spatial and
temporal locality. We update the popularity(B;) parameter for
each access to the i data block B; and push the data block
into the eviction or promotion queues based on its relative
popularity. The least popular 5% of the blocks in the SSD (i.e.,
the unpopular ones) are put into the eviction queue. Similarly,
the most popular 5% of the data blocks in disk subsystem (i.e.,
HDD) are pushed into the promotion queue. Eq. 1 shows how
we calculate popularity(B;):

numAcc

popularity(B;) = Z

t=1

POD(i,t)
€ cacheSize (1)

Where POD(i, t) is the POD of B; in the t* access to that
data block,'! numAcc is the number of accesses to B;, and
cacheSize is the allocated cache size to the VM. Popularity
of each data block is updated periodically in specified time
intervals. To keep the popularity information of each data
block, a space of 8B is required per data page (4KB). The
memory overhead is less than 0.15% (e.g., we need an 8MB
space to store the popularity of one million data blocks. This
information is kept in SSD). Since popularity is computed
asynchronously, its computation does not cause any overhead
to the servicing of 1/O requests. Fig. 7 shows the impact of
POD on the popularity of each access for different cache sizes.
It can be seen that calculating popularity(B;) based on Eq. 1
provides the following key ideas:

1) A larger POD leads to smaller popularity. Note that when
the POD of a block is close to the cache size, the frequency
of access to that block is low. Thus, that block likely has no
significant impact on the total cache hit ratio.

2) When the POD of a block is larger than the cache size,
and since this block will be missed from cache, we set low
popularity to that block according to Eq. 1. On the other
hand, we set high popularity for a block with a POD smaller
than the cache size.

3) The frequency of the accesses is considered in the popular-
ity calculation. In Eq. 1, we estimate the total popularity of
a single block based on all accesses to that block.

The proposed popularity detection scheme is scalable,
which is compatible with the removal or addition of VMs into

11. In Section 4.3.1 we elaborate how to calculate POD.
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Fig. 7: Popularity as a function of POD and cache size.

the system. When we add a new VM to the system (or when
an existing VM comes online), based on the I/O accesses of
that VM, ETICA first assigns efficient cache space in both
DRAM and SSD levels and then estimates the popularity of
that VM’s accesses (we calculate popularity of each VM's
accesses independently from other VMs). In contrast, when
a VM is removed from the system (or when it goes offline),
we reclaim the allocated cache space and thus the popularity
detection process for this VM is also stopped. Furthermore,
since in specific intervals, ETICA recalculates the cache size
of the VM, in case of extending or shrinking the total SSD
and DRAM cache spaces, ETICA is able to reconfigure the
newly allocated cache sizes to the VMs based on new SSD
and DRAM sizes.

4.3 Cache Size Estimation

In this section, we propose our two-level cache size estimation
approach that aims to 1) maximize the overall performance
of the co-running VMs and 2) minimizes the overall cost (in
terms of allocated cache size). We effectively partition the
space of both levels (DRAM and SSD) between VMs based
on their demand. In Section 4.3.1, we propose the metric of
Policy Optimized reuse Distance (POD) and demonstrate how
the proposed metric effectively reduces the allocated cache
size to the workloads (compared to the previous state-of-the-
art scheme, URD) by considering both 1) request type and 2)
cache write policy in the reuse distance calculation, and thereby
resulting in reduced cost. Then in Section 4.3.2 we show how
ETICA assigns efficient cache size for the VMs to achieve the
most efficient performance per cost.

4.3.1 Policy Optimized reuse Distance (POD)

Traditional Reuse Distance (TRD) [58], [75], [76], [77], [78], [79],
[80], [81], [82], [83], [84], [85] calculates the distance of the
requests only based on the address and access order of the
requests. Useful Reuse Distance (URD) [6] improves upon TRD
by considering request type in reuse distance calculation: it
considers only the distance of Read After Read (RAR) and Read
After Write (RAW) accesses, enabling a smaller cache with
the same or with better performance [6]. However, existing
schemes that are employed in cache size estimation neglect
the impact of cache write policy on reuse distance calculation.
In this section, we first provide examples to show the effect of
the cache write policy on reuse distance calculation of the work-
loads. Then, we propose a novel metric, Policy Optimized reuse
Distance (POD), which allocates much smaller cache space
compared to TRD and URD while preserving performance
(in terms of hit ratio). The POD metric considers both request
type and cache write policy in reuse distance calculation, and
hence, does not reserve cache blocks for the requests which
would not be served by the cache (i.e., read accesses in a
WBWO and write accesses in a RO cache, respectively). We
provide sample workloads and elaborate on how URD (which



considers only the request type without considering the cache
write policy) and POD (which considers both request type and
the cache write policy) estimate cache size for caches that use
1) WBWO and 2) RO write policies.

Fig. 8 compares the cache size estimation provided by
URD and POD in a WBWO cache. For the given sample
workload in Fig. 8a, URD detects the maximum reuse distance
between Req; and Reqg (due to their RAR accesses to the
same sector, i.e., sector 1). Hence, the maximum URD is equal
to 4, and 5 blocks of cache are allocated to the workload.
Fig. 8a shows that the workload uses only two blocks of
the allocated cache space for write requests (write accesses
to sector 4 and sector 5 by Reqs and Regs, respectively). Since
data blocks of read misses are not buffered in a WBWO cache,
three blocks of allocated cache remain wunused while they
are reserved for this workload. At the end of the workload,
Req7 reads the buffered data block from the cache: it is a
read hit due to the RAW operation. We observe that a cache
with WBWO policy helps only the write and RAW!? requests
without providing any performance improvement for read
and RAR (i.e., Read After Cold'® Read) accesses.

The POD metric considers both request type (similar to
URD) and cache write policy in reuse distance and cache size
estimation. Fig. 8b shows how POD estimates cache size
for the sample workload. POD estimates the maximum reuse
distance based on Reqq and Reg7 due to their RAW access to
sector 4. In this case, the POD of the workload is equal to 1.
Crucially, note that the read access of Regg is not considered in
POD calculation in the WBWO cache. This is because such a
request would not be served by the cache. Therefore, only two
blocks of cache are allocated to the workload. Reqs and Regs
commit write requests into the cache (due to their accesses
to sectors 4 and 5) and Regy (to sector 4) is supplied from
the cache. In summary, for the given sample workload, we
observe that in a WBWO cache URD allocates 5 blocks while
POD allocates only 2 blocks of cache and achieves the same
1/0 performance (for both read and write requests) as URD.

REQ TYP SEC Cache S REQ TYP SEC| Cache | S
1R | 1 M 1R |1 M
r2R 2 M 2 R 2 M
03 R 3 M 3 R 3 M
Saw 4|a H| |paw ala H
5w 5|45 H||@5w | 5|4 5|H
|-)6R 1|4 5 M| |26 r 1|4 5|M
7R 4|4 5 H| |7 R 4|4 5|H

(a) (b)

Fig. 8: Comparison of cache size allocation in a WBWO cache
(a) without and (b) with considering cache write policy (REQ:
Request, TYP: Type, SEC: Sector, W: Write, R: Read, S: State,
H: Hit, M: Miss).

Fig. 9 shows how URD and POD work in a RO cache,
by comparing the cache allocation and I/O performance of
these two schemes. For the given sample workload in Fig. 9a,
URD detects the maximum reuse distance for the RAW access
by Req: and Regr to sector 1 of the disk. In this case, the
URD of the workload is equal to 4 and hence, five blocks of
cache are allocated to the workload (note that read access of
Regs to sector 3 is duplicated with Regs and both of them

12. Note that WBWO cache supplies only RAR accesses where the first
read was RAW (i.e., RARAW). We also consider such accesses as RAW
and calculate POD for the maximum distance of such accesses.

13. The first accesses to an address.
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are supplied by the same cache block). Fig. 9a shows that
the write accesses of the workload (Req;, Reqs, and Regs)
are bypassed from the cache and are supplied by the disk
subsystem. Only the read misses (Regs and Regs) are buffered
in cache and RAR accesses such as Regqg are served while
RAW accesses such as Req; cannot be served by the RO cache.
Only three blocks of allocated cache are actually used and
the remaining two blocks are unused but they are reserved
by the workload. This is because the RO cache only buffers
reads and serves RAR accesses. In this case, reserving cache
blocks for write accesses (as URD does) has no performance
benefit while imposing additional cost (because it allocates
larger cache space with unused cache blocks).

In Fig. 9b, we show how POD considers the cache write
policy in reuse distance calculation and results in 1) a much
smaller cache space allocation compared to URD and 2)
the same I/O performance as URD. In the RO cache, POD
detects the maximum reuse distance of the workload for the
RAR accesses to sector 3 by Regs and Regg. Since no write
request can be supplied by RO cache, write requests are not
considered in the POD calculation of such a cache. Hence,
POD is equal to 0 (Reqs and Regs are not considered since
write accesses have no impact on the RO cache operation)
and only one block of cache is allocated to the workload. As
shown in Fig. 9b, write accesses (Ffeqi, Reqs, and Regs) are
not served by the cache. A read miss by Regs promotes the
data block of sector 2 into the cache. Then, Regs updates the
cache by promoting the data block of sector 3 (note that in this
workload there is no future read access to sector 2 and POD
enables updating the data block by Regs). Regs hits in the
cache and finally, Req; promotes sector 1 into the cache. We
observe that in an RO cache, POD calculates the maximum
reuse distance based on RAR operations. Compared to URD,
POD assigns a much smaller cache space to the workload
(only 1 block versus 5 blocks) while achieving exactly the
same cache hit ratio.

REQ TYP SEC| Cache S REQ TYP SEC| Cache | S
1w 1 M 1w 1 M
r2 R | 2|2 M 2 R 2 2 M
o3 R 3|2 3 M I—)3 R | 3 3 M
%4 W 4123 M 8 4 W 4 3 M
5 W 5|23 M| [&aa5W 5 3 M
LG R 3|2 3 H I—)6 R | 3 3 H
7R | 1|23 1 M 7R 1 1 M

(a) (b)

Fig. 9: Comparison of cache size allocation in RO cache (a)
without and (b) with considering cache write policy (REQ:
Request, TYP: Type, SEC: Sector, W: Write, R: Read, S: State,
H: Hit, and M: Miss).

To summarize, the key ideas behind POD are as follows:

1) POD considers both 1) request type and 2) the specific cache
write policy in the reuse distance calculation.

2) In a WBWO cache, the reuse distance calculation of POD
is based only on the maximum distance of RAW accesses
(also including RARAWSs). This is because no RAR (ie.,
Read After Cold Read) request is supplied by a WBWO
cache (since the cache does not buffer read misses). Hence,
POD does not reserve cache blocks for read miss requests
(note that the read hits are due to RAW accesses where
the read cache block is previously buffered by a write
request). Thus, POD always estimates a smaller cache size
compared to URD, while achieving the same hit ratio and



I/0 performance (for both read and write operations in a
WBWO cache).

3) In an RO cache, POD considers the maximum distance of
only RAR accesses in reuse distance calculation. Since the
cache does not buffer write requests, no cache block is
reserved for write operations by POD. In this case, POD
results in a smaller cache size than URD, while providing
the same hit ratio and I/O performance.

4) In a WB cache, URD and POD work similarly. Both RAR
and RAW accesses are supplied by the WB cache. In this
case, both URD and POD estimate the cache size based on
the maximum distance of either RAR and RAW accesses.

4.3.2 Allocating Efficient Cache Size for VMs

We now elaborate on how we allocate an efficient cache
size (in both DRAM and SSD levels) for each running VM.
ETICA estimates and assigns cache sizes to the VMs by
using the POD metric. ETICA aims to achieve the maximum
performance (in terms of hit ratio) with the minimum cost
(in terms of cache size) as opposed to previous architectures
which mainly aim to optimize performance with the maxi-
mum available cache sizes [6], [11]. The steps of cache size
assignment by ETICA are as follows:

1) Periodically, ETICA calculates the POD of the running
VMs for both the RO and WBWO policies used in the
DRAM and SSD levels, respectively. Recall from Section
4.3.1 that POD does not reserve cache blocks for writes
in RO and reads in WBWO caches and hence estimates
different cache sizes for different write polices.

2) Based on the calculated POD, we estimate two efficient
cache sizes for the VM in both the DRAM and the SSD
levels. Eq. 2 shows how we calculate the cache sizes:

C’acheDRAMzPODDRAM XblOCkSiZ@DRA]w 2
CacheSSD = PODSSD X blOCkS’iZ@SSD ( )

Where PODpgray and PODggp are the calculated POD
metrics of the running VM in DRAM and SSD levels and
blockSizepran and blockSizegsgp are the cache block
size in DRAM and SSD, respectively.

3) We check whether the total estimated cache sizes for all
VMs fit in the available physical DRAM and SSD space.

4) If the sum of estimated cache sizes exceeds the existing
physical DRAM or SSD space, we reduce the estimated size
of each VM to maximize the Performance-Per-Cost (PPC)
factor in Eq. 3.

numV M s
H VMZ',CZ'
>, e o

i=1

PPC =

Where numV Ms is the number of running VMs and
H(VM;,¢c;) is the hit ratio achieved by V' M; by allocating
it a cache size equal to ¢;.

Since the running VMs are weighted identically, we aim to
maximize the aggregate PPC as proposed in Eq. 3. Assigning
cache sizes based on Eq. 3 guarantees the maximum overall
performance with minimum cost. To do so, ETICA provides
POD-based Miss Ratio Curves (MRCs) for each running VM
and finds the set of {co, ..., cy—1} which provides the maxi-
mum PPC.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our proposed
two-level I/O caching scheme, ETICA, in terms of cache size,
performance, and endurance.
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5.1 Experimental Setup

We conduct comprehensive experiments on a real system
including a 4U rack mount SuperMicro server with 1) 6x
Seagate 4TB SAS 7.2K HDDs in RAIDS5 (5+1) configuration
at the disk subsystem level, 2) 4x Samsung 2TB 863a SATA
SSDs configured as RAID10 (2+2) at the SSD cache level, 3)
128GB Samsung DDR4 DRAM where 100GB is used at the
DRAM cache level, 4) LSI9361i PCle RAID controller to apply
the RAID configuration, 5) 32x Intel(R) Xeon (R) 2.1GHz
CPU cores, and 6) a SuperMicro X10i motherboard. We in-
tegrated ETICA with QEMU as the open-source hypervisor
running on the CentOS7 operating system (kernel version:
3.10.327.36.3)."* We implement POD by modifying the source
code of PARDA [76].

We run VMs with the CentOS and Ubuntu operating
systems on the hypervisor. Each VM is configured with 1)
50GB disk space, 2) 1GB memory, and 3) two virtual CPUs.
ETICA estimates and allocates the I/O cache size for each
VM based on the I/O patterns of workloads running on the
VMs. We run MSR traces from SNIA [54], [55] in the device
layer, including more than ten real application workloads
with different I/O characteristics, such as hm_1 (hardware
monitoring), mds_0 (media server), mds_1, src2_0 (source
control), srcl_2, stg 1 (web staging), ts_0 (terminal server),
wdev_0 (test web server), web_3 (web/SQL server), rsrch_0
(research projects), usr_0 (user home directories), and proj_0
(project directories). To show the effectiveness of ETICA, we
compare it with the latest state-of-the-art I/O caching scheme
in virtualized platforms, ECI-Cache [6]. To do so, we imple-
mented this scheme in our real testing platform and evaluated
it with the same experiments. The evaluation of ECI-Cache
and ETICA are performed via the default configuration of the
device layer with enabled request merge option for a 128-entry
device queue size and disabled buffer cache.!®

5.2 Cache Size Improvement

In this section, we empirically show that ETICA reduces the
allocated cache space to each VM. Our experiments show how
ETICA estimates a smaller cache size compared to the pre-
vious state-of-the-art cache space partitioning scheme, ECI-
Cache, while preserving the performance (i.e., latency) of the
running VMs (Section 5.3). ETICA employs the POD metric
in cache size estimation, which effectively allocates smaller
cache sizes to the VMs by taking into account both request
type and cache write policy (as we showed in Section 4.3.1). The
state-of-the-art scheme, ECI-Cache, works based on URD; we
have shown that this metric ignores the impact of cache write
policy and only considers the request type in reuse distance
estimation and thus overestimates the cache size of the VMs
with RO and WBWO policies (see Section 4.3.1). We run 12
VMs with different types of workloads on the hypervisor and
measure the cache size estimation of ETICA and ECI-Cache.
To do so, we set different cache write policies to the VMs:
1) WB, 2) WBWO, and 3) RO. We estimate the cache size of
the VMs in predefined intervals (after observing 10,000 I/0
requests) by POD and URD which are used by ETICA and
ECI-Cache, respectively.

Fig. 10 shows the VM cache size estimations of POD and
URD for different cache write policies. Unlike POD, URD
works independently of the cache write policy: that is, URD
works exactly the same for the caches with WB, WBWO, and

14. We disable the buffer cache and set the configuration of the block
layer to the default mode with merge option enabled with a 128-entry
device queue size.

15. Note that ETICA and ECI-Cache has no management on the buffer
cache and they only perform in the device layer.



RO policies, and hence, we show the URD results with one
single line. To make the differences of cache sizes estimated
by the proposed and previous schemes more visible in the
figures, we show only the first 20 intervals of the workloads.
16 In addition, Fig. 11 compares the average cache sizes allocated
by ECI-Cache (URD) and ETICA (POD) for the VMs over their
entire runs. We make five main observations:

1) The URD metric allocates the same size for the caches with
different write policies (i.e., RO, WBWO, and WB). This
is because URD ignores the cache write policy and only
considers request type in reuse distance calculation. As we
have clearly shown, this scheme allocates cache blocks for
requests that would not be buffered in cache. For instance,
a WBWO cache does not buffer read requests, but URD
reserves cache blocks for such requests in its reuse distance
calculation. Similarly, URD allocates cache blocks of an RO
cache for write requests that bypass the RO cache.

2) The amount of cache space allocated by POD in both RO
and WBWO policies is considerably smaller (i.e., by 51.7%,
on average) than that allocated by URD. This is due to the
fact that in an RO cache, POD considers only RAR accesses
in the reuse distance calculation and does not allocate cache
blocks for writes. In a WBWO cache, POD considers only
the reuse distance of RAW accesses and allocates no cache
block for cold reads (i.e., read misses). In contrast, URD
considers both RAR and RAW accesses without taking into
account the effect of cache write policy on what gets cached
and what does not. Unlike POD, the URD metric allocates
cache blocks for both writes and reads, which would not
be buffered in RO and WBWO caches, respectively.

3) In the intervals where RAR accesses are involved in cache
size estimation (e.g., intervals 10 to 15 in hm_1, 3 to 10

16. We run the experiments for more than 500 intervals (until the
workload finishes) and observe very similar behavior across the entire
execution.
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in proj_0, and 3 to 6 in rsrch_0), URD and POD for the
RO cache (POD(RO)) have the same behavior but POD
estimates smaller cache sizes (because it does not allocate
cache blocks for write requests). Similarly, in the intervals
where RAW accesses are involved (e.g., intervals 1 to 3 in
web_3, 0 to 8 in ts_0, and all intervals of wdev_0), URD
and POD for the WBWO cache (POD(WBWO)) have the
same pattern but POD estimates a much smaller cache size
because it does not allocate blocks for cold reads in the
WBWO cache.

4) In the cache with the WB policy, POD and URD estimate
the same cache size. This is because WB cache buffers both
read and write requests and hence, both schemes allocate
cache blocks for both types of requests.

5) The POD calculation imposes up to 0.83% performance
overhead, which is similar to the overhead imposed by
ECI-Cache due to calculating URD (not shown in the
figures). We observe that both POD and URD calculations
have the same performance overhead on the running VMs.
We conclude that POD provides better, more efficient size

estimation for caches that employ RO and WBWO policies,

thereby reducing waste of space in an I/O cache.

5.3 /O Latency Improvement

In this section, we empirically show that ETICA improves the
overall performance (in terms of I/O latency) of the running
VMs. In the experiments of this section, we run 12 VMs
with different workloads on the hypervisor integrated with
ETICA and examine the performance in terms of I/O latency
of the running VMs. We evaluate the system performance
using ETICA under two conditions: 1) without applying the
promotion/eviction scheme (denoted as ETICA-NPE) and
2) with applying our proposed promotion/eviction scheme
(denoted as ETICA-Full). We perform the same experiments
on the ECI-Cache architecture for performance comparison.
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Fig. 10: Allocated cache sizes by ETICA and ECI-Cache (URD: ECI-Cache, POD(RO): ETICA at the DRAM level, and
POD(WBWO): ETICA at the SSD level).
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Fig. 11: Average cache size allocated by ECI-Cache and ETICA
(URD: ECI-Cache, POD(RO): ETICA in DRAM level, and
POD(WBWO): ETICA in SSD level).

We compare the performance of these two schemes by as-
suming similar total cache spaces, where the total space of
SSD+DRAM in ETICA is equal to the space of SSD in ECI-
Cache. We recalculate the cache sizes after observing 10, 000
I/0 requests and we also promote/evict data blocks after
observing 1,000 I/O requests (in Section 5.6 we evaluate the
impact of promotion/eviction intervals on both the perfor-
mance and endurance improvement of ETICA).

Fig. 12 and Fig. 13 show the results of the experiments,
comparing the average latency and total hit ratio of the
running VMs with ETICA and ECI-Cache. We make five
observations:

1) ETICA, compared to ECI-Cache, improves performance by
up to 64% (45%, on average). This is mainly due to the
improvement in the latency of read requests. Even with-
out applying our proposed promotion/eviction scheme,
ETICA improves the I/O performance by 27%, on average.
Performance enhancement by ETICA is due to 1) hit ratio
improvement and 2) DRAM high I/O performance. As
shown in Fig. 13, ETICA provides 30% higher hit ratio
compared to ECI-Cache. In this case, allocating DRAM
to ECI-Cache cannot close the performance gap between
ETICA and ECI-Cache.

In VM3 running the mds_1 workload, compared to ECI-
Cache, ETICA-NPE and ETICA-Full achieve only 1% and
13% performance improvement, respectively. This is due to
the sequential read access pattern of the running workload
with low locality of reference. As we observe in the exper-
iments of Section 5.2, both ECI-Cache and ETICA assign
almost zero cache space for this workload in the first 10 in-
tervals. Using a cache for such workloads with sequential
(streaming) read accesses with low locality is unlikely to
provide significant performance improvement since most
requests would be supplied by the disk subsystem.

The usr_0 workload mainly consists of write requests,
which are supplied by the SSD cache in both ETICA and
ECI-Cache schemes. ETICA-Full, compared to ECI-Cache,
improves the I/O performance of this workload by 45%
since it buffers RAW requests at the DRAM level and
does not evict popular written data blocks from the SSD
(ETICA-NPE improves the performance of this workload
by 27%).

The running workload in VM1, hm_1, mainly includes ran-
dom read accesses with high locality of reference. ETICA
obtains a high hit rate from DRAM (about 91.6%) for this
workload and improves I/O performance by 42%. ECI-
Cache achieves a similar hit rate in the SSD, but the higher
latency of the SSD compared to DRAM leads to lower
performance by ECI-Cache.

6) ETICA achieves the highest performance improvement

2)

3)

4)

5)
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for the src2_0, ts_0, and wdev_0 workloads (53%, 58%,
and 64%, respectively, over ECI-Cache). These workloads
include a small number of write operations with a large
number of RAW (and also RARAW) re-references, which
leads to promoting a small number of written data blocks
from the SSD to the high-performance DRAM and serving
further accesses to them with much lower latency than
ECI-Cache.
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Fig. 12: Average latency of VMs with ETICA and ECI-Cache
(ETICA-NPE: without promotion/eviction and ETICA-Full:
with promotion/eviction).
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Fig. 13: Total hit ratio of VMs with ETICA and ECI-Cache.

We conclude that ETICA provides 45% higher 1/O perfor-
mance than ECI-Cache. This improvement is mainly due to
1) the performance improvement of read requests (especially
the requests that are supplied by the DRAM level) and 2) not
evicting popular data blocks from the SSD level.

5.4 SSD Endurance Improvement

In this section, we evaluate the SSD endurance improvement
of ETICA over ECI-Cache. We measure endurance with the
number of writes into the SSD cache as our metric (as discussed
and used by prior works [6], [86], [87], [88], [89]). Fig. 14
compares the endurance of SSD using ETICA and ECI-Cache
(in terms of the number of writes performed into the SSD
cache). A lower number of writes indicates higher endurance.
We make two major observations:

1) ETICA reduces the number of writes into the SSD by 33.8%
in average. The maximum endurance improvement (about
95%) is achieved in the web_3 workload, mainly due to
not buffering read misses at the SSD level. This workload
consists mainly of read accesses with a small number of
write operations (i.e., it is read-intensive). Thus, applying
the RO policy at the SSD level, as ECI-Cache does, does
not help endurance since all read misses (i.e., cold reads)
would be buffered in the cache, imposing a large number
of writes into the SSD.

stg_1, src2_0, and rsrch_0 are write-intensive workloads
where both ECI-Cache and ETICA buffer write requests

2)




SSD Writes (Normalized)

in the SSD cache. ETICA achieves about 24%, 14%, and
16% endurance improvement over ECI-Cache for these
workloads, respectively. This is because ETICA does not
update the SSD cache on each miss and hence, it reduces
the number of cache updates by only promoting popular
blocks into the SSD cache.

We conclude that ETICA, compared to ECI-Cache, signif-
icantly reduces the number of write operations on the SSD
cache (by 33.8%, on average) and thus results in improved
SSD endurance and lifetime. Read-intensive workloads im-
pose a large number of writes into the SSD cache and ETICA
avoids updating the SSD cache with such read requests.
To obtain high performance, ETICA buffers read requests
at the DRAM level instead of at the SSD level. Thus, the
two-level 1/O caching architecture of ETICA improves both
performance and endurance.

ECI-Cache
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Fig. 14: Number of write operations performed on the SSD
cache by ECI-Cache and ETICA.

5.5 Performance Analysis When Enabling New VMs

In this section, we show how ETICA reallocates cache re-
sources for running VMs and how it affects the performance
(in terms of cache hit ratio) when a varied number of VMs
is enabled. In these experiments, we set the total available
cache space equal to limited number of cache blocks (i.e.,
50,000 cache blocks). In this case, when the total demand
of running VMs exceeds the available cache space, ETICA
reduces the allocated cache space with the minimum perfor-
mance overhead. First we start the experiments with running
one VM and then at the specific time instances (i.e., intervals
2, 6, and 10) we extend the number of running VMs to 4,
16, and 32. During intervals 0 to 2, we run hm_1 workload
on VMO." Then at interval 2, VM1, VM2, and VM3 start
to run proj_0, stg_1, and usr_0 workloads, respectively. At
interval 6 we run the following workloads in VMs 4 to 15:
ts_0, wdev_0, web_3, usr_0, mds_0, usr_0, ts_0, wdev_0, ts_0,
hm_1, src2_0, and ts_0. At the last interval, VMs 16 to 31
start running workloads: ts_0, wdev_0, web_3, usr_0, mds_0,
usr_0, ts_0, wdev_0, ts_0, hm_1, src2_0, ts_0, ts_0, wdev_0,
web_3, and usr_0. The hardware and software configurations
of the running VMs in these experiments are the same as
reported configurations in Section 5.1.

Fig. 15 and Fig. 16 show the results of the experiments.
In Fig. 15, we present how ETICA recalculates new cache
sizes for the running VMs based on their demand and avail-
able total cache size (equal to 50,000 cache blocks in the
experiments). Fig. 16 shows the average cache hit ratio of the
running VMs while we run 1, 4, 16, and 32 online VMs.

It can be seen that in the intervals 1 to 10, by enabling new
VMs, ETICA allocates required cache sizes to the VMs (Fig.

17. The running workloads are from SNIA and the detailed information
about workload characteristics are available in [54], [55].
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Fig. 15: Cache reallocation by ETICA while enabling different
number of VMs (up to 32 VMs, Interval size: 10min).

15). Between intervals 10 to 29 (where we run 32 concurrent
VMs), the total required cache space by the VMs is greater
than the total cache space. In this case, ETICA reduces the
allocated cache sizes, affecting the performance of the VMs
(Fig. 16). As shown in Fig. 16, when only VMO is online, the
average hit ratio is equal to 96%, then by enabling VM1, VM2,
and VM3, the average hit ratios for these VMs are: 77%, 44%,
29%, and 37%. The performance reduction in VMO is due to
reduced locality of accesses by this VM (in intervals 1-6, the
available total cache space is greater than VMs demand). This
performance behavior is also observed in another experiment
when running only this VM with unlimited cache resources.
By adding new VMs (interval 7), ETICA reduces the allocated
cache sizes and hence, we experience performance drop in the
VMs. In this case, the average hit ratio by VMO is 28%. Next,
ETICA increases the allocated cache to VMO, since other VMs
demand is low, and hence, cache hit ratio increases to 64%.

5.6 Analysis of the Promotion/Eviction Intervals

The required promotions to (or evictions from) SSD are con-
ducted when a fixed number of I/O requests are processed
by ETICA. Using small intervals enables ETICA to respond
faster to changes in the workload characteristics with the cost
of more writes in SSD and therefore, decreasing its lifetime.
To show the impact of interval size on both performance and
endurance of ETICA, we conduct experiments and change the
interval length from 100 to 10, 000 I/O requests processed by
the system. Fig. 17 shows the normalized performance and
endurance of ETICA in various promotion/eviction intervals.
We make four major observations:

1) There is a negligible performance improvement between
very small promotion/eviction intervals (less than 1,000)
and due to the cost of promotion/evictions, employing
very small interval sizes is not efficient.

2) The performance difference between various intervals is
about 20% in all workloads.

3) In benchmarks with steady workload characteristics
throughout their runtime, increasing the interval size does
not have any side-effect on the performance. Our investi-
gation reveals that this is due to the sparse accesses to the
large number of data pages. When the intervals are large,
such data pages accumulate a high score and therefore,
replace the hot data pages in the SSD.

We conclude that the selected interval size for promo-
tions/evictions in ETICA can efficiently balance the perfor-
mance and endurance in all workloads.
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Fig. 17: Impact of promotion/eviction intervals on the perfor-
mance and endurance of ETICA.

5.7 ETICA vs. ECI-Cache

In this section, we summarize how ETICA overcomes
the shortcomings of the latest state-of-the-art I/O caching
scheme, ECI-Cache, in terms of cache size, performance, and
endurance.

Efficient Cache Size Estimation. ETICA employs POD to
estimate the cache size, which results in reduced allocated
cache sizes to the VMs. Unlike URD, POD considers cache
write policy in reuse distance estimation, and thus it does not
reserve cache blocks for accesses that would not be served by
the cache.

Higher Performance. ETICA, compared to ECI-Cache,
improves performance in two ways: 1) it employs high-
performance DRAM in the two-level I/O cache structure and
2) it promotes (evicts) only popular (unpopular) data blocks
in (from) the I/O cache.

Higher SSD Endurance. The proposed per-level write
policy management scheme in ETICA effectively reduces the
number of write accesses on the SSD level while improving
the performance and preserving reliability of write-pending
data blocks. In contrast, ECI-Cache buffers both read and
write accesses in the SSD cache, which causes more writes
into the SSD cache.

6 CONCLUSION

In this paper, we presented ETICA, a new two-level I/O
caching scheme for virtualized platforms. ETICA takes ad-
vantage of both DRAM and SSD in the I/O caching layer and
improves cost, performance, and endurance while preserving
the reliability of I/O requests. The write policy of the first
caching level (ie., DRAM) is set to RO (to preserve the
storage reliability in the presence of volatile DRAM) while
we use the WBWO policy (to improve SSD endurance) in
the second caching level (i.e.,, SSD). DRAM cache enhances
the performance of read requests by buffering read misses
while write requests are buffered by the SSD in the second
level, providing both high performance and high reliability
for the write-pending requests. ETICA further improves the

1/0 performance of the running workloads by detecting and
buffering popular data blocks where the data blocks are not
evicted from the cache until they become unpopular. ETICA
improves the endurance of the SSDs by 1) not buffering read
requests in the SSD cache, which results in a significantly
reduced number of writes into the SSD cache and 2) only
promoting popular data blocks into the cache and eliminating
the update of the SSD in the case of read misses. ETICA
improves the cost of the I/O cache by 1) allocating a smaller
cache size to each VM and 2) assigning an effective write
policy to each cache level and hence, eliminating the need
for using high-cost peripherals such as battery backup to
maintain the reliability of write-pending data blocks in the
case of power or system failures. ETICA employs our new
Policy Optimized reuse Distance (POD) metric, which considers
both 1) request type and 2) cache write policy in cache size
estimation and hence, estimates a much smaller cache size for
each VM while preserving the 1/O performance of the VMs.
The results of our real system experiments show that ETICA
provides 45% and 33.8% higher performance and endurance
and also 51.7% reduced cache size compared to the best state-
of-the-art I/O caching policy [6] in virtualized platforms.
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