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Abstract—Emergence of Solid-State Drives (S§SDs) have evolved
the data storage industry where they are rapidly replacing Hard
Disk Drives (HDDs) due to their superiority in performance and
]p;ower. Meanwhile, SSDs have reliability issues due to bit errors,

ad blocks, and bad chips. To help reliability, Redundant Array
of Independent Disks (RAID) configurations, originally proposed to
increase both performance and reliability of HDDs, are also applied
to SSD arrays. However, the conventional reliability models of HDD
RAID cannot be intactly applied to SSD arrays, as the nature of
failures in SSDs are totally different from HDDs. Previous studies
on the reliability of SSD arrays are based on the deprecated SSD
failure data, and only focus on limited failure types, device failures,
and page failures caused by the bit errors, while recent field studies
have reported other failure types including bad blocks and bad
chips, and a high correlation between failures.

In this paper, we investigate the reliability of SSD arrays using
field storage traces and real-system implementation of conventional
and emerging erasure codes. The reliability is evaluated by statistical
fault injection experiments that post-process the usage logs obtained
from the real-system implementation, while the fault/failure at-
tributes are obtained from the state-of-the-art field data by previous
works. As a case study, we examine conventional RAID5 and RAID6
and emerging Partial-MDS (PMDS) codes, Sector-Disk (SD) codes,
and STAIR codes in terms of both reliability and performance using
an open-source software RAID controller, MD (in Linux kernel
version 3.10.0-327), and arrays of Samsung 850 Pro SSDs.

Our detailed analysis on the data loss breakdown shows that
a) emerging erasure codes fail to replace RAID6 in terms of
reliability, b) row-wise erasure codes are the most efficient choices
for contemporary SSD devices, and ¢) previous models overestimate
the SSD array reliabiligl by up to six orders of magnitude, as they
just focus on the coincidence of bad pages (bit errors) and bad chips
within a data stripe that holds the minority of root cause of data
loss in SSD arrays. Our experiments show that the combination of
bad chips with bad blocks is recognized as the major source of data
loss in RAID5 and emerging codes (contributing more than 54% and
90% of data loss in RAID5 and emerging codes, respectively), while
RAID6 remains robust under these failure combinations. Finally,
the fault injection results reveal that SSD array reliability, as well
as the failure breakdown is significantly correlated with SSD type.

1. INTRODUCTION

Solid-State Drives (SSDs) are predicted to replace Hard Disk
Drives (HDDs) due to their performance and power consump-
tion benefits [1]. While a big spectrum of Non-Volatile Memory
(NVM) technologies are appeared in the recent years and
struggle to find their place in industry [2], [3], [4], [5], [6],
[71, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], SSDs are still the most matured and promising high-
performance storage devices. SSDs are intensively used a) as
the main storage media in all-flash storage systems, b) as a
caching media in Input/Output (I/O) cache layer [22], [23],
[24], [22], [25], [26], [27], [28], and c) for tiering purposes [29],
[30], [31] (Fig. 1). Meanwhile, SSDs have reliability issues due
to wear-out!, bit errors, bad blocks, and bad chips. These
reliability issues can increase the chance of data unavailability
and data loss in storage systems [32], [33], [34], [35].

To enhance reliability, Redundant Array of Independent Disks
(RAID) configurations [36] are employed in storage systems to
avoid data loss and data unavailability. However, the nature of
failures and errors in SSDs are totally different from HDDs [37],
[38], [39], [40]; SSDs have increasing Bit Error Rate (BER)
with a distribution different from HDDs and there is a high
correlation between bit errors in SSDs [37], [38], [39]. Due
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1Each flash cell can tolerate a limited number of writes (erasures)
and wears out after a few thousand of erasures, depending on the
technology and device variations.
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Fig. 1: Structure of an enterprise flash-based storage system.

to these differences, conventional reliability models of HDD
arrays cannot be applied intactly to SSDs. Previous studies
on the reliability of SSD arrays [41], [42], [43], [44], [45], [46],
however, are based on old SSD failure studies [47], [48], [49],
and just focus on a single failure type, page failures caused
by bit errors, while recent field studies have reported other
failure types including bad blocks and bad chips alongside
page failures, and a high correlation between these failure
types.

yrl)% recent work by Schreoder et al. [37] reports SSD failure
data in Google datacenters and shows that alongside bit errors
that result in the loss of one page of data, device failures,
including bad blocks and bad chips also affect the reliability
of SSD arrays, despite previous work that just reports Raw
Bit Error Rate (RBER)? and Uncorrectable Bit Error Rate (UBER).
This study also reports a high correlation between RBER and
parameters such as prior Program/Erase (P/E) cycles, and a
high correlation between bad chip and total number of bad
blocks in a SSD chip. Meza et al. [38] and Narayanan et al. [39]
have also reported SSD failure field data in the recent years.
The reports of all the mentioned works contradict the old
SSD failure studies [47], [48], [49], hence, discredit existing
reliability models that are based on those data. Many studies
try to model the reliability of SSD arrays and modify RAID
configurations in favor of SSD failure characteristics [41], [42],
[43], [44], [50], [51]. These works, however, come with very
trivial or no reliability estimations, or are based on misleading
SSD failure characteristics reported by old studies [47], [48],
[49]. To the best of our knowledge, none of previous studies
have modeled SSD array reliability based on valid field data
and real-system implementation.

In this paper, we investigate the reliability of SSD arrays
using the real-system implementation of conventional RAID
and emerging erasure codes. The reliability is evaluated by
statistical fault injection experiments that post-process the
SSD usage logs obtained from the system run, while the
fault/failure attributes are obtained from the state-of-the-art
field data by previous works [37]. As a case study, we examine
conventional RAID5 and RAID6 and emerging Partial-MDS
(PMDS) codes [46], Sector-Disk (SD) codes [50], and STAIR
codes [51] in terms of reliability, endurance, and performance.
The experiments are conducted using an open-source software-
RAID controller, Multiple Device (MD), in Linux kernel version
3.10.0-327 (CentOS 7 operating system), and arrays of Samsung
850 Pro SSDs.

2RBER is defined as the number of corrupted bits over the total
number of read bits (including both correctable and uncorrectable
errors) [37].



Thorough investigation of SSD arrays has revealed the fol-
lowing major observations: 1) Erasure codes mainly suffer from
data loss caused by the combination of device failure and block
failure. In the RAID5 arrays, bad chips combined with either
bad pages or bad blocks are the major sources of data loss.
The contribution of bad blocks combined by bad chip (two bad
blocks and one bad chip) is also significant in total data loss
of RAIDG6. 2) Unlike previous models which only focus on the
coincidence of bad pages and bad chips, our study shows that
this type of failure contributes the minority of data loss in SSD
arrays. 3) SSD array reliability, as well as failure breakdown
is significantly correlated with SSD type. 4) Time to scrub has
a significant impact on array reliability, while the impact of
time to recover from a device failure is of less significance. 5)
RAID5 and RAID6 codes perform almost independent of stripe
size. Emerging erasure codes, however, benefit from smaller
stripe sizes and show a promising reliability improvement
when reducing stripe size.

We can summarize the major contributions of this work as
follows:

» We propose an analytic model for the reliability of SSD
arrays, considering realistic SSD failure attributes from
state-of-the-art studies in the field.

o We propose a generalized fault injection framework for
evaluating the reliability of SSD arrays, using SSD usage
logs obtained by real-system implementation and SSD fail-
ure characteristics obtained by state-of-the-art field data.

» We evaluate the reliability of different erasure codes under
an extensive number of representative storage workloads.

o We compare the performance and endurance overhead
of different erasure codes using the real storage stack,
despite previous works that inadequately compare de-
code/encode complexity and ignore the endurance and
I/0 overhead.

» We develop an open-source framework for SSD array fault
injection, which will be publicly available for the research
community.’

The rest of this paper is organized as follows. Section II
discusses related work on SSD reliability. Section III presents
a background about examined erasure codes. Section IV dis-
cusses the proposed modeling framework. Section V presents
the experimental setup, results, and the corresponding ob-
servations and discussions. Finally, Section VI concludes the

paper.

II. ReLatep WoRk
A. Field Studies on SSD Failure Characteristics

A recent work by Schreoder et al. [37] investigates SSD
reliability by collecting six-year SSD failure data in Google
datacenters. This study shows that alongside bit errors that
result in the loss of one page of data, device failures, including
bad blocks and bad chips are also of major reliability threats in
SSD arrays, despite previous work that just report RBER and
UBER. This study also reports a high correlation between RBER
and parameters such as prior P/E cycles, SSD age, read count,
write count, erase count, and prior RBER. Another field study
by Meza et al. [38] reports that RBER does not monotonically
increase with P/E cycles and also reports that RBER has an
exponential growth in SSD useful life. However, this study
reports a smooth linear increase of RBER with P/E cycles.
This study also shows a high correlation between total number
of bad blocks in a SSD chip and the number of bad blocks
already developed. It also shows that in an over four year
mission, more than 30-80% of SSDs experience bad blocks in
the field. Another observation of this study is that 2-7% of SSDs
experience bad chip within the first four year of their life.

A work by Meza et al. [38] conducts a deep study on the
failure characteristics of flash memories using field data from
Facebook datacenters. This work observes that SSD failure
rate does not increase monotonically with flash chip wear. In

3The framework is available in http://dsn.ce.sharif.edu/

turn, SSD failure rate has four phases of early detection, early
failure, useful life, and wear-out [38]. Another observation is
that UBER obtained in this work is 10 to 1000 times smaller
than the raw BER of similar flash chips examined by Grupp et
al. [47]. This is due to the fact that SSDs in this work correct
small errors, perform wear leveling, and are not at the end
of their rated life [38]. Meza et al. show that on average 10%
of SSDs experience 80% of all uncorrectable errors, while in
most of platforms 10% of SSDs experience 95% of all observed
uncorrectable errors. It also shows that during two successive
weeks, 98% of SSDs that experienced an error during the first
week also had an error during the next week.

Grupp et al. [47] also report BER for Single Level Cells (SLC)
and Multi Level Cells (MLC) flash of different feature size. In
another research, Grupp et al. [49] show that BER increases by
flash chip wear. However, this work does not consider the effect
of optimizations in the SSD controller and buffering layers. Cai
et al. [48] also examine the bit error patterns in MLC NAND
flash and demonstrate its dependency to P/E cycles, physical
location, and value. Finally, Mielke et al. [52] report BER and
sector failure of MLC NAND flash in conjunction with P/E
cycles, retention time, and number of reads.

B. Analysis and Modeling of SSD Array Reliability

A large body of research has investigated and tried to
improve the reliability of disk arrays [45], [53], [54], [55], [56],
[57], [58], [59], [60], [35], [61]. For the sake of brevity, here we
focus on the studies concentrating on SSD arrays. Greenan et
al. [45] propose a combination of inter-device and intra-device
parity codes to cope with page failures, block failures, and
device failures in SSD arrays. While the authors have a realistic
assumption about failure types in SSD arrays, their reliability
assessment approach is questionable, as it reports Uncorrectable
Page Error Rate (UPER) using cumulative Binomial distribution
as a function of RBER. The proposed method also necessitates
the migration of Flash Translation Layer (FTL) from device to
RAID controller. Hence, the method cannot be employed using
Commercial off-the-Shelf (COTS) devices.

Balakrishnan et al. [44] propose Differential RAID as an
alternative to conventional RAID5 to be applied in SSD arrays.
The idea is based upon uneven parity distribution across
array devices (in the most intense configuration, RAID5 is
transformed to RAID4) to reduce time proximity of wear-
out phenomenon in SSDs. This method is examined usin
statistical fault injections. Li et al. [41] compare RAID5 with
Differential RAID [44] in SSD arrays. The work has a math-
ematical discussion, adopted from [62], to apply a variable
failure rate to Continuous Time Markov Chain (CTMC) using
Kolmogorov forward equation, uniformization [62], and trunca-
tion. This work validates the mathematical model by statistical
fault injections using Microsoft SSD simulator [63] extended
from DiskSim [64], and estimates the reliability as a function
of erasures (SSD age). One important shortcoming of this work
is considering equal failure rate for all devices using Weibull
distribution of SSD bit error rate, and ignoring the correlation
of errors.

Kim et al. [65] attempt to improve the reliability of RAID5
in SSD arrays by proposing Dynamic Striping-RAID (DS-RAID).
This work compares the proposed method with conventional
RAIDS5 in terms of response time and number of write op-
erations, including original data writes and extra writes due
to parity and garbage collection, as a representative for SSD
lifetime. Finally, Kim et al. [42] propose Elastic Striping and
Anywhere Parity (eSAP-RAID) as an alternative to RAID5 with
higher performance and reliability in SSD arrays. This method
tries to reduce the number of writes due to parity updates,
by allowing flexible stripe size and parity placement. Both
works [65], [42] use Microsoft SSD simulator [63] extended
from DiskSim [64].

Moon and Reddy [43] investigate the reliability of RAIDO,
RAID1, and RAID5 in SSD arrays by considering the effect of
garbage collection and show the trade-off between reliability
and utilization in a SSD array. This work arguably uses Markov



TABLE I Qualitative comparison of proposed framework
with different SSD array reliability models by Balakrishnan

TABLE II: ERF and computation (number of XORs) needed for
updating one data stripe of different erasure codes.
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models by considering constant bit error rate for SSDs and ig-
nores the correlation between errors. Blaum et al. [46] propose
a new family of erasure codes to cope with the coincidence de-
vice failures and symbol (page) failures. The proposed code is
evaluated using probabilistic analysis of data loss. In summary,
Table I makes a qualitative comparison between different SSD
array reliability models and our proposed framework. As the
table shows, unlike our proposed framework, previous works
do not use real-system implementation and also make use of
deprecated SSD failure data.

III. BACKGROUND

RAID is proposed as a solution to cope with performance
and reliability issues of single disks [36]. RAID5 and RAID6
configurations distribute the data to an array of disks while
keeping the row-wise parity of devices in respectively one
and two redundant devices. Hence, RAID5 and RAID6 can
respectively tolerate one and two device failures. We can put
both RAID5 and RAID6 in the category of Maximum Distance
Separable (MDS) codes that offer the maximum correction capa-
bility, due to having the maximum hamming distance*. Blaum
et al. [46] propose PMDS codes to handle the combination of
both device failures and symbol (page) failures, by using the
combination of row-wise parity and a new concept of Global
Parity (GP) that is taken across the whole data stripe (Fig. 2).
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(a) Linear parity calculation (b) Global parity calculation)

Fig. 2: Structure of a data stripe using PM DS(1,1) code when
the number of devices and rows are respectively n and r. Note
D, P, and G respectively stand for data symbol, parity symbol,
and Global parity symbol.

Fault tolerance of PMDS codes can be specified by m, num-
ber of tolerable drive failures (i.e., number of coding drives)
and s, number of tolerable sector failures (equal to the number
of global parities). For example, m = 1 and s = 1 says that one
drive failure is tolerable while one of operating chunks can
tolerate one sector failure. A specific configuration of PMDS
codes is capable of tolerating one device and one sector failure,
denoted as PMDS(1,1), that is examined in our study. SD
codes [50] and STAIR codes [51] also propose different methods
for encoding and decoding of global parity with different
computational complexities (but the same I/O overhead) [51].

We assume that each data stripe is composed of n devices
(or n data chunks), including redundant devices, and r rows,
where r stands for the number of symbols from each device
in one stripe. Fig. 2 shows the structure of PMDS(1,1) while
the data symbols are denoted by D, row-vise parity symbols
are denoted by P, and the global parity symbol is denoted

4MDS codes have a big spectrum of alternatives such as Reed-
Solomon [66], multi-dimensional codes [67], and simple linear ham-
ming codes usually used in fast memory structures [68].

TABLE III: Write/read operations needed for updating one
page, one row, and one data stripe. W stands for the write
operation, and R stands for read before write.

RAID5 RAID6 PMDS(1,1)
Sector Update ‘ﬁ/::22 ‘1/:]:3? ‘ﬁ[:f
W=n+1 W=n+2 W=n+3
Row Update R=0 R=0 R=n T2
Stripe Update W=(nR—iol) X T W=(nR-|;02) X T W=(nR—£01) X T

by G. PMDS codes, SD codes and STAIR codes are systematic
(separable) codes with homomorphic property. This property
enables updating the codeword when the data is partially
updated by an approach similar to updating normal parity bits,
as shown in Equation 1.

Codewordnew = Codewordyia ® Datacia @ Datanew (1)
Hence, PMDS(1,1), SD(1,1), and STAIR(1,1) codes perform
similar in terms of I/O penalty, but are different in en-
coding/decoding computational complexity [51]. However, as
encoding/decoding computation time is negligible compared
to I/O penalty, in the rest of this work we note PMDS(1,1),
SD(1,1), and STAIR(1,1) codes by PMDS(1,1) or simply PMDS.
Table II shows the Effective Replication Factor (ERF) and com-
putations (XORs) needed for encoding one stripe of RAID5,
RAID6, and PMDS (discussed in detail by Li and Lee [51]).
We also compare the I/O penalty of erasure codes in Table III.
This table shows that in the case of sector and row update,
PMDS has more number of write/read compared to RAID5
and RAID6, while in the case of stripe update both RAID5
and PMDS have an equal overhead lower than the overhead
of RAID6. This analysis shows that in sequential workloads
dominated by full stripe writes, we can expect a greater per-
formance from PMDS, compared to RAID6. We further verify
this hypothesis by examining different realistic workloads.

IV. MobpEeLING ReLiaBiLITY OF RAID5, RAID6, AnD PMDS CobEs
IN SSD ARRAYS

We model the reliability of SSD array for different erasure
codes, by proposing a fault injection environment that uses the
field data of SSD failure statistics from Schreoder et al. [37],
alongside SSD operation log from arrays of Samsung 850 Pro
SSDs, using the open-source software RAID controller MD in
Linux kernel version 3.10.0-327. We consider three possible
failure types in SSD arrays, reported by field studies [37],
including Bad Page, Bad Block, and Bad Chip.

o Bad Page (BP) or Bad Symbol (BS) is the most prevalent
failure type in an SSD array, caused by uncorrectable bit
errors in SSD device. As in the storage systems, data is
logically read /written/managed in the units of pages, the
page is considered lost when it contains uncorrectable
corrupted bits. We call this failure Bad Page or Bad Symbol,
as the page is the smallest data symbol that different
erasure codes are performed on. A bad symbol can result
in the loss of one data stripe, if it is not correctable by the
employed erasure code. Note bit errors that are correctable
by the internal Error Correction Code (ECC) of the SSD
device are not considered as bad symbol.

e Bad Block (BB) is reported by field studies as another
common failure type in SSD arrays [37]. As each block
contains multiple (tens or hundreds) pages, uncorrectable
bad blocks can affect multiple data stripes in the SSD array,
depending on the data striping protocol.

o Bad Chip (BC) is the last type of failure in the SSD arrays,
reported by field studies [37]. Bad chip can result in the
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Fig. 3: Failure samples in different SSD arrays.

loss of whole array, for example when two bad chips on
two different array devices coincide in the case of RAIDS5.
It also can result in the loss of one or multiple data stripes,
when it coincides with a bad symbol or bad block in
another array device in the case of RAIDS5.

A. Correction Capability of RAID5, RAID6, and PMDS

Fig. 3 shows eight examples of the combination of bad
symbol, bad block, and bad chip in an SSD array. In this figure,
Array Data Loss (ADL) stands for the loss of whole SSD array,
Block Data Loss (BDL) stands for the loss of all data stripes a
block is shared upon, Stripe Data Loss (SDL) stands for the loss
of one data stripe and Good stands for no data loss. In this
figure, we consider a fully striped SSD array, in which a stripe
is composed of data chunks from all SSD devices. Without loss
of generality, here we assume each stripe contains the data
from one chip of each SSD device. Taking other assumptions
may affect the magnitude of data loss upon failure incidence.
Each data chunk contains multiple pages (4 in this example)
and each block is shared upon multiple stripes (2 in this
example). We should note that erasure codes are performed on
the stripe unit, hence, the uncorrectable loss of a single page
is considered as the loss of whole stripe (SDL).

In example @, coincidence of two bad chips result in ADL in
RAID5 and PMDS while it is recoverable in the case of RAID6.
In example @), the combination of one bad chip and one bad
symbol is correctable in the case of RAID6 and PMDS, but it
results in SDL in RAID5. The combination of bad chip and
bad block in example @ results in BDL in the case of RAID5
and PMDS, as bad block affects the entire data chunk rather
than one symbol. In example @, all erasure codes face SDL,
as three data chunks are corrupted. In example @, RAID5
experiences SDL due to the combination of a bad block and
a bad symbol. PMDS also experiences SDL in example @), as
it cannot tolerate more than one symbol failure coincided with
a bad chip. Example @ is similar to example @, however, in
this case PMDS can correct the failure incidence, as two symbol
failures occur in two different stripes. The coincidence of three
bit errors in three different symbols in example @ also results
in SDL in all erasure codes. Finally, in example @ where two
bit errors in different symbols coincide, PMDS and RAID6 can
correct the failure, but RAID5 experiences SDL as it cannot
tolerate multiple symbol failures in multiples chunks of a single

stripe. Here we can conclude that PMDS can tolerate multiple
symbol failures in one data chunk alongside a single symbol
failure in another data chunk. RAID6 can tolerate multiple
symbol failures in two data chunks, and RAID5 can tolerate
multiple symbol failures in one data chunk.

B. Analysis of RAIDS5, RAID6, and PMDS Reliability

Fig. 4 shows the state diagram of SSD array reliability, using
different erasure codes, from error-free operation to failure
incidence (ADL, BDL, and SDL). This analysis is used in our
statistical fault injections to evaluate the reliability of different
erasure codes. Field studies show that the failure characteristics
of a SSD will change when it wears out, i.e., it passes its P/E
Limit or Wear Out Limit (WOL) [37].

Storage systems may have different regulations when they
face a worn-out SSD, such as replacing the SSD or continuing
its operation up to the failure. However, in this work we
model the most conservative assumption that worn-out SSD is
replaced with a brand-new one. Replacing the worn-out SSD
is also performed with two different regulations: 1) The first
regulation removes the worn-out SSD, immediately replaces it
with the brand-new SSD, and reconstructs the data of worn-
out SSD on the brand-new one using the parity of the other
SSDs. This approach, however, may result in data loss when
a bad symbol exists in other operating SSDs. The reason is
that the data of those stripes containing bad symbols cannot
be reconstructed when the worn-out device is removed (and
its data is unavailable) in the case of RAID5. 2) An alternative
approach that prevents this data loss case is adding the brand-
new SSD when the worn-out SSD is still operational, making
a RAID1 configuration between the brand-new and worn-out
SSD, waiting for all data of worn-out SSD to be copied into the
brand-new one, and finally removing the worn-out SSD. In this
study, for the sake of reliability we take the second a%groach.

1) RAIDS5: Fig. 4a shows the state diagram of RAID5 SSD
array reliability. In the O P state, none of SSDs have bad symbol,
bad block, or bad chip. When a SSD device wears out, the array
moves to the O Py o state in which one (or multiple) SSD device
is worn out and is waiting to be replaced with brand-new one.
We dedicate OPw o state from OP state as field studies show
that SSD failure characteristics change after wear out [37]. If
we neglect this change, OP and OPwo states can be merged
(the same happens to other WO states).

Upon a bad chip in OP and OPwo states, the array moves
to EXP_BC state. In this state (and also EXP_BCwo state
when the array has worn out SSDs), the array moves back
to operational state when the failed device is replaced and
reconstructed on the brand-new one. However, any successive
bad chip, bad block, and bad symbol results in data loss and
moves the array to ADL, BDL, and SDL states, respectively.
An operational array (in either OP or OPwo states) moves to
EX P_BB state when it faces a bad block. In this state (and
also EXP_BBwo state when the array has worn out SSDs),
a successive bad chip (in another device) and coincidence
of another bad block in the same stripe, called Same Stripe
Bad Block (SSBB), results in BDL. Moreover, coincidence of a
symbol failure in the same stripe, called Same Stripe Bad Symbol
(SSBS), results in SDL. In EXP_BB and EXP_BBwo states,
the chip containing bad block is prone to fail (bad chip) that
moves the array to either EXP_BC or EXP_BCwo states,
when no other chip contains bad block or bad symbol. In
EXP_BB and EXP_BBwo, bad block is detected by a final
read error, write error, or erase error [37], and removed by
reallocating the corrupted block to a safe block that moves the
array back to operational state.

Finally, an operational array (in OP or OPwo states) moves
to EXP_BS state when it faces a bad symbol. In EXP_BS
state (and also EXP_BSwo state when the array has worn
out SSDs), a successive bad chip, SSBB, and SSBS results in
stripe data loss and moves the array to SDL state. However,
in EXP_BS and EXP_BSwo states, bad symbol can be
detected by read error or scrubbing [69] and be removed by
reconstructing the data from parity of other devices, that moves
the array to the operational state.
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Fig. 4: State diagram of SSD array reliability for RAID5, RAID6,
and PMDS code.

2) RAIDG6: Fig. 4b shows the state diagram of RAID6 SSD
array reliability. As the figure shows, RAID6 can tolerate
an extra failure compared to RAID5, due to having two re-
dundant devices. The description of states and transitions is
similar to RAID5. The only difference is six states (OP_BC,
OP_BB, OP_BS, OP_BCWo, OP_BBW(), and OP_BSwo
states) added to RAID6 diagram. These states have the same
transitions as FX P states in RAID5 diagram, by this difference
that a successive failure in OP state moves the array to EX P
state rather than data loss state.

3) PMDS: Fig. 4c shows the state diagram of SSD array
reliability when employing PMDS code. As the figure shows,
PMDS performs the same as RAID5 in the case two bad chips
coincide (resulting ADL) and the case one bad chip coincides
with bad block (BDL). The difference is that PMDS can handle
the coincidence of bad chip with bad symbols, and coincidence
of two bad symbols in one stripe. Our fault injection experi-
ments using real failure statistics from the field (in Section V)
show that this feature of PMDS code can dramatically decrease
the number of data loss events compared to RAID5, at a
performance overhead and negligible space overhead.

C. Statistical Fault Injection Environment

Fault injection can be implemented by injecting faults on
SSD simulator (such as DiskSim [64]) in the runtime, as pre-
vious work [41] does. That approach, however, is very time-
consuming as SSD simulators have much complexities and are
very slow. We take another approach that extracts SSD usage
log, including the number of reads, writes, erases, and P/E
cycles from a real system (or simulator), and post-processes
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Fig. 5: Statistical fault injection environment.



this information to perform fault injection experiments. This
approach has two advantages: a) It is very fast. b) We can use
SSD usage logs from the real systems, rather than simulators,
to obtain more realistic results. Accordingly, our failure model
has two phases: a) Capturing SSD Logs and b) Statistical Fault
Injection in respect with SSD failure statistics from the field and
SSD usage logs obtained by our real-system run.

1) Capturing SSD Logs: In the phase of capturing SSD log,
we have different benchmarks running on the desired array
configuration. What we capture from benchmark running is
the number of P/E cycles as well as write/read accesses. In
specific, P/E cycles are calculated by capturing Wear Leveling
Count parameter from SM.A.R.T [70], before and after the
benchmark run, following the instructions of SSD vendors. The
number of writes confirmed to the SSD is also calculated by
capturing Total LBAs Written from SM.AR.T [70], before and
after the benchmark run. For each individual SSD, we also
extract the full details of read/write request type, destination,
size, and issue time using Blktrace [71].

2) Statistical Fault Injection: Fig. 5 shows the flowchart of
our fault injection framework. We use the field data of SSD
failure statistics from Schreoder et al. [37], alongside SSD
operation log to dynamically evaluate the rate of bad chip, bad
block, and bad symbol, per each individual chip. Schreoder et
al. [37] show that failure (bad chip, bad block, and bad symbol)
rate at time ¢ highly correlates with parameters such as Read
Count (RC), Write Count (WC), Erase Count (EC), Previous Bad
Blocks (PBB), Previous bit error Rate (PR), Days With Error
(DWE), and number of Factory Bad Blocks (FBB).> Hence,
the failure rates (bad chip, bad block, and bad symbol rates)
are evaluated by regression (e.g., linear regression) from the
mentioned factors, while the Parameter Vector, 3, should be
determined by the field data. Accordingly, the rate of bad chip,
ppc(t), is calculated as shown in Equation 2 (considering linear
regression).

upc(t) = Xpe(t) X Bec + epc(t)

Xpco(t)=[1 PBB(t) PE({t) DWE({)]
B ()

ac = |G

Ba

Where Xpc(t) is the vector of regressors determined by
field data, Spc(t) is the parameter vector (also determined b
field data), and epc(¢) is the error vector. upp(t) and ups(t)
are also calculated by the similar equations shown in Fig. 5.
Note that Schroeder et al. [37] have reported a limited failure
data including RBER as a function of EC, percentage of drives
with bad blocks, median number of bad blocks, mean number
of bad blocks, and percentage of drives with bad chips. We
determine the failure rates by using the mentioned data. Fig. 7
and Table VII summarize the employed failure statistics by
Schroeder et al. [37].

In the fault injection phase, the desired array of SSDs is
constructed and for each individual SSD, the P/E cycles and
accesses are imported from SSD logs captured by benchmark
run. For each SSD, the rate of BS (ups(t)) is updated in
specific time intervals, regarding P/E cycles at time ¢, following
the field data appeared in Table VII and Fig. 7. The other
two parameters of BB and BC are also considered for each
individual SSD device. About BC, we have the rate of drives
with bad chip (in a four-years mission) from the field [37].
The available detail on how bad chips correlate bad blocks
is limited to the fact that 2/3 of all bad chips appear in
those chips that have more than 5% of their blocks failed. We
consider this correlation in our experiments by creating a pool
of SSDs at the beginning of experiments, following the failure
statistics reported by the field data.

Create SSD Pool: We build a pool of SSDs (in our ex-
periments, 10,000 SSDs) regarding the failure attributes re-
ported by [37]. In the next step, we construct the disk array

5Bad blocks already exist on a brand-new SSD chip [37].

by randomly selecting n SSDs (e.g., 8 SSDs for an array of
RAID5(7+1)) from the SSD pool. Following we describe how
bad chip and bad block is considered in the failure model.

Bad Chip: At the start of fault injection experiments, the SSD
pool is created in a way the BC and BB statistics conforms
the field data reported by [37] (detailed results on how the BB
and BC of SSDs in the failure model statistically conforms the
field data are appeared in Section V-C). When the SSD pool is
created, some chips are marked as to be failed within mission
time. In the SSD array, constructed by randomly choosing n
out of 10,000 SSDs in the pool, if a chip is marked to encounter
bad chip, it is failed within mission time. No data is provided
by [37] about the time distribution of BC, so we consider expo-
nential distribution, following the conventional assumption on
the time to failure of semiconductors. Following we describe
how the correlation between BC' and BB is considered in the
failure mode.

Bad Block: The distribution of the number of mission-time
bad blocks in the SSD population is not reported by field data.
The field data only reports that the number of factory bad
blocks is close to Normal distribution in the population of SSDs
under study [37]. Hence, in creating the SSD pool we consider
the number of mission-time bad blocks also follows the normal
distribution. From the field data, we also have the percentage
of drives with bad blocks, median number of bad blocks for
drives having bad block, and mean number of bad blocks for
drives having bad block. We create the SSD pool to conform
the mentioned statistics obtained from the field, as shown in
Section V-C. The field data also reports a correlation between
bad chip and bad block [37]. Based on the field results, 2/3 of
all bad chips happen in those chips that have more than 5% of
all their blocks failed. We consider this correlation between BB
and BC in creating the SSD pool, as shown in Section V-C. The
last correlation reported by the field study is the correlation
of BB with previous BB [37]. The field study reports the
median number of bad blocks a drive will experience within
mission time, as a function of number of bad blocks already
experienced. We also consider this correlation in creating the
SSD pool by increasing BB probability in those chips that
have experienced a specific threshold of BB, as verified in
Section V-C. Regarding the mentioned statistical attributes, we
determine the occurrence of bad chip, as well as the number
of bad blocks for each SSD in the SSD pool.

Constructing SSD Array and Starting Fault Injection: In the
next step, we construct the SSD array by randomly choosing
n out of 10,000 SSDs from the pool. For each SSD, we also
have P/E cycles as well as accesses from benchmark run on
the real system. As the fault injection time, t, passes, for each
SSD the RBER is updated regarding P/E cycles at time ¢,
following the data appeared in [37] (Fig. 7). For time intervals
of one hour, we estimate the number of BS by multiplying
RBER to the number of accessed bits. No information on the
spatial characteristics of BS is reported by the field data, so
we consider uniform distribution for BS. The time distribution
of BS, BB, and BC is not clarified by the field data, so we
consider exponential distribution for time to failure, following
the conventional assumption on the time to failure of semi-
conductor devices.

At the beginning of fault-injection, the simulator is initiated
by the first bad chip, bad block and bad symbol for each chip,
and the next failure (the failure having minimum ¢) is issued to
the failure handling queue. Thereafter, the simulator recognizes
the failure type and determines the affected sectors, regarding
the failure type and location. As we consider a fully-striped
architecture for SSD array, in the case of bad chips all stripes are
affected (stripes 0 to Ng¢ripe, as shown in Fig. 5). In the case of
bad blocks, the number of affected stripes is equal to Chumnks Per
Block (CPB) that depends on the array architecture, including
block size, stripe size, and number of devices. The index of
the first affected stripe is | bgf 5 B |, where Lj is the location
(index) of affected block, SPB is the number of symbols per
block, and SPS is the number of symbols per stripe. In the
case of bad symbols, a single stripe is affected which index is




L%j, where L, is the location (index) of the affected symbol
and SPS is the number of symbols per stripe.

Afterwards, the simulator needs to check if any of the pre-
vious errors in the affected sectors have already removed.® In
the next step, based on the analysis described in Section IV-B,
the simulator checks data loss (ADL, BDL, and SDL) on the
affected stripes, regarding the employed erasure code (RAID5,
RAID6, or PMDS) and updates the failure statistics.

After handling a failure, it is needed to generate the next
failure of that type. For example, after handling a bad symbol
on chip ¢, it is needed to generate the next bad symbol
incidence for chip c. To this end, the simulator determines the
next failure time offset, O, using the dynamically evaluated
failure rate, . Considering time-to-failure follows exponential
distribution, the time offset of the next bad chip, Opc is
recognized as shown in Equation 3.

log(1 — random]0,1))
ppo(t)

Where random|0, 1) is a uniformly generated random num-
ber between 0 and 1, and ppc(t) is the rate of bad chip at time
t, dynamically evaluated using Equation 2. The time offset of
the next bad block, Ogg, as well as the time offset of the next
bad symbol, Ops, are also calculated with the similar equa-
tions, as shown in Fig. 5. Thereafter, the simulator determines
the location of failure (in the case of bad symbol and bad
block), regarding the number of symbols and number of blocks
per chip, with predefined distribution obtained from the field
(e.g., uniform distribution within a single chip). Accordingly,
the location of the next bad symbol event, L is determined as
shown in Equation 4.

Ls = random|0,1) x N 4

®)

OBc =

Where N; is the number of symbols per array. The location
of the next bad block event, L;, is determined by a similar
equation, as shown in Fig. 5. In the next step, the next event
(failure, scrubbing, or reconstruct) within all chips is issued for
handling, and the simulation time is set to the next event time
(the event with the minimum time offset, as shown in Fig. 5).
If the total mission time is already passed, the simulation
finishes. Otherwise, in the case of reconstruct, the reconstruction
is starting, the possible data loss detected in the reconstruction
process is collected, and the replaced SSD statistics is initiated.
In the case of scrubbing, the possible data loss detected in
the scrubbing process is collected and the correctable errors
is removed. Finally, in the case the next event is failure the
simulator turns back to the state of checking the failure type.

V. ResuLrs AND OBSERVATIONS

In this section, we evaluate the reliability and performance
of RAID5, RAID6, and PMDS array configurations using the
test platform depicted in Fig. 6. We examine realistic appli-
cation workloads on the SSD arrays under a real platform
and track the block layer I/O traces as well as SSD usage
statistics provided by SM.A.R.T. The performance of different
array configurations is collected from workload execution on
the real platform, while the array reliability is obtained from
our fault injection framework (presented in Section IV-C) by
post-processing the SSD usage logs. In the following we first
elaborate the details of test platform and examined SSDs.
Afterwards, we provide the experimental results.

A. Experimental Setup

Our test platform is composed of real-system and fault injec-
tion environment. In the real-system part of the platform, we
use an open-source software RAID controller, MD driver in

®Previous bad blocks and bad sectors are possibly detected after a
read error, write error, or erase error, and removed by reallocatin
in the case of bad blocks, and rewriting in the case 02, bad symbol.
Scrubbing and SSD reconstruct also remove the errors, but these tasks
are handled in another procedures.
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Fig. 6: The structure of test platform used in experiments.

TABLE IV: Hardware and software stack of the real-system part
of our test platform, responsible for examining the performance
of SSD array configurations and collecting SSD usage logs.

[ Software
OS CentOS 7
Kernel 3.10.0-327
SW RAID controller | Multiple Device (MD) driver
[ Hardware
Under test SSDs 8x Samsung 850 Pro, 512GB, SATA
RAM 8GB from Hynix Semiconductor
CPU 16 core Intel (R) Xeon (R) E5-2620 @ 2.1GHz
Motherboard Supermicro XI0DRL-{

Linux kernel version 3.10.0-327 running on CentOS 7 operating
system, and arrays of Samsung 850 Pro SSDs to obtain the
effect of erasure codes on the performance of SSD arrays, and
capture the SSD usage logs. Table IV provides the details of
hardware and software stack in real-system. This platform is
responsible for array performance evaluation and collecting
SSD usage logs. Afterwards, the array reliability is evaluated
using the fault injection environment by post-processing the
I/0 traces and SSD usage logs collected from the real-system
run (as detailed in Section IV-C). The statistical fault injection
environment is developed from scratch in C++. The pseudo-
code of the major functions of fault injection implementation
is shown in Algorithm ?? in Appendix ??. The supplementary
function definitions are also shown in Algorithm ?? in Ap-
pendix ?2.

1) Workloads: The experiments are conducted using both
synthetic benchmarks and realistic applications. For the syn-
thetic experiments, we employ FIO tool [72] and run Random
Read (RR), Random Write (RW), Sequential Read (SR), Sequen-
tial Write (SW), and mixture of random read/write requests
(Mized) workloads. We also employ Filebench [73] in order
to commit realistic application I/O requests to the disk sub-
system. We run various workloads, including Webserver, File-
server, Varmail, Copyfiles, Mongo, and Video server from Filebench
framework. In the following, we explain the characteristics of
examined benchmarks.

« FIO is a powerful synthetic benchmark, capable of gener-
ating synthetic workloads with customized access pattern,
request type, request size, locality of accesses, and Working
Set Size (WSS). Using FIO, we examine five representative
synthetic workloads as detailed in Table V.

o Filebench is a benchmarking tool that works on the filesys-
tem level and can generate a big spectrum of application
workloads. In our experiments, we employ six represen-
tative workloads including Webserver, Varmail, Webproxy,
Mongo, Video server, and Fileserver. The Webserver workload
creates millions of files with mean size equal to 64KB
and the maximum request size equal to 1IMB where more
than 100 threads have access to the files at the same time.



Similarly, the Varmail workload creates files with mean
size equal to 16KB with a maximum request size equal
to 1MB, but the number of threads is equal to 16 which is
significantly less than Webserver.

The Fileserver workload creates more than 600,000 files
with mean size equal to 128KB and the maximum request
size equal to 1MB while more than 50 threads have simul-
taneous access to the files. The Mongo workload which
simulates the MongoDB I/0O requests creates 100,000 files
with mean size equal to 512KB and the maximum request
size equal to IMB while only one thread commits 1/0O
request to the files. The last workload is Video server that
creates files with the size of 10GB in average, including
6 active and 7 inactive videos. The event rate of this
workload is equal to 96 and the average 1/O size is equal
to 256KB which only includes read requests. We should
note that Filebench experiments are performed with both
enabled and disabled buffer cache. We mainly disable
buffer cache to evaluate the performance of the disk
subsystem (i.e., array of SSDs) and to remove the impact
of filesystem level cache on the I/O requests. Our initial
experiments reveal that enabled buffer cache reduces the
number of committed writes into the SSD array by 2X (on
average). We observe high level of reduction in two types
of workloads: a) read-intensive ones with few number of
write operations such as videoserver and fileserver and
b) write-intensive workloads with large number of Write-
After-Write (WAW) sequences with small reuse distance.
The former type of workloads has a limited number of
write accesses that are mostly handled by DRAM in the
presence of buffer cache while in the latter type of work-
loads, the write accesses and further modifications (second
write operation on the same address) are mainly buffered
in the buffer cache. Hence, by enabling the buffer cache we
experience considerably fewer write operations on the disk
subsystem (varmail, randwrite, and randreadwrite workloads
best fit in this group). For the rest of workloads such
as mongo, copyfiles, and webserver, since these workloads
almost include equal number of read and write operations
(with sequential pattern in copyfiles and random pattern
in mongo and webserver), buffer cache is of less improving
effect and helps to reduce the write operations respectively
by 1.07X, 1.6X, and 1.5X in mongo, copyfiles, and webserver.

TABLE V: Parameters of the running workloads with FIO.

Req. Req. Access T/0 /0

Worlload H Sizcge Ty;)le Pattern depth ‘ Threads ‘ Engine

SR 4MB Read Sequential 16 1 libaio

SW 4AMB Write Sequential 16 1 libaio
Random

RR 4KB Read (distribution: 16 16 libaio
zipf:1.2)
Random

RW 4KB Write (distribution: 16 16 libaio
zipf:1.2)
. Random

Mixed akp | ead/YIe | (distribution: | 16 16 libaio
read: 70%) inf1.2
zipf:1.2)

The array performance for each experiment is collected from
the output of the FIO and Filebench (reported in Appendix
??). We validate the performance output of the benchmarks
using iostat tool from sysstat package of the Linux. The block-
layer log of logical accesses to individual SSDs and the SSD
array (i.e., virtual disk) is collected by using blktrace [71].
blktrace is a comprehensive 1/O tracing tool of Linux kernel
that monitors the I/O requests committed and responded by
the SSDs and virtual disk. The exact number of writes to each
SSD and the number of wear leveling and Program/Erase
(P/E) operations performed on each SSD is also obtained by
using SSM.A.R.T [70]. These statistics are used later in the fault
injection process to dynamically evaluate the failure rates and
also reported as endurance results in Appendix ??. Table VI
shows the basic configuration of examined SSD array. In some
experiments, we have modified some parameters that are noted
in case. Note that we examine different erasure codes under
fixed physical capacity to have a fair performance comparison.

TABLE VI: SSD array basic configuration.

[ Parameter [ value ] Parameter [ value ]
SSD Elements 8 SSD Page Size 4 KB
SSD Page Per Block 64 SSD Planes Per Element 8
SSD Block Per Element 16, 384 SSD Stripe Size 128 KB
SSD Size 512 GB SSD Blocks 131,072
Array Devices 8 Chunk Pages 4

TABLE VII: Summary of SSD Bad chip and bad block statistics
in four years of mission time [37].

[ Model Name [[ MLC-A [ MLC-B | MLC-C [ MLC-D | SLC-A | SLC-B |
% Drives w/ Bad Chips 5.6 6.5 6.6 42 38 23
% Drives w/ Bad Blocks 311 793 30.7 324 39.0 64.6
Median # Bad Blocks 2 3 2 3 2 2
Mean # Bad Blocks 772 578 555 312 584 570

Using the collected statistics, we conduct fault injection exper-
iments for 4 years mission time, while 1000 experiments are
conducted per configuration.

B. Fault Injection Parameters

We used SSD failure statistics by [37] that investigates the
failure of six SSD chip models, including four chip with MLC
technology and two with SLC technology. We use the median
RBER reported by [37] (Fig. 7) as a function of P/E cycles for
each SSD model. Within fault injection experiments, RBER for
each chip is dynamically determined regarding the number of
P/E cycles at time ¢, obtained from SSD usage log. Using RBER,
the Bit Error Rate (BER) of each SSD device is dynamically
evaluated regarding the number of accessed bits, obtained from
SSD usage logs, as follows:

BER = RBER x number of accessed bits(At) (5)

Where At is the time interval the BER is evaluated for. We
conduct our experiments by considering At = 1hour. We also
use the percentage of drives with bad chips and bad blocks
reported for each SSD model in a four year mission [37], as well
as the mean and median number of bad blocks for each SSD
model (appeared in Table VII) [37]. Regarding these statistics
and a restriction reported by [37] that the chip is considered
failed when 5% of its blocks are failed (happened in 2/3 of all
bad chip cases), we determine bad chip time and bad block
rate for each SSD chip.

C. Validating Regression Model

Table VIII shows the SSD failure statistics of 10,000 drives
in our regression model. Comparing the output of the regres-
sion model with field data results, the regression model fully
matches the field data [37] in the following parameters:

o Drives with bad chip

o Drives with bad blocks

¢ Median number of bad blocks

Mean number of bad blocks has a maximum 11% error (for
MLCD) compared to the field data, as shown in Fig. 8. Another
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Fig. 7: Summary of SSD RBER statistics as a function of P/E
cycles in 4 years of mission time [37].



TABLE VIII: Failure statistics of 10,000 SSD drives in the
regression model.

MLCA [ MLCB | MLCC | MLCD | SLCA | SLCB
Drives W Bad Blocks 3100 7930 3070 3240 3900 6460
Median # Bad Blocks 2 3 2 3 2 2
Mean # Bad Blocks 769 555.08 557.13 34754 | 551.68 | 559.88
Drives W Bad Chips 560 650 660 420 380 230
Drives with BC
and BB in more than 375 435 442 281 254 154
5% of all blocks
Rate 0§ drives with
BC and BB in more
than 5% of all blocks 0.67 0.67 0.67 0.67 0.67 0.67
over drives with BC
Drives with BC but
no BB (not reported 141 48 157 95 76 25
by the field data)
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Fig. 8: Mean number of bad blocks reported by field data [37]
and regression model.

constraint obtained by field data is the correlation between bad
chip and bad block. Indeed, 2/3 of all bad chips happen in
those chips that have more than 5% of all their blocks failed.
Table VIII reports the rate of drives with BC' and BB in more
than 5% of all blocks, over drives with BC, showing that our
regression model is loyal to this correlation.

Another correlation reported for bad blocks is the median
number of bad blocks a drive will experience within mission
time, as a function of number of bad blocks already experi-
enced. The field data shows a very steep increase in median
number of BB when the chip experiences more than one
(in the case of MLC) and more than three (in the case of
SLC) bad blocks. In specific in the case of MLC, the median
number of bad blocks jumps to 200 after the second bad block
is experienced. We consider this constraint in our regression
model by increasing the rate of BB in those chips that have
already experienced two bad blocks (four in the case of SLCs).
However, as the field data does not distinguish the mentioned
statistics for different MLC/SLC models (as appeared in Figure
8 of [37]), we employ the average values reported for SLCs and
MLCs. Our empirical results show that the regression model is
loyal to this constraint, as shown in table IX. Table IX shows the
median number of bad blocks as a function of previous number
of bad blocks experienced in the regression model output and
field data (the average value reported for SLC and MLC is
reported).

D. Data Loss Breakdown

Fig. 9 shows data loss root cause breakdown for different
erasure codes and SSD types. The results are reported for
aggregate of lost stripes in 12 examined workloads (including
both synthetic and realistic application workloads), assuming

TABLE IX: Median number of bad blocks as a function of
previous number of bad blocks experienced in the regression
model and field data [37].

Previous Num.
of Bad Blocks 2 3 4 5
Reg. Field Reg. Field Reg. Field Reg. Field
Model Data | Model Data | Model | Data Model Data
MLC 143 143 155 151 159 158 183 183
SLC 5 5 20 20 43 45 5

0 BD+BS BD+BB W BS+BS
E BD+BD 0 BB+BS [0 BB+BB
BD+BB+BS

BD: Bad Disk

BB: Bad Block

BS: Bad Symbol

Fig. 9: Failure breakdown for different erasure codes and SSD
types (TTS = 10,000h, TTR = 10h)

Time to Scrub (TTS)” equal to 10,000 Hours and Time to Recover
(TTR)® equal to 10 Hours. The figure shows how different
combinations of failures, including Bad Chip, Bad Block, and
Bad Symbol, contribute to data loss.

As the figure shows, data loss breakdown significantly cor-
relates with both erasure code and SSD type. The combination
of bad disk and bad block (BD+BB) is the dominant source of
data loss when using PMDS erasure code. A relatively smaller
share of DL, less than 10% in all SSD types, is caused by co-
incidence of two bad blocks (BB+BB) in a data stripe. Hence, we
can conclude that bad blocks are the dominant source of data
loss when using PMDS codes. This observation is described
by the fact that PMDS codes can correct the combination
of bad chip with a bad symbol, and can also correct the
coincidence of two bad symbols. Bad symbols leading to data
loss just happen either in the case two bad symbols in a
single stripe coincide with a bad chip (BD+BS), or three bad
symbols coincide in a single stripe (BS+BS), that are not so
probable (BD+BS and BS+BS failures happened respectively in
123 and two cases of data loss, compared to 12,194,444 cases
caused by BD+BB). PMDS codes, however, fail to correct the
combination of bad disk and bad block, as the bad blocks
make an entire data chunk lost, rather than a single symbol
(each data chunk includes 4 symbols, considering 4KB page
size, 128KB stripe size, and 8 devices per stripe). Please note
that other combinations of failures also have non-zero values,
but are not reported as their contribution is less than 1%.

Data loss breakdown of RAID5 and RAID6 is more sensitive
to SSD type. However, RAIDS failures are dominantly caused
by the coincidence of bad chip with either bad block or bad
symbol, while bad chips combined with bad blocks cause
more than 50% of data loss in all SSD types. In the case
of RAIDS6, the coincidence of bad chip, bad block and bad
symbol (BD+BB+BS) has also a significant contribution in total
data loss, even greater than BD+BB (caused by one bad chip
combined with two bad blocks) for MLCA, MLCC, and MLCD.

E. Impact of Workload

Fig. 10 reports the number of lost stripes within 4 years
mission time experienced in 1000 SSD arrays in both cases of
enabled and disabled buffer cache. The results are reported for
different SLC and MLC types. SSD arrays experience different
magnitude of data loss depending on the examined workload
and SSD type. This difference is mainly caused by workload

TTS is the expected time between two array scrubbing processes.

8In the case of SSD failures, TTR is the expected time of device
recovery process.



characteristics including number of P/E cycles and disk ac-
cesses which would be reduced in case of enabling buffer cache.

An important observation is that the relative reliability of
workloads may change in different SSD types. For example
in MLCA using RAID5 configuration, Fileserver workload ex-
periences the most data loss, while in MLCB the most data
loss is experienced in Varmail workload. Different rate of bad
chip, bad block, and bad symbol in different SSD types and
how they correlate with the workload characteristics is the
major source of this observation. While the rate of bad chip
and bad block is characterized by SSD type (Table VII) and
determined in the start of simulation (discussed in Section V-B),
the rate of bad symbol, determined by RBER, is also a function
of P/E cycles (Fig. 7) and is highly correlated with workload
and the impact of buffer cache where by enabling buffer cache
we observe about 26.2%, 56.1%, and 29.5% smaller failure
rate in RAID5, RAID6, and PMDS, respectively. Accordingly,
the workloads characterized by large number of P/E cycles
(i.e., the workloads dominated by write requests) experience
a relatively greater data loss in SSD types with large RBER
(MLCA, MLCB, MLCC, and MLCD).

F. Impact of SSD type

Fig. 11 compares the number of lost stripes in different SSD
types. The reported values are aggregated from 11 synthetic
and realistic application workloads. As the results show, MLCB
is the least reliable SSD, experiencing one order of magnitude
greater data loss than SLCB. Referring to the failure charac-
teristics of MLCB (Fig. 7 and Table VII), this observation is
described by MLCB having the greatest RBER, resulting in
the highest rate of bad symbol between examined SSD types.
While the mean number of bad blocks (per device) in MLCB
is average, it has the greatest percentage of drives with bad
blocks (79.5%), also describing the low reliability of this SSD
type.
yinother observation is considerable reliability benefits of
SLC types over MLC types, specially in the case of SLCB. Both
SLCA and SLCB, as Fig. 7 shows, have significantly lower RBER
compared to MLC types. Moreover, percentage of drives with
bad chips reported for SLCA and SLCB (Table VII) is consid-
erably lower than MLC types (3.8% and 2.3%, respectively for
SLCA and SLCB), helping the greater reliability in SLC types.
While SLCB outperforms SLCA in terms of reliability, Table VII
shows that it has greater percentage of drives with bad blocks
than SLCA (64.6% vs 39.0%). This observation is described by
the greater percentage of drives with bad chips in SLCA, and
slightly greater RBER, compared to SLCB.

G. Impact of Time to Recover and Time to Scrub

Fig. 12 shows the impact of time to recover (TTR) and time to
scrub (TTS) on the array reliability. One important factor that
contributes array reliability is time to recover the array from
a device failure, by reconstructing the failed device data to
a brand-new device. Duration of this procedure, however, de-
pends on the array architecture and is a function of parameters
such as SSD performance and bandwidth of interconnections.
Moreover, the reconstruction process is usually performed
when the array is operational. Hence, the reconstruction time is
also a function of workload (it takes longer under heavy work-
loads). Increased reconstruction time has a negative impact on
the array reliability. The reason behind is the accumulation
of bit errors within reconstruct process, possibly leading to
stripe data loss. By increasing TTR from 10 to 100, the expected
number of bit error within reconstruct process is increased by
10 times, leading to greater number of lost stripes.

Another important factor contributing array reliability is
time to scrub. Scrubbing is performed on predefined periods
to remove possible bit errors using array redundancies. This
process reduces the chance of data loss by preventing the
accumulation of bit errors, as well as the combination of device
failure and bit errors. Scrubbing, however, is a costly process,
as it mandates reading and verifying the entire array data.
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Hence, time to scrub is defined to reach an effective trade-off
between reliability and performance, depending on the policies
of datacenter administrators.

As Fig. 12 shows, the impact of TTS on reliability is sig-
nificant. In the case of RAID5 and PMDS, increasing TTS
from 1000 to 10,000 has an ascending impact on data loss by
almost 8 times. This impact is even more drastic in RAID6
and causes 56 times data loss increase. In the case of RAID5
and PMDS, increasing TTS from 100 to 10,000 results in 30
times greater data loss. It is also worth to mention that the
impact of increased TTR is more drastic when having smaller
TTS values. Under small TTS values, the total number of lost
stripes is reduced, magnifying the impact of TTR increase. For
example in the case of RAID5, increasing TTR from 10 to 100
leads to 10% data loss increase in the case of TTS=10,000. In
the case of TTS=1000 and TTS=100, however, increasing TTR
from 10 to 100 results in respectively 26% and 171% data loss
increase.

Another important observation is that decreasing TTS im-
proves RAID6 more than RAID5 and PMDS. Better explaining
the case, we define Late Scrub (LS) a scrubbing process that
comes too late to prevent Data Loss (DL) in a stripe and Late
Scrub Threshold (LST) as the maximum TTS that can prevent
DL for each data stripe. We expect weak erasure codes such
as RAID5 having lower average LST and powerful erasure
codes such as RAID6 having greater average LST. When LST
is too low, even a big improvement (decrease) in TTS makes
no difference. That is why we here observe decreasing TTS
improves RAID6 more than RAID5 and PMDS.

H. Impact of Stripe Size

Fig. 13 shows the impact of stripe size on the array reliability.
The minimum and maximum possible values for stripe size are
determined by RAID controller manufacturers. For SSD RAID
controllers, the minimum possible configuration is 64KB [74].
However, here we also examine 32KB stripe size configuration
in our fault-injection experiments.

Regarding our analysis in Section IV, the stripe size has
no impact on RAID5 and RAID6 codes, as those codes just
employ row-wise parity codes. PMDS codes, however, benefit
smaller stripe size. By reducing the stripe size, the global
parity symbol would be responsible for error correction of a
smaller number of data symbols, having less chance of fault
accumulation leading to uncorrectable error. The empirical
results also confirm our hypothesis and show a significant
reliability improvement in PMDS codes when reducing stripe
size to 32KB. Indeed, when reducing stripe size to 32KB, we
observe 1002 stripe loss events in PMDS codes, versus 1754
events that we observe in RAID6. Theoretically, PMDS should
not perform better than RAID6 in terms of reliability, but this
observation is described by greater write overhead of RAID6
compared to PMDS; For the Mixed workload, due to having
larger number of writes in RAID6 array (depicted in Fig. ??),
the number of P/E cycles, as well as number of accesses is
increased, leading to a greater RBER. For RAID5 and RAIDS,
however, reducing stripe size has no impact on reliability.

Please note that by reducing the stripe size, total number of
stripes is doubled. Hence, the magnitude of data loss caused
by two lost stripes in 32KB mode is equal to the magnitude of
data loss caused by one lost stripe in 64KB mode. We observe
that reducing stripe size by a factor of two almost doubles
the number of lost stripes in RAID5 and RAIDS, as expected.
For example, by reducing stripe size from 64KB to 32KB, the
number of lost stripes in RAID5 is increased from 1,810, 334
to 3,562, 789.

I. Comparison with Previous Models

Fig. 14 compares previous SSD array reliability models with
the proposed model. The chart reports number of lost stripes
normalized to proposed model results for TTS=10,000h and
TTR=10h. In this chart, we classify the previous works into two
categories. The models proposed by Balakrishnan et al. [44],
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Fig. 10: Comparing reliability of different workloads (TTS = 10,000h, TTR = 10h).
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Blaum et al. [46], and Moon et al. [43] that consider the
coincidence of bad chip and bad symbol and ignore the impact
of bad block (as summarized in Table I) are classified as
Balakrishnan-Blaum-Moon. The model of Li et al. [41] that just
takes the coincidence of bad symbols into account (ignores bad
chip and bad block) is classified as Li. The previous works,
however, have also other sources of inaccuracy, neglected in
this comparison, such as using deprecated SSD failure field
data, using either Markov models or closed-form probability
equations, and not using real-system implementation.

As the results show, Li provides the less accurate results
due to ignoring both bad chips and bad blocks and just
considering the coincidence of bad symbols in a data stripe.
Depending on the SSD type, the results of Li underestimate
reliability by at least two orders of magnitude. The results of
Balakrishnan-Blaum-Moon is more accurate, due to considering
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Fig. 14: Comparing previous SSD array reliability models with
the proposed model. The chart reports number of lost stripes
normalized to proposed model results for TTS=10,000h and
TTR=10h. This chart reports the aggregate of copyfile, varmail,
videoserver, mango, fileserver, and webserver workloads.

the coincidence of bad chips and bad symbols. However,
in the case of SLCB arrays configured by PMDS codes, we
observe Balakrishnan-Blaum-Moon underestimates reliability by
five orders of magnitude.

J. Summary of Observations

Table X reports a summary of our observations comparing
RAID5, RAID6, and PMDS in terms of source of failures and
the impact of array parameters such as SSD type, TTS, TTR,
and stripe size.

TABLE X: Summary of observations comparing RAID5, RAID6,
and PMDS.

- Deb. Dep.
e e
RAID5 %; EB:ESB Yes Significant Sigkffsizant No
RAID6 3 Egig?—BS Yes Significant Sigr%iefsizant No
PMDS || BD+BB Yes | Significant Sighiefsigant Yes

The detailed observations as reported in Table X are as
follows:

» Having slightly greater ERF than RAID5, PMDS(1,1) codes
are proposed to offer a reliability close to RAID6 [50],
[46] by correcting the combination of device and symbol
failures. However, our analysis using recent field results
show that PMDS reliability is far behind RAID6. The major
source of misleading conclusions in previous works is tak-
ing deprecated assumptions about failure characteristics
of SSD devices, falsified by state-of-the-art field data [37],
[38].

o While PMDS(1,1) copes with the combination of device
failure and symbol failure, it fails to correct errors com-
bined by device failure and block failure, contributing
more than 90% of total data loss.

o Even in RAID5 which can tolerate just a single device
failure, the contribution of errors combined by device
failure and block failure is more than those combined by
device failure and symbol failure. While the rate of block
failures is significantly lower than symbol failures, this
observation is described by the greater magnitude of data
loss imposed by block failures (in our experiments a single
SSD block is shared upon 16 data stripes).

o The contribution of bad blocks combined by device failure
(two bad blocks and one bad device) is also significant in
total data loss of RAID6.

« In the resolution of one single data stripe where erasure
codes take effect, the block failures manifest as device
failure (they result in the loss of a full data chunk, rather
than a single symbol). Hence, symbol-level protections
(suggested by PMDS codes) are not effective in dealing
with block failures. Regarding the significant contribution
of bad blocks combined with bad devices in total data
loss, we can conclude that device-level protections, such
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as conventional RAIDs, are the most effective choices at
least for the contemporary SSD architectures.

o The dark side of PMDS codes, ignored by its creators [46],
[50], [51], is the negative effect of global parity write over-
head on SSD endurance, that by itself violates reliability.

e SSD array reliability, as well as the failure breakdown, is
significantly correlated with SSD type.

 Previous models on the reliability of SSD arrays just focus
on the coincidence of bad symbols and bad chip. Our
study, however, shows that this type of failure contributes
the minority of data loss in SSD arrays and the previous
models underestimate data loss by less than half.

o Time to scrub has a significant impact on array reliability,
while the impact of time to recover from a device failure
is of less significance.

o RAID5 and RAID6 codes which use row-wise parity,
perform almost independent of stripe size. PMDS codes,
however, benefit smaller stripe sizes and show a promising
reliability improvement when reducing stripe size from
128KB to 32KB. This observation motivates us for further
investigations of the effect of stripe size, under different
workloads and array architectures.

VI. CoNcLusioN

In this paper, we investigated the reliability of SSD arrays us-
ing real-system implementation of conventional and emerging
erasure codes, under realistic storage traces. The reliability is
evaluated by statistical fault injection experiments that post-
process the SSD usage logs obtained from the real-system
implementation, while the fault/failure attributes are obtained
from the state-of-the-art field data by previous works. As a
case study, we examined conventional RAID5 and RAID6 and
emerging PMDS codes, SD codes and STAIR codes in terms of
both reliability and performance using an open-source software
RAID controller, MD (in Linux kernel version 3.10.0-327), and
arrays of Samsung 850 Pro SSDs.

Our experiments showed that previous models underesti-
mate the SSD array reliability by up to six orders of magnitude,
as they just focus on the coincidence of bad pages (bit errors)
and bad chips within a data stripe that holds the minority of
data loss cause in SSD arrays. We observed the combination of
bad chips with bad blocks as the major source of data loss in
RAID5 and emerging codes (contributing more than 54% and
90% of data loss in RAID5 and emerging codes, respectively),
while RAID6 remained robust under these failure combina-
tions. We also observed that time to scrub is a significant
contributor to array data loss, while the impact of time to
recover from a device failure is of less significance. Finally,
the fault injection results show that SSD array reliability, as
well as the failure breakdown, is significantly correlated with
SSD type. While our empirical results showed that emerging
erasure codes fail to replace RAID6 in terms of reliability
when having stripe sizes commonly used in enterprise RAID
controllers (128KB and 64KB), for a speculative 32KB stripe size
we observed a promising reliability improvement in emerging
erasure codes, performing similar to RAIDS.
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