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Abstract—Recent development in memory technologies has introduced Spin-Transfer Torque Magnetic RAM (STT-MRAM) as the
most promising replacement for SRAMs in on-chip cache memories. Besides its lower leakage power, higher density, immunity to
radiation-induced particles, and non-volatility, an unintentional bit flip during read operation, referred to as read disturbance error, is a
severe reliability challenge in STT-MRAM caches. One major source of read disturbance error in STT-MRAM caches is simultaneous
accesses to all tags for parallel comparison operation in a cache set, which has not been addressed in previous work. This paper first
demonstrates that high read accesses to tag array extremely increase the read disturbance rate and then proposes a low-cost scheme,
so-called Read Disturbance Rate Reduction in STT-MRAM Caches by Selective Tag Comparison (3RSeT), to reduce the error rate by
eliminating a significant portion of tag reads. 3RSeT proactively disables the tags that have no chance for hit, using low significant bits of
the tags on each access request. Our evaluations using gem5 full-system cycle-accurate simulator show that 3RSeT reduces the read
disturbance rate in the tag array by 71.8%, which results in 3.6x improvement in Mean Time To Failure (MTTF). In addition, the energy
consumption is reduced by 62.1% without compromising performance and with less than 0.4% area overhead.

Index Terms—Cache memory, error rate, read disturbance, reliability, STT-MRAM memory, tag array.
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1 I N T R O D U C T I O N

O N - C H I P cache memories play a decisive role in the
system performance. Static Random Access Memories

(SRAMs) have been the predominant technology in the cache
memories for decades. SRAM caches have faced several
challenges by process technology downscaling in recent
years. Nanoscale technology feature size has made SRAM
caches highly vulnerable to soft errors, less scalable, and
more power-hungry due to exacerbated leakage current [1].
Besides, process variations further degrade the efficiency of
SRAM caches [1]–[3]. Therefore, an alternative technology is
inevitable to overcome these challenges.

Among the emerging memory technologies, Spin-Transfer
Torque Magnetic RAM (STT-MRAM) is the most promising
candidate for SRAM replacement in on-chip cache memories
in the upcoming years [4], [5]. Non-volatility, high density,
immunity to radiation-induced soft errors, and near-zero
leakage power are among the main advantages of STT-
MRAM [6]. Besides all of its advantages, the low reliability
of STT-MRAM technology is a main challenge for system de-
signers. Reading from and writing into the STT-MRAM cells
are highly error-prone, which results in read disturbance and
write failure errors, respectively [5], [7], [8]. Read disturbance
is an unintentional flip of a cell during a read operation and
write failure is an unsuccessful cell switching during a write
operation [5], [8]–[10].
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While the write failure rate is descending by smaller
technology feature size, read current is not scaled well, which
makes the read disturbance as the dominant error source in
sub-32nm STT-MRAM caches [5], [10], [11]. Read current,
which is adjusted based on the physical characteristics of the
memory device, indicates the read disturbance probability
of a single STT-MRAM cell per read access [11]–[14]. On
the other hand, read disturbance rate of STT-MRAM cell
directly depends on its read intensity [8]. On a cache access
request (read and write), all tags in the target cache set are
simultaneously read and compared with the tag part of the
requested address, regardless of hit or miss event. Reading
from all k tags in a k-way set-associative cache on each access
makes the tag array highly vulnerable to read disturbance
error.

Employing Error-Detecting and Correcting Codes is the most
conventional approach to protect on-chip caches against both
transient errors. Although data arrays in large L2/L3 caches
are commonly protected using Error-Correcting Codes (ECCs),
e.g., Single Error Correction-Double Error Detection (SEC-DED),
the complexity of ECCs is barely affordable in high-speed
tag arrays as well as L1 caches [1], [5], [15]–[17]. Hence, these
memory structures remain unprotected or their protection is
limited to simple Error-Detecting Codes, e.g., parity coding [1],
[5], [15], [16], [18].

Some previous studies utilize ECCs to overcome read
disturbance errors [1], [8], [17], [19]. None of these schemes,
however, targeted tag array in the cache and moreover,
they are inapplicable or their overheads are unaffordable.
Overwriting STT-MRAM cells after each read operation
is another approach to tackle with read disturbance er-
rors [20], [21]. This approach substantially increases the
energy consumption of highly-read tag array in addition to
exacerbating the write failure rate. Reducing the read current
and designing more accurate sensing circuits to moderate



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 2020 2

its adverse effects on false read errors, which is the inability
of correctly detecting the cell content, is an approach to
decrease the read disturbance rate in STT-MRAM cell [13],
[14]. The effectiveness of this approach is also limited due to
unscalability of read current. To the best of our knowledge,
none of the previous studies have addressed the vulnerability
of tag arrays to read disturbance in STT-MRAM caches.

In this paper, we propose Read Disturbance
Rate Reduction in STT-MRAM Caches by Selective Tag Compari-
son (3RSeT) scheme to reduce the rate of read disturbance
errors in STT-MRAM tag arrays. The key idea in 3RSeT is to
decrease the number of reads from tag cells in each access by
eliminating a large fraction of unnecessary reads. To this end,
3RSeT splits the tag comparison operation into two steps,
instead of entirely reading all tags in one step. In the first
step, a few lower order bits of all tags are read and compared
with the corresponding part of the requested address using a
tiny comparator. In the next step, the mismatched tag ways
are disabled and the remaining bits of the other tags, if any,
are read and compared with the corresponding bits of the
requested address. During these two steps, the operations
in data array side proceed in the same manner as in the
conventional cache architecture. Since the bitwise similarity
of tags in a set is likely to be reduced in lower order bits,
the majority of tag ways is discarded from the second step.
By eliminating a large fraction of read operations in tag
array, 3RSeT significantly reduces the read disturbance rate.
This is while splitting the tag operation by 3RSeT has no
performance penalty, because this operation overlaps the
data array access and is completed beforehand.

We explore the efficiency of 3RSeT in reducing the error
rate, which shows a strong dependency to the splitting point
of tag array for partial comparison. The larger number of bits
contributing in the first step, the higher number of tags are
discarded from the second step, while the higher error rate
is imposed in the first step. We conduct a comprehensive
set of experiments on various values for splitting point and
demonstrate that performing the partial comparison based
on lower 4-bit tag part is the best selection for all workloads.

We evaluate 3RSeT using gem5 full-system cycle-accurate
simulator [22] and compare it with the conventional tag
comparison in STT-MRAM caches. We Consider a 31-bit
tag length1 in a 1MByte 8-way set-associative L2 cache
splitted into lower 4-bits part and higher 27-bit part in
3RSeT. The evaluations show that 82.5% of tag ways are
disabled by 3RSeT in each access, on average. By eliminating
unnecessary reads from tag cells, 3RSeT reduces the read
disturbance rate in tag array by an average of 71.8%. This
reduction results in 3.6x increase in Mean Time To Failure
(MTTF) of the cache. The reduced number of read operations
and comparisons results in 62.1% energy saving in the tag
array. These significant improvements are achieved without
increasing the cache access time.

The main contributions of this paper are as follows:
1) This is the first study that addresses the read distur-

bance challenge in the tag array of STT-MRAM caches.
Our study reveals that simultaneous accesses to all tags
in a cache set for comparison operation makes the tag

1. Considering a 48-bit address bus width as the typical configuration
used in Intel64 and AMD64 processors family [23]–[26].

array the most vulnerable cache part. These observations
demonstrate that the vulnerability of tag array to read
disturbance is by 32.1x higher than that of data array.

2) We propose the 3RSeT scheme to reduce read distur-
bance error rate in the tag array by eliminating a large
fraction of tag reads. This is achieved by a) comparing
the tags in the cache set based on some lower order
bits of the tag in advance and b) preventing reading
from the remaining other upper tag part for those that
mismatched in the first step.

3) We experimentally find an optimum point for the
number of lower order bits of tags for partial comparison
to guarantee the minimum read disturbance rate in the
tag array. Our observations illustrate that this optimum
point is interestingly the same for all workloads with
different behaviors and access patterns. Any value
greater (smaller) than this point increases the error rate
by dominating the contribution of lower (higher) order
bits of the tags in the number of reads.

4) By making a minor modification, we propose an efficient
cache configuration for 3RSeT realization that beside
error rate reduction significantly reduces the energy
consumption in the tag array with no effect on cache
latency and imposing a negligible area overhead.

The rest of this paper is organized as follows. Section II
describes the preliminaries of STT-MRAM memory and its
reliability challenges. The previous studies are discussed in
Section III. In Section IV, the motivation and the proposed
scheme is presented. In Section V, the simulation setup and
results are given. We discuss different aspects of the proposed
scheme and its limitations in Section VI. Finally, we conclude
the paper in Section VII.

2 P R E L I M I N A R I E S

In this section, we explain the conventional structure of
STT-MRAM cells and the mechanisms of reading/writing
from/into a STT-MRAM cell. Then, we discuss the sources of
errors in STT-MRAM cells and focus on the read disturbance
error as the most important reliability concern in the tag
array of STT-MRAM cache.

2.1 STT-MRAM Basics

STT-MRAM cell mechanism is based on resistance of a
Magnetic Tunnel Junction (MTJ) element, which determines
the state of the cell [1]. An NMOS access transistor controlled
by the Word Line (WL) signal is used to connect/disconnect
the Bit Line (BL) to the MTJ [12], [27]. MTJ consists
of three layers, an oxide layer named oxide barrier layer
made of crystallized Magnesium oxide (MgO) sandwiched
between two ferromagnetic layers, named Free layer and
Reference layer [2]. The structure of this cell, known as 1T1MTJ
STT-MRAM, is shown in Fig. 1(a). Magnetization direction
of free layer can be changed by applying a write current and
determines the state of stored data, while the magnetization
direction of the reference layer is fixed.

STT-MRAM technology is based on the magnetic charge
instead of electrical charge. Two states of the MTJ is formed
based on the free layer electrons spin direction while a spin-
polarized current flow through it [12], [28]. This current
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Fig. 1. STT-MRAM cell schematic: (a) 1T1J STT-MRAM cell structure
and (b) MTJ low and high resistance states.

makes the free layer spin direction parallel or anti-parallel
with spin direction of the reference layer. The parallelism
causes a low resistance in MTJ interpreted as value ‘0’, while
‘1’ is because of high resistance due to anti-parallelism. The
MTJ states and its logic values are depicted in Fig. 1(b).

As mentioned, the resistance of MTJ (high resistance or
low resistance) shows the value in a STT-MRAM cell (‘1’ or
‘0’). This resistance value should be sensed to read the cell
content. Reading a cell needs a small current flowing from BL
to Source Line (SL) or vice-versa for a predetermined pulse
width [28]. In this case, WL is first set to turn on the access
transistor. Then, Iread (the small read current) is applied to
the STT-MRAM cell. By applying Iread to an STT-MRAM cell,
a voltage is generated between the BL and SL. To read out
the MTJ resistance state, the BL voltage should be compared
with the reference voltage [13]. If the sensed value is higher
(lower) than the reference voltage, it means that the resistance
of MTJ is low (high) and the cell contains ‘0’ (‘1’) value.

To write a value into a cell, the MTJ resistance should be
changed, which makes this operation more complicated. MTJ
resistance changes if the spin direction of the electrons in the
free layer flips. To this end, a write current (Iwrite) is applied
to the bit line or source line to write ‘1’ or ‘0’, respectively.
Based on the direction of the applied current, the spin of free
layer orients in the same or opposite direction of the reference
layer magnetic field, which causes to flow a spin-polarized
current. When the amount of this spin-polarized current
exceeds a threshold value, the magnetic field direction of the
free layer switches [2], [27]. This is the time when the MTJ
content flips and a value is written into the cell. By switching
the magnetic field direction from parallel to anti-parallel (or
vice versa), electrons flow from the free layer to the reference
layer (or vice versa) [12], [13].

2.2 STT-MRAM Reliability

Reliability is a major concern of STT-MRAM technology
for commercialization. To address the reliability concern in
STT-MRAM, it is required first to investigate the sources of
errors in this technology. Three main sources of errors in a
STT-MRAM cell are read disturbance, write failure, and
retention failure.

Read disturbance error occurs when the flow of the
read current through MTJ layers changes the electrons spin
direction, resulting in an undesirable write operation. The

read disturbance probability of an STT-MRAM cell during a
read operation is calculated according to (1) [5], [11].

PRead−Disturbance = 1− exp(
−tread

τ × exp(∆(1−Iread)
IC0

)
)

(1)
where, τ is attempt period and assumed to be 1ns, Iread
is read current, IC0 is critical switching current, which is
needed to write in 0◦K, tread is the read pulse width, and ∆
is thermal stability factor [27]. The thermal stability factor
of a cell is calculated according to (2) [5].

∆ = Eb

kBT
(2)

where, Eb is barrier energy, kB is Boltzmann constant, and
T is temperature in Kelvin.

A write failure occurs when the content of a cell is
not switched by applying write current during the write
operation. This probability is calculated according to (3) [5],
[8], [29].

PWrite−Failure = exp(−twrite×
2× µβ × p× (Iwrite − IC0

)

c+ loge(π
2 ×∆/4)× (e×m× (1 + p2))

)
(3)

where, Iwrite is write current, c isEuler constant, e is electron
charge, m is magnetic momentum of the free layer, p is
tunneling spin polarization, µβ is Bohr magneton, twrite is
write pulse duration, and ∆ is thermal stability factor.

Retention failure occurs when the cell content flips
stochastically, while the cell is idle (a cell that is not read nor
written) [3], [5], [28], [30]–[32]. The occurrence probability of
a retention failure for a STT-MRAM cell is according to (4).

PRetention−Failure = 1− exp(−t× exp(−∆)) (4)

where, t is the cell idle time and ∆ is thermal stability factor
of a STT-MRAM cell.

According to the mentioned formulas, the rate of all
the error types in a STT-MRAM cell depends strongly on
its physical- and circuit-level parameters, e.g., ∆, Iread,
tread, Iwrite, and twrite. The retention time reported for
a STT-MRAM cell is typically 10 years, which is large
enough for making the retention failure rate ignorable in
frequently accessed on-chip caches. The rates reported for
read disturbance and write failure reside within 10−8∼10−11

interval per STT-MRAM cell per access. This value is large
enough to make the read disturbance and write failure a
severe reliability challenge in frequently read/written on-
chip caches. In a cache accessed for millions of times per
second, experiencing several errors per unit of time is highly
probable.

Read disturbance, write failure, and retention failure are
generated from different sources. The fault sources for such
failures include magnetic coupling, stochastic switching, and
thermal fluctuation. Two inter-cell and intra-cell magnetic
coupling model affect the write performance and retention
of MTJ devices in STT-MRAM memories [33]. The magnetic
coupling degrades data retention and increases the write
failure rate because of significant variations in average
switching time. The stochastic switching nature of Spin-
Transfer Torque is the main source of these three error types
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in STT-MRAM memories. On the other hand, these errors
are significantly sensitive to the temperature.

The higher the temperature, the higher the error rates [27],
[34]. In this paper, we specifically focus on read disturbance
error. The fault sources affect the circuit-level parameters, e.g.,
thermal stability factor (∆), read pulse width (tread), critical
switching current (IC0 ), and (Iread). Besides the device-level
parameters and characteristics of STT-MRAM cells, the rate
of read disturbance error is affected by two major sources:
a) system-level parameters, e.g., workloads, which affect the
memory content and access patterns [3], [35], [36] and b)
physical parameters such as Process V ariations (PVs) that
differently (sometimes oppositely) affect these error rates [3],
[37], [38].

The tag array part in the cache is read for both data read
and write requests in the cache hit and cache miss occur-
rences. On the other hand, in a set-associative cache, which
is the common cache organization in modern processors, all
tag ways in a set are simultaneously read per request for a
single data block. Therefore, unlike data array, the number of
read operations is significantly higher than write operations
in the tag array, which makes the read disturbance as the
predominant source of error in the tag array. Meanwhile,
technology scaling further exacerbates the contribution of
read disturbance in the total tag array error rate. This is
because the scaling of read current is significantly lower than
that of write current by shrinking of technology feature size,
which leads to narrow the gap between the read and write
current [5].

3 R E L AT E D W O R K

Several studies have addressed the challenges of STT-MRAM
technology, which is widely used in both data and tag arrays
of cache memories [8], [10], [13], [14], [17], [19]–[21], [39]–[43].
While overcomming read disturbance error in data array is
the concern of several studies, this reliability threat has never
been addressed in tag array. In the following subsections,
we first discuss the previous work on read disturbance of
data array of STT-MRAM caches to show that these schemes
are not applicable/affordable in the tag array. Then, we
investigate the studies in traditional SRAM-based tag array
aimed to reduce tag accesses for energy saving, because of
their applicability in emerging STT-MRAM tag array and
their effect on read disturbance rate.

3.1 Read Disturbance Reduction in STT-MRAM-based
Data Array

The read disturbance error is probable in both data and
tag parts of the cache. There are various schemes that
try to decrease read disturbance rate in the data array of
STT-MRAM caches. Such schemes either a) manipulate
circuit-level parameters, such as tread, Iread, and thermal
stability factor (∆), b) use data encoding approaches, or c)
employ Error-Correcting Codes (ECCs). The existing read
disturbance reduction schemes are affordable in data array,
but lose their efficiency when applied to STTMRAM tag
array or they are hardly applicable to the tag part. This paper
is the first that addresses the read disturbance error in the
tag array of STT-MRAM cache.

Some of previous studies for read disturbance rate
reduction in data array are based on adjusting the circuit
parameters. They decrease the read current and/or read
pulse width to mitigate read disturbance rate [13], [14], [39].
This approach, however, increases the rate of false read error
in which the sense amplifier circuit is unable to correctly
determine the content of STT-MRAM cell. This error is
because of peripheral CMOS circuitry and it is not specific to
STT-MRAM technology [11].

Another approach on data array, named Read-restore
scheme [20], [21], [42], overwrites the cells content after each
read access. This scheme is only able to correct the read distur-
bances that flip the cell content while the cell is correctly read
in the ongoing access. However, the stochastically occurring
read disturbance may flip the cell in the initial phase of
the read pulse and affect the ongoing read access as well. In
addition, the overhead of the energy-hungry and long-lasting
write operation into cells, which are performed after each
read from parallel-accessed tag array, is not affordable.

Another scheme uses data compression to reduce the
number of bits written to the data blocks [10], [43]–[45].
By reconstructing the original data from its compressed
form, this scheme omits a fraction of the read accesses
from STT-MRAM cells. Compressing and reconstructing data
requires complicated circuitry and imposes performance
overhead. Some other studies utilize ECCs to tolerate read
disturbance errors [8], [17]. Although ECCs are widely used
to overcome read disturbance error in the data array, they
severely degrade the cache performance when employed
in the tag array. Considering an ECC-equipped data array,
the study in [8] demonstrates that frequent read accesses to
cache blocks cause read disturbance accumulation in data
blocks and proposes REAP -Cache architecture to eliminate
this accumulation.

3.2 Read Access Reduction in SRAM-based Tag Array

Considering the exacerbated read disturbance rate in the
tag array due to its high read demand, this paper redesigns
the tag structure to minimize the number of required reads.
To the best of our knowledge, none of the previous studies
have addressed the effects of high read accesses in tag array
on the reliability of STT-MRAM caches. However, there are
some studies on traditional SRAM caches that try to reduce
the cache energy consumption by eliminating a subset of
extra read accesses in data and/or tag arrays. Therefore, we
studied the well-known previous schemes, which reduces
read operations in tag part of cache.

Way prediction scheme tries to reduce the energy con-
sumption imposed by parallel accesses in set-associative
caches by accessing a cache way with the highest chance
instead of accessing all cache ways [46]–[48]. On a mis-
prediction, this scheme accesses all cache ways to find a
match. Way prediction can be employed in only a) data array
or b) both tag and data arrays. In the former, instead of
accessing all tag and data ways in a set, all tags and a single
predicted data way is read. On a misprediction, all data ways
are accessed in parallel without requiring to repeat the tag
read and compare operations. In this manner, although the
performance penalty of misprediction is minimal, the number
of tag read accesses is not affected and no read disturbance
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reduction is achieved. In the latter, a single predicted tag
way and its corresponding data way are accessed, and on a
misprediction, all tag and data ways are accessed in parallel.
Beside significant energy saving, this scheme can significantly
reduce the tag read disturbance rate on a correct prediction.
However, way prediction is mainly effective in L1 caches
and its misprediction rate in lower level caches is so high
that almost no reliability improvement or energy saving is
achieved, based on our experiments given in Section V.

As another scheme, way halting cache inserts a narrow-
width fully associative tag named halt tag beside each tag
way to store some lowest-order bits of the corresponding
tag [49]. Prior to accessing tag and data ways, all halt tag lines
are accessed and compared with the corresponding lower
order bits of the incoming tag. Halt tag reduces read accesses
by disabling the ways mismatched in the first phase. Besides
requiring extra memory cells, halt tag is only applicable to
small L1 caches since the complexity, energy consumption,
and delay of a fully-associative memory in lower level caches
with thousands of lines are extremely higher than its benefits.

As a combination of two mentioned schemes,
way halting prediction [50] compares some lower order
bits of incoming tag with the content of the fully associative
halt tag to disable some cache ways and then access a single
predicted way among the remaining ways. Despite of its
improvements in small L1 caches, the shortcomings of both
way prediction and way halting cache make the way halting
prediction scheme inapplicable in lower level caches.

The last group of the schemes that targeted read access
reduction try to deactivate some data ways via partial tag
comparison [51]–[53]. A narrow-width tag way containing
some lower order bits of the tag is inserted alongside of each
tag way. On each cache access request, a partial tag compari-
son is performed between the lower order bits of incoming
tag and all narrow-width tags in a set; simultaneously, all
tag and data ways are accessed similar to the conventional
cache operation. The output of each partial tag comparison
is the enable signal of its corresponding data way sense
amplifier unit. Due to the fact that a large amount of energy
is consumed by data array sense amplifiers, disabling some
of them can result in a significant energy saving. However,
no reduction is provided by this scheme in the tag read
access.

To summarize, the previous studies only have addressed
the read disturbance in data part of STT-MRAM caches. The
existing read disturbance reduction schemes on data array
such as a) changing the circuit parameters, b) overwriting
the memory content, c) data coding and compression, and
d) using ECCs are not applicable or affordable on STT-
MRAM tag array [8], [10], [13], [14], [17], [20], [21], [42],
[43]. a) Read current reduction is limited to a value that
the cells are still readable beside its adverse effect on read
latency. b) Overwriting all tag ways in each cache access
extremely increases the energy consumption and imposes
significant performance penalty due to high write latency
of STT-MRAM cells in read-restore scheme. c) Frequent
data patterns required for data compression schemes cannot
be found in tag array containing requested addresses. d)
ECCs should be limited to correcting single errors because of
high energy, area, and performance cost of providing larger
correction capabilities in the tag part.

In contrast to the previous work, our suggested scheme
decreases read disturbance in tag array by minimizing the
number of reads from tag bits. As mentioned, some schemes
targeted energy saving in traditional SRAM-based tags by
reducing the number of tag accesses [46]–[53]. While these
schemes can reduce the number of reads from tag array, they
mainly focused on tiny L1-caches and loose their efficiency
when employed in large last-level caches. Nevertheless, to
provide a fair evaluation, we compare our proposed scheme
with the best-performing scheme, i.e., way prediction, in this
category in addition to comparing it with the conventional
tag array configuration as the baseline.

4 P R O P O S E D S C H E M E

In this section, we first provide the problem definition and
the source of the STT-MRAM cache unreliability, which is the
motivation of this work. Then, the proposed 3RSeT scheme
for reliability enhancement in the cache is explained. Finally,
the architectural details and implementation of 3RSeT are
given.

4.1 Problem Definition and Motivation

Read disturbance is a unidirectional error, which means that
it is probable to occur in one direction (either ‘1’→‘0’ or
‘0’→‘1’). In this work, we assume that the direction of read
current is the same as the current for writing ‘0’, and the cells
containing ‘1’ are the only contributor in read disturbance
rate. Therefore, this unidirectional read current makes the
occurrence probability of read disturbance in a cache block
to be content-dependent [3]. We consider such characteristics
in both our proposed scheme and the experiments.

For an access request to a k-way set-associative cache,
the tag part of the requested address is compared with all
k tags in the target set to find a match. To minimize the tag
operation time, all tags in the set are read in parallel and
simultaneously compared with the incoming tag. Therefore,
k tags are read for finding a single similar tag, if any.
Considering a 1MByte 8-way set-associative L2 cache with
64-byte block size in a system with 48-bit address bus, Fig. 2
depicts the cache operation in an access request. In this cache
configuration, the number of sets is 2048 and the tag length
is 31-bit. When an access request is sent to the cache, the
index part of the incoming address is decoded in the first
step. After determining the target set, all tags in the set are
read and compared with the tag part of the address using
the 31-bit comparators.

On a cache hit, one comparator finds a match and
activates the corresponding way in data array to select the
requested data block. On a cache miss, on the other hand,
none of the ways in data array is activated. Reading all k
tags in a set to find a single similar tag, if any, significantly
increases the number of read operations in the tag array. In
addition, both read and write requests to the cache require
reading from the tag array. Therefore, the number of reads
from tag cells is substantially greater than that of from data
cells. The occurrence probability of read disturbance directly
depends on the number of reads from STT-MRAM cells. An
error remains in the cell until the next write operation to the
cell. As a result, the number of read accesses to a STT-MRAM
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cell between two consecutive write operations determines the
error probability. Due to higher demand for read operation
and less frequent write operation, the vulnerability of tag
cells to the read disturbance is expected to be extremely
higher than that of data cells.

We conduct a set of experiments to investigate the read
access patterns and vulnerability of tag and data cells
to read disturbance. The gem5 full-system cycle-accurate
simulator [22] is used to model a quad-core processor and 18
combinations of programs from SPEC CPU2006 benchmark
suite [54] are generated as the multi-programmed workloads.
The details of the system configuration and workloads are
given in Section V (Simulation Setup and Results).

We extract the number of reads between all pairs of
consecutive write operations in both data and tag arrays
during the workload execution. Fig. 3 depicts the read
access pattern in data and tag arrays for six exemplary
workloads2. The X-Axis shows the number of reads between
two consecutive writes in linear scale and the Y-Axis in
logarithmic scale shows the number of tags and data blocks
that experienced each point in the X-Axis (the frequency
of each number of reads). For example, Point (1000, 100)
for the tag array means that there are 100 tags during the
workload execution that have been read for 1000 times
between two consecutive writes. The probability of read
disturbance increases by moving from left to right on the
X-Axis and from bottom to top on the Y-Axis.

According to Fig. 3, the frequency of tags and data de-
creases for larger number of reads between two consecutive
writes. However, the rate of this reduction is significantly
higher for data blocks. For small values of reads (e.g., 1 to 10)
between two writes (left side of X-Axis), the frequency of tags
is close to that of data blocks. The data curve drops sharply
and reaches close to zero at points larger than 200, where tag
curve is still above 100. As can be seen in Fig. 3-(a), Fig. 3-(e),
and Fig. 3-(f), there is no data block with larger than 2000
reads, while several tags exist with near 5000 reads.

2. The results for the other workloads are given in Fig. 13 in Appendix
A.

The maximum number of tag reads in Fig. 3-(b) is about
1300, which is by 5x larger than that of data block. The curve
for data blocks reaches close to zero at point 200 in Fig. 3-(c),
while the curve for tag arrays remains near 10 until point
1000 with a peak to 100 in point 870. The pattern observed
between points 100 and 300 for the curve of data blocks in
Fig. 3-(d) before reaching it to zero is experienced in 2600 to
3000 interval for the curve of tag arrays. These observations
indicate that in the case of both number of consecutive reads
and the number of cells experiencing those reads, the values
in the tag array are significantly greater than those in the
data array.

To quantify the effect of the number of read operations on
the read disturbance rate, we calculate the error probability
in a STT-MRAM cell (PFailure−per−cell) after n consecutive
read operations in (5).

PFailure−per−cell = 1− (1− PRead−Disturbance)n (5)

where, n is the number of read operations and
PRead−Disturbance is read disturbance probability of a cell
for a single read operation given in (1). Based on read access
patterns extracted from our simulations and the results
observed in Fig. 3, the read disturbance probability of a
STT-MRAM in both tag and data arrays are calculated and
given in Table 1 for all 18 workloads, i.e., Mix0-Mix17. The
read disturbance probability per read operation per cell is
assumed to be 10−8 [5], [8], [27]. As the results show, the
error occurrence probability in a tag cell is by several times
higher than that in a data cell for all workloads. The tag
error probability is by more than 50x higher than data error
probability in Mix6 and Mix7. In the minimum gap, error
probability in the tag is by 14.8x higher than that in the
data for Mix16 workload. On average, the read disturbance
probability in tag array is by 32.1x higher than that in data
array.

The investigation of this set of experiments shows that
the number of reads from a tag cell is several times higher
than that in a data cell for all workloads. As the number
of reads is one of the main system-level parameters in
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Fig. 3. Frequency of number of reads between two consecutive writes in data array vs tag array for (a) Mix0, (b) Mix3, (c) Mix4, (d) Mix5, (e) Mix6,
and (f) Mix7 workloads.

affecting read disturbance error, the occurrence probability
of read disturbance in the tag array is increased by more
than 30x compared with the data array over a wide range
of applications. This observation confirms that the severity
of read disturbance error in tag array is substantially higher
than that in data array, even though all previous studies
focused on the data array.

The high vulnerability of STT-MRAM tag array to read
disturbance error is because of the high demand for reading
the tags. The tag operation and configuration in STT-MRAM
caches are inherited from traditional SRAM and DRAM
caches, in which the read operation is not a reliability concern.
On the other hand, read disturbance occurrence in the tag
array is extremely more destructive than in the data array,
because it can cause losing the whole data block in the
former, instead of flipping a single data bit in the latter. Read
disturbance causes three types of failures on the tag array:
a) false-miss, in which the tag address of a line incorrectly
does not match the requested address tag, b) false-hit, in
which the tag address of a line erroneously matches the
requested address tag, and c) multi-hit, in which the tag
address of a line is erroneously changed to match another tag
address in the same cache set [55]. In a write-back last-level
STT-MRAM cache, not only all these three types are probable,
but also all three types are considered as reliability threat.
Besides the performance degradation, the cache is vulnerable

TABLE 1
Read disturbance probability for a cell in data and tag arrays of

STT-MRAM cache

Benchmark 
Tag Array Error 

Probability Per Cell 

Data Array Error 

Probability Per Cell 

Ratio of Tag to 

Data Errors 

Mix0 4.14×10
-7

 1.44×10
-8

 28.7x 

Mix1 3.01×10
-7

 1.25×10
-8

 24.2x 

Mix2 3.55×10
-7

 1.18×10
-8

 30.2x 

Mix3 3.58×10
-7

 1.12×10
-8

 31.9x 

Mix4 2.15×10
-7

 1.25×10
-8

 17.2x 

Mix5 2.87×10
-7

 1.09×10
-8

 26.2x 

Mix6 1.34×10
-6

 7.54×10
-9

 177.6x 

Mix7 5.96×10
-7

 1.01×10
-8

 59.1x 

Mix8 2.45×10
-7

 1.25×10
-8

 19.9x 

Mix9 1.99×10
-7

 1.07×10
-8

 18.0x 

Mix10 1.95×10
-7

 1.08×10
-8

 18.1x 

Mix11 2.02×10
-7

 1.03×10
-8

 19.7x 

Mix12 1.99×10
-7

 1.00×10
-8

 19.8x 

Mix13 2.15×10
-7

 1.01×10
-8

 21.2x 

Mix14 2.25×10
-7

 1.22×10
-8

 18.5x 

Mix15 2.26×10
-7

 1.24×10
-8

 18.2x 

Mix16 2.33×10
-7

 1.57×10
-8

 14.8x 

Mix17 2.36×10
-7

 1.55×10
-8

 15.2x 

Average 3.36×10
-7

 1.17×10
-8

 32.1x 

 

to false-miss in two cases if the cache block is dirty.
The first is fetching the outdated version of the block due

to the current miss and the second is writing back the data
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block corresponding to the erroneous tag into an incorrect
memory destination. In a multi-hit, both cache blocks are
discarded, which has the same reliability threat as false miss
if the blocks are dirty. False-hit causes a data loss due to
incorrect data delivery. Therefore, unlike read disturbance
error in a data block, which causes a single-bit error inside
a data word, the erroneous tag array can cause the loss
of the whole cache block. In this regard, the vulnerability
to tag errors is extremely more severe than to data block
errors. By restructuring the STT-MRAM cache architecture
based on its characteristics, we can take advantages of this
emerging technology and avoid its drawbacks with respect
to its inherent features.

4.2 Proposed 3RSeT Scheme

Our approach for mitigating read disturbance rate in tag
array is to reduce the number of reads from tag cells per
access request while maintaining its parallel comparisons
feature. To this aim, instead of comparing the entire tags,
we selectively read and compare a small fraction of all tags
and disable the large remaining fraction of the mismatched
tags. In the proposed scheme, so-called Read Disturbance
Rate Reduction by Selective Tag Comparison (3RSeT), the
tag comparison operation is splitted into two steps. First, a
partial comparison is performed on m lower order bits of
the n-bit tags. Then, the mismatched tag ways in partial
comparison are disabled and the comparison is performed
in the remaining n−m bits of other tag ways. By disabling
some tag ways in the second step, their upper n−m bits are
immune to read disturbance.

The effectiveness of 3RSeT depends on the number of
tags disabled in the second step. Because of the locality
in referring memory blocks and limited working set of
applications, the chance for dissimilarity in lower order bits
of tag is higher. Therefore, it is expected that 3RSeT can
effectively disable the majority of tags by partially comparing
a few number of lower order bits.

4.2.1 3RSeT Architectural Details
Fig. 4 illustrates the tag array configuration in 3RSeT. We
assume a 48-bit address bus in the system and the cache
size is 1MByte [23]–[26]. The tag length for an 8-way set-
associative cache is 31 bits and the cache block size is 64-Byte.
For the sake of simplicity, we limit our discussion to the
mentioned parameters hereafter. However, the explanations,
discussions, and the proposed 3RSeT are generally valid and
applicable.

3RSeT splits a 31-bit tag way into a 4-bit lower order
part (bit3-bit0) and a 27-bit higher order part (bit30-bit4)
(the reason behind selecting 4-bit as the lower order bits
is discussed in the next subsection). Considering the cache
configuration in Fig. 4, the operation of tag array for a read
access is as follows. After decoding the index part of the
requested address, bit3-bit0 of all tags in the target set are
read and compared with bit20-bit17 of the address (bit3-
bit0 of the address tag part) via eight 4-bit comparators.
The output of each 4-bit comparator is connected to its
corresponding tag way to determine whether the tag should
be disabled for the next step. In the next step, the tag ways
that are similar to the input tag in their bit3-bit0 are activated

while the other tags are disabled and the read operation
is repeated. Meanwhile, the output of 4-bit comparators
are connected to their corresponding 27-bit comparator to
disable those that are not required. Disabling the comparator
significantly saves the power in this step. After reading
bit30-bit4 of the active tag ways, their corresponding 27-bit
comparators determine the target data block.

The key feature of 3RSeT is that the two step comparison
is realized via a pure combinational circuit without requiring
any modification in cache controller. This internally-operated
splitting minimizes the timing effect of 3RSeT on the tag
comparison operation. The implementation details will be
explained in more depth in Section 4.2.3 and Section 5.3.

4.2.2 Optimum Number of Low Order Bits
3RSeT splits the tag way bits into two parts (high order bits
and low order bits parts). The first step of the 3RSeT scheme
is to compare some lower order bits of the tag part of an
incoming address with the corresponding lower order bits
of all tags in the target set. The number of bits selected for
comparison in this step can be any value between one to
30 for a 31-bit tag. At the second step, 3RSeT compares the
remaining bits of a subset of all tag ways with the remaining
part of incoming tag. On the other hand, dividing the tag
comparison process into two steps needs to be completed
in the predetermined time slot to impose no performance
overhead.

To determine the partitioning border point in this 31-bit
tag, we simulate the proposed 3RSeT for a wide range of
values (one bit to ten bits) for partial tag length comparison
in the first step. In this simulation, one bit to ten bits out of
31-bit tag of all tags from the target set is compared with
the incoming tag address at the first step. In the second
step, the remaining 30 to 21 bits of the matched tags are
compared with the corresponding bits of the incoming tag
address. The number of bits that are read in each partitioning
demonstrates the effectiveness of that partitioning. The less
number of bits read during an access, the higher effectiveness
of that selection.

Fig. 5 illustrates the number of reads from tag bits for all
accesses in 18 workloads from SPEC CPU2006 benchmark
suite based on the tag splitted points. The X-Axis is the
number of bits in 3RSeT compared in the first step of tag
comparison. The Y-Axis shows the total number of accessed
bits in 3RSeT normalized to the conventional architecture,
in which all the 31-bit tags are compared in one step. As
shown in Fig. 5, the minimum number of accessed bits
for all workloads is observed at splitting point of four
(comparison based on 4 lower order bits in the first step).
This observation reveals that the optimum length of lower
order bits contributing in the first step is 4-bit. Any value
lower (higher) than 4-bit exacerbates the number of reads
contributing in the second (first) step in such a way that leads
to an increased number of total reads. The higher distance
from 4-bit comparison in any direction, the larger number
of total reads in the tag array. Therefore, we choose four
lower order bits as the first m bits out of n bits (31-bit tag) to
compare in the first step of the 3RSeT scheme.
4.2.3 3RSeT Implementation Details
To be able to partially read a tag line, i.e., to read bit3-
bit0 in the first step and bit30-bit4 in the second step, the
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Fig. 4. Structure of tag array in proposed 3RSeT scheme.
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structure of tag ways should be modified. 3RSeT provides
this capability with a minor modification in tag lines structure
and a simple logic. Fig. 6 shows the detailed structure of a
tag way in 3RSeT. In the conventional structure, each output
signal of Decoder unit is directly connected to all 31 access
transistors of 31-bit tag line. This signal is the Word Line
(WL) signal of the tag row. In 3RSeT, the WL signal derived
by the Decoder unit is connected to the access transistor
through two control transistors, i.e., Ctrl. T rans.1 and
Ctrl. T rans.2. WL activated by decoder unit is connected to
bit3-bit0 in each row through Ctrl. T rans.1 and to bit30-bit4
through Ctrl. T rans.2. The controlling logic to turn on/off
the control transistors operates in such a way that in the first
access step, the WL for bit3-bit0 and bit30-bit4 is enabled and
disabled, respectively. In the second step, WL for bit3-bit0 is
disabled while WL for bit30-bit4 is enabled only for the tag
ways that their 4-bit comparator signals a partial match.

The control transistor of bit30-bit4 in each tag way, i.e.,
Ctrl. T rans.2, is activated directly by the output of its
corresponding 4-bit comparator. To enable control transistor
of bit3-bit0 in the first step and disable it in the second step,
we use a SR-Latch unit for each tag way. On a new request,
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Fig. 6. Internal organization of a tag way in proposed 3RSeT scheme.

the SR-Latch is set by the rising edge of the request and
activates the Ctrl. T rans.1 to read from bit3-bit0. The Reset
input of SR-Latch is triggered by the completion of 4-bit
Sense Amplifier unit sensing bit3-bit0 and the Set input
is deactivated by the AND gate. The output of SR-Latch
deactivates the Ctrl. T rans.1 in the second step, which
remains inactivate until the next access request.

5 S I M U L AT I O N S E T U P A N D R E S U LT S

We evaluate the proposed 3RSeT scheme using gem5 full-
system cycle-accurate simulator [22]. A quad-core processor
with private L1 instruction- and data-cache and an L2 cache
shared between the cores is modeled. The details of the
system configuration is shown in Table 2. We implement
3RSeT in the L2 cache assuming that 31-bit tags are splitted
into a 4-bit lower and 27-bit upper parts.

In the experiments, 18 multi-programmed workloads
are generated by combining a set of programs from SPEC
CPU2006 benchmark suite [54]. The results are extracted
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TABLE 2
System configuration details

CPU Quad-core, 1GHz, out-of-order 

L1 Cache 

(Inst. & Data) 

32KB, 4-way set associative, 64B block size, 

2-cycle read and write access time, non-blocking, 

write-back, SRAM, private 

L2 Cache 

1MB, 8-way set associative, 64B block size, 

10-cycle read access time, 20-cycle write access 

time, non-blocking, write-back, STT-MRAM, shared 

 
by executing 4 billion instructions after skipping initial 400
million instructions as the warm-up phase. The probability
of read disturbance occurrence per read access to a single
STT-MRAM cell is 10−8 in the experiments [3], [5]. 3RSeT
is compared with the STT-MRAM conventional cache that
the configuration is mentioned in Table 2 as baseline and
way prediction, as a well-known read reduction scheme,
in terms of the number of tag bits read and error rate as
well as tag energy consumption, performance, and area. As
discussed in Section 3, several schemes have been presented
in the literature to reduce the number of reads from cache.
Almost all schemes presented for read reduction in the cache
focused on data array and only way prediction scheme is
capable of tag bits read reduction. Although all of these
schemes targeted L1 cache, investigating way prediction
reveals the deficiency of the previous schemes in L2 caches.

5.1 Reliability Evaluation

3RSeT improves the tag reliability by mitigating the read
disturbance error rate, which is achieved by reducing the
number of read accesses to tag cells. This reduction is realized
by eliminating read operation from upper 27-bit part of those
tags that their lower 4-bit part is dissimilar to that of input
tag. Fig. 7 depicts the average number of similar tags for both
cache hits and cache misses in each workload. The results
illustrate that, on average, only 1.88 out of 8 tags are partially
similar to input tags in cache hits. This average value is as
low as 1.03 for cache misses. In the worst-case, an average
of 2.14 out of 8 tags are partially similar in Mix5 workload.
This observation reveals that 3RSeT effectively disactivates
more than 73% of tag ways per access.

Fig. 8 depicts the total number of accessed tag bits
in 3RSeT and way prediction schemes normalized to the
baseline. The contribution of cache hits and cache misses
is illustrated for each workload. On average, the number
of bits accessed using 3RSeT and way prediction is 28.2%
and 98.3%, respectively, indicating the reduction of 71.8% in
the former and less than 2% in the latter. Read reduction in

3RSeT is between 65% to 70% in only three workloads, i.e.,
Mix4-Mix6, and is more than 75% in Mix9-Mix11.

Way prediction scheme reduces the number of tag bit
reads only for five workloads, i.e., Mix4-Mix8, whereas,
this number is increased for all other workloads up to 111.2%
compared to the baseline. This increase in comparison with
baseline is due to mispredictions in the way prediction
scheme. On a correct prediction, one out of eight tag ways
(in an 8-way set-associative cache) is read, while eight tag
ways in addition to the one predicted tag are read on a
misprediction. Misprediction is experienced in all cache
misses and in a subset of cache hits. In this regard, a large
fraction of total number of reads in the way prediction
scheme is devoted to the cache misses, as observed in Fig. 8.
Cache misses contribute by 67.3%, on average, and by more
than 90% in Mix9-Mix13 workloads in total number of
reads.

To explore the effect of the number of reads on the tag
reliability, we compare the Mean Time To Failure (MTTF)
parameter of the 3RSeT and way prediction schemes. MTTF is
extracted from the error rate per unit of time calculated based
on error probability per tag access. Fig. 9 reports the MTTF
in 3RSeT and way prediction normalized to the baseline
for all workloads. The average of MTTF in 3RSeT and way
prediction is 357.9% and 104.9%, respectively. MTTF in 3RSeT
is even higher than 420% inMix9 andMix10 workloads and
is slightly less than 300% in only Mix5 workload. This value
in the way prediction scheme is lower than the baseline for
several workloads, e.g., Mix0-Mix3 and Mix9-Mix17, and
its maximum value is 183.3% for Mix6 workload. Therefore,
3RSeT extends MTTF to 3.6x, while way prediction achieves
a negligible MTTF improvement of 1.05x.

5.2 Energy Consumption Evaluation

By modifying the tag array organization and reducing the
number of reads from tag cells, 3RSeT affects the energy
consumption in tag array per access request. On the one hand,
reading and comparing the lower and higher tag parts in
two steps slightly increases the energy consumption related
to that tag way. On the other hand, eliminating the read
and comparison operation of the higher tag part reduces the
energy consumption in tag ways disabled in the second step
of 3RSeT. Note 3RSeT reduces energy consumption in the
tag array if its energy saving due to disabling some tag ways
outperforms the energy consumption increase in tag ways
that remain active in the second comparison step of 3RSeT.
Therefore, the energy efficiency of 3RSeT per access depends
on the number of disabled tag ways.
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Fig. 7. Average number of partially similar tags in the cache per hit and miss access per workload.
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Fig. 9. Mean Time To Failure (MTTF) of tag array in 3RSeT and way prediction normalized to the baseline for all workloads.

Fig. 10 depicts the tag array energy consumption in
the baseline, in which all eight tag ways are entirely read
and compared with input tag, and in 3RSeT for all nine
possible scenarios in term of the partial similarity. These nine
scenarios for an 8-way set-associative cache is the similarity
of zero, one, ..., seven, or all eight tag ways with the incoming
tag. In the worst-case scenario, lower order bits of all eight
tags are similar to the input tag and no tag way is disabled
in the second step. As shown, the energy consumption in the
baseline is 0.01nJ, which is slightly lower than that in 3RSeT
when the lower part of seven tags are similar to input tag. In
this case, only one of the tag ways is disabled in the second
comparison step and 3RSeT provides minimum reduction in
the number of bits read. For all other seven scenarios, energy
consumption in 3RSeT is lower than that of the baseline. The
tag energy consumption in 3RSeT is 45.4% and 32.8% of the
baseline when two and one partial similar tags are found,
respectively. This value is 19.9% for the case that no partial
similarity exists.

Fig. 11 shows the tag array energy consumption in
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Fig. 10. Energy Consumption of tag array per access in conventional
cache configuration (baseline) and 3RSeT for all nine possible scenarios
of tags partial similarity.

the 3RSeT and way prediction schemes normalized to the
baseline for all workloads. Way prediction reduces the energy
consumption by only 1.6%, on average. This scheme reads
and compares a single predicted tag way on a correct
prediction, which results in significant energy saving. On
the other hand, one predicted tag way and then all the eight
tag ways are read and compared on a misprediciton case,
which increases the energy consumption in comparison to
the baseline. The overall effect of way prediction on the
energy consumption depends on its prediction accuracy.
Based on the results, it is obvious that the misprediction
rate is as high that penalize the energy saving of the correct
predictions. This penalty for some workloads, e.g., Mix0-
Mix3, and Mix9-Mix14, is even so high that the total
energy consumption in way prediction is larger than the
baseline. In contrary to way prediction, 3RSeT effectively
reduces the energy consumption by 62.1%, on average. This
reduction varies from 53.4% in Mix5 workload to 67.4% in
Mix9 workload. The trend in tag energy consumption by
3RSeT is according to the reduction in the number of tag
reads observed in Fig. 8. The lower number of accessed tag
cells per read, the higher energy saving is achieved by 3RSeT.

5.3 Performance Evaluation

We investigate the effects of the 3RSeT and way prediction
schemes on the STT-MRAM cache performance. Performance
overhead of 3RSeT depends on how it affects the cache access
time. Table 3 shows cache access time in the baseline and
3RSeT for various cache size and associativities. The cache
access time consists of two parts, i.e., tag array and data array.
Since data array and tag array are accessed simultaneously,
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Fig. 11. Energy consumption of tag array in 3RSeT and way prediction normalized to the baseline for all workloads.

TABLE 3
Timing parameters for different cache sizes in 8- and 16-way

set-associative configurations.

Cache 

Configuration 

Access Time in Baseline (ns) Access Time in 3RSeT (ns) 

Tag Array Data Array Total Tag Array Data Array Total 

  1MB-8 way 0.449 1.063 1.063 0.682 1.063 1.063 

  1MB-16 way 0.449 1.061 1.061 0.682 1.061 1.061 

  2MB-8 way 0.552 1.267 1.267 0.828 1.267 1.267 

  2MB-16 way 0.605 1.676 1.676 0.905 1.676 1.676 

  4MB-8 way 0.555 1.884 1.884 0.831 1.884 1.884 

  4MB-16 way 0.554 1.880 1.880 0.829 1.880 1.880 

  8MB-8 way 0.817 2.224 2.224 1.287 2.224 2.224 

  8MB-16 way 0.816 2.224 2.224 1.258 2.224 2.224 

 

 

 

the total cache access time is the maximum of the two. 3RSeT
imposes no performance penalty if after its modifications,
the output of the comparators are still ready before arriving
the data blocks, assuming this is the case for conventional
cache configuration.

As depicted in Table 3, delay of the data array is largely
higher than the tag array for all cache configurations in the
baseline. 3RSeT splits the 31-bit tag comparison to the 4-bit
comparison followed by a 27-bit comparison. This two-step
sequential comparison operation conducted by a combina-
tional controlling circuit in single clock cycle increases the tag
array delay in 3RSeT. According to the results in Table 3, the
tag array delay after 3RSeT modifications is still lower than
that of the data array. Therefore, cache access time remains
intact in a 3RSeT-equipped tag array.

Fig. 12 shows Cycle Per Instruction (CPI) of 3RSeT
and way prediction normalized to the baseline for all
workloads. The results show that way prediction degrades
the performance by 4.2%, on average. This degradation in
the worst-case is 6.7% for Mix17 workload and its minimum
value is 1.3% inMix12 workload. The performance overhead
in way prediction depends on its prediction accuracy. While
the cache access time on a correct prediction is the same as
that in the baseline, the operations of tag and data arrays
on a mispredition need to be repeated for all cache ways.
Therefore, a higher delay is experienced on a mispredition,
resulting into performance degradation.

5.4 Area Evaluation
The last parameter evaluated in this section is the cache
area in 3RSeT. Our implementations illustrate that the area
overhead imposed by 3RSeT is negligible. As shown in Fig. 4,
3RSeT architecture transforms a 31-bit comparator of the
baseline into a 4-bit and a 27-bit comparator for each way.

The overall area of a 4-bit and a 27-bit comparators is almost
equal to the area occupied by a 31-bit comparator. Meanwhile,
the area of the comparators is negligible in total cache area.

The other modification in 3RSeT was shown in Fig. 6.
Each tag way is equipped with a SR-Latch, an AND gate,
and a NOT gate, which results in including eight units of
these modules to the total cache structure. On the other
hand, 3RSeT adds two NMOS transistors to each cache line
according to Fig. 6. Considering 1-MByte STT-MRAM cache,
the area overhead of the added SR-Latches, AND gate, NOT
gate, and NMOS transistors is less than 0.4%. It is noteworthy
that the storage added for keeping the prediction information
in way prediction imposes about 0.1% area overhead.

6 L I M I TAT I O N S A N D D I S C U S S I O N

This section discusses 3RSeT from various aspects and
explores its limitations. As investigated in Section 4.1, tag
array in STT-MRAM caches is significantly more vulnerable
to read disturbance than data array. However, the error
rate in data array cannot be ignored and a reliable STT-
MRAM cache requires protecting both data and tag arrays.
The proposed 3RSeT scheme takes advantages of memory
reference locality to reduce the number of reads from tag
array. However, this locality cannot be exploited in the data
array, which makes 3RSeT inapplicable in this cache part. As
mentioned in Section 3, several schemes have been presented
in the literature to protect data array against read disturbance,
e.g., ECCs and REAP-Cache [1], [5], [8], [17]. Our proposed
scheme is compatible with the previous schemes and can be
jointly used with them to protect both tag and data arrays.

From performance perspective, 3RSeT increases the tag
operation delay by splitting the tag comparison into two
steps. If not well managed, these two-phased operations may
result in increasing the total cache access time. However, as
described in Section 4.2.3, we propose a pure combinational
controlling circuitry that minimizes the delay effect of 3RSeT
on tag operation delay; and, as demonstrated in Section
5.3, 3RSet opportunistically exploits the gap between delay
of data and tag arrays operations to completely mask the
increase in tag array delay. Therefore, the cache access time
is not affected in 3RSeT despite the increased delay of tag
operation.

From another perspective, workloads behavior and cache
configuration may affect the 3RSeT efficiency and improve-
ments. As depicted in Fig. 7, the reduction in the number of
tag reads by 3RSeT for cache misses is higher than cache hits.
Workloads with higher randomness in accessing memory
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Fig. 12. Clock Per Instruction (CPI) in 3RSeT and way prediction normalized to the baseline for all workloads.

blocks experience higher cache miss rate and more read
reduction.

On the other hand, miss rate typically increases in smaller
caches, resulting in higher 3RSeT improvement by shrinking
the cache size. The tag length affects 3RSeT efficiency, as well.
While the optimum number of bits compared in the first step
of 3RSeT is four regardless of the tag length, a greater number
of bits is disabled in the second step for wider tags. For a
fixed address bus width, the tag length is wider in smaller
caches. Tag length is also affected by the cache associativity.
The number of cache sets is reduced in higher associativities,
which again leads to wider tags. Meanwhile, tag length is
directly determined by the address bus width.

Lastly, our evaluations in this work are based on a
48-bit address bus. This value is the typical address bus
width in modern Intel processors [24], [26]. In general,
address bus width varies from 40-bit to 64-bit in different
processor series and various vendors. For example, while ad-
dress bus in ARM Cortex-A35 and Cortex-A55 are 40-bit,
ARM Cortex-A57 supports physical address space of both
40- and 44-bit [16], [56], [57]. A more recent ARM product, i.e.,
Cortex-A77, is designed based on 52-bit address width [58].
Both Intel64 and AMD64 processor families potentially
support address width of 64-bit and are fabricated nowadays
for 48-bit [23]–[26]. While 3RSeT is applicable to all these
architectures, significantly greater energy saving and error
rate reduction is expected to achieve in processors with wider
address width.

It is noteworthy that the goal of 3RSeT is to evenly
decrease the number of read operations in the tag array.
Single-Level Cell (SLC) or Multi-Level Cell (MLC)-based STT-
MRAM [7], [59], [60] does not affect the functionality of
3RSeT, since it operates on tags of cache set. Furthermore, as
the number of bits in a cell in MLC STT-MRAM caches is
doubled, the number of cell reads is two instead of reading
four bits at the first step. Therefore, 3RSeT operates the same
as SLC-based caches in MLC-based caches just with another
optimal number of tag cells in the first step. This is because
that the four lower order tag bits are now stored in two
MLCs instead of four SLCs.

7 S U M M A R Y A N D C O N C L U S I O N S

Conventional on-chip cache structures lose their efficiency
by replacing the prevalent SRAM memory cells with the
emerging STT-MRAM technology. This paper first revealed
that excessive read operations in tag array for parallel
comparison severely degrade the cache reliability, which is

due to vulnerability of STT-MRAM cells to read disturbance.
Then, we proposed the 3RSeT scheme to redesign the tag
array configuration according to the STT-MRAM reliability
requirements. Compared to the conventional configuration,
3RSeT provides 3.6x higher MTTF for tag array by elimi-
nating a large fraction of unnecessary reads. In addition,
the proposed scheme reduces the energy consumption in
the tag array by 62.1% without compromising the cache
performance. This paper is a pioneer effort to investigate the
efficiency of conventional cache configurations and redesign
the cache according to new challenges, opportunities, and
characteristics of STT-MRAM.
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TA G A R R AY

To show the number of read frequency between all pairs of
consecutive write operations in both data and tag arrays for
all workloads, the results for the remaining workloads are
given in Fig. 13. For all workloads, the read frequency of tags
is close to that of data blocks for small number of reads (e.g.,
1 to 10). In Mix1, Mix2, Mix11, Mix12, and Mix13 workloads
depicted in Fig. 13-(a), (b), (f), (g), and (h), respectively, the
read frequency of data blocks is negligible for values greater
than 1000 in X-Axis. This threshold for the remaining Mix8,
Mix9, Mix10, Mix14, Mix15, Mix16, and Mix17 workloads
(Fig. 13-(c), (d), (e), (i), (j), (k), and (l), respectively) is 2000 in
X-Axis.

The average of overall read frequency in tags is by two
orders of magnitude higher than data blocks as shown in Fig.
13-(m). The read frequency in Mix11 and Mix12 workloads
drops to near zero around point 2000 in X-Axis, while this
number is 3000 for Mix9, Mix10, Mix13, and Mix15, as shown
in Fig. 13-(f), (g), (d), (e), (h), and (j), respectively. According
to Fig. 13-(i), (k), and (l), read frequency is considerable even
for values greater than 4000 in X-Axis in Mix14, Mix16, and
Mix17 workloads, respectively.
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Fig. 13. Frequency of number of reads between two consecutive writes in data array vs tag array for (a) Mix1, (b) Mix2, (c) Mix8, (d) Mix9, (e) Mix10,
(f) Mix11, (g) Mix12, (h) Mix13, (i) Mix14, (j) Mix15, (k) Mix16, (l) Mix17 workloads, and (m) average of all workloads.

 


