
Stress-Aware Routing to Mitigate Aging Effects in
SRAM-based FPGAs

Behnam Khaleghi1, Behzad Omidi1, Hussam Amrouch2, Jörg Henkel2, and Hossein Asadi1
1 Department of Computer Engineering, Sharif University of Technology, Tehran

2 Chair for Embedded Systems, Karlsruhe Institute of Technology, Germany

Abstract—Continuous shrinking of transistor size to provide
high computation capability along with low power consumption
has been accompanied by reliability degradations due to e.g.,
aging phenomenon. In this regard, with huge number of con-
figuration bits, Field-Programmable Gate Arrays (FPGAs) are
more susceptible to aging since aging not only degrades the
performance, it may additionally result in corrupting the config-
uration cells and thus causing permanent circuit malfunctioning.
While several works have investigated the aging effects in Look-
Up Tables (LUTs), the routing fabric of these devices is seldom
studied – even though it contributes to the majority of FPGAs’
resources and configuration bits. Furthermore, there is a high
prospect that errors in its state to propagate to the device outputs.
In this paper, we first investigate aging effects in the routing fabric
of FPGAs with respect to performance and reliability degrada-
tions. Based on this investigation, we enhance the conventional
routing algorithm to mitigate the impact of aging by increasing
the recovery time (i.e., the mechanism used to heal aging-induced
defects) of transistors used in the routing resources. We examine
our proposed method as reduction in stress time and required
guardband to protect against aging in the routing fabric, as
well as in improving the FPGA’s lifetime. Our experiments show
that the proposed method reduces the average stress time and
aging-induced delay of routing resources by 41% and 18.3%,
respectively. This, in turn, leads to improving the device lifetime
by 130% compared to baseline routing. The proposed method
can be applied by simple amending of conventional routing
algorithms. Thus, it incurs negligible delay overhead.

I. INTRODUCTION

To keep up with advances in Application-Specific Inte-
grated Circuits (ASICs), the vendors of Field-Programmable
Gate Arrays (FPGAs) are continuously adopting to new tech-
nologies to exploit higher performance opportunities with
low power consumption, particularly considering the ever-
existing performance, power, and area gap between FPGAs
and ASICs [1], [2]. Shrinking the feature size, however, has
been accompanied with reliability challenges such as aging
phenomenon that is caused by mainly due to Bias Tempera-
ture Instability (BTI) and Hot Carrier Induced Degradation
(HCID) [3]. While HCID affects both types of nMOS and
pMOS transistors, BTI exhibits itself as Negative BTI (NBTI)
and Positive BTI (PBTI). As contrary to PBTI which degrades
nMOS transistors, NBTI degrades the electrical characteristics
of pMOS transistors within a so-called stress phase in which
a negative bias is applied on the transistor (i.e., VGS < 0).
These phenomena, at the physical level, induce interface and
oxide traps at the Si-dielectric interface, which weaken the
gate-bulk electric field. These defects are manifested as shifting
two key parameters of transistors, i.e., increasing (magnitude
of) threshold voltage (Vth) and reducing the carrier mobility
(µ).

Aforementioned effects of aging result in increasing cir-

cuit’s delay during lifetime, which causes errors due to timing
violations if their effects have not been considered in the design
time. Moreover, in memory elements, e.g., SRAM cells, aging
reduces the drive strengths of transistors, resulting in data
corruption because of decreased Static Noise Margin (SNM).
Hence, FPGAs are more susceptible to aging because a) they
have abundant resources that mostly remain unutilized and
such resources are driven by a constant voltage which applies a
permanent stress that is critical to aging and b) majority of the
configuration SRAM cells hold a constant value (e.g., zero) for
a long time until they are reconfigured, putting them into stress
phase. In addition, overcoming the aging in FPGAs is more
challenging because unlike ASIC designs, the notion of critical
path does not apply for a FPGA platform. Mitigating the aging
in an ASIC design necessitates alleviating the stress probability
only in transistors of the critical path(s), since delay increase in
the other paths does affect the circuit delay. However, in case
some resources (e.g., a routing wire segment) degrade higher
in FPGAs, even if they do not participate in the critical path or
are unutilized, it is possible that the next designs critical paths
reside on the same resources. Therefore, in FPGAs, resources
with worst degradation are determinant, regardless they are
used in current design or not.

While previous work have attempted to resolve aging ef-
fects in logic parts of FPGAs, i.e., Look-Up Tables (LUTs) [4]–
[6], its impact on routing resources is far significant. Routing
configuration cells contribute to more than 90% of total cells
[7], [8], while for each circuit only very small portion of
routing cells are configured to logical one [9]. This leads to
a constant value in these cells (even after reconfiguration of
the other circuits) and causes severe aging impact in majority
of the configuration cells. In addition, in contrary with LUTs,
SRAM cells of routing fabric are participated in path delay
directly driving the gate of the routing transistors. Thus, the
constant value in these cells not only incurs aging in them, but
impairs the corresponding transistors, as well. Another reason
that magnifies the aging of routing fabric is unutilization of
routing resources (e.g., buffers) that incurs large stress time and
delay degradation in these resources that manifests as FPGA’s
total performance degradation.

Our novel contributions within this paper are as follows:
(1) We first analyze and quantify the impact of aging in the
routing fabric of SRAM-based FPGAs. For the first time, both
the BTI and HICD are jointly considered.
(2) To mitigate aging effects, we propose a routing algorithm
based on modifying the cost (i.e., routing priority) of possible
routing paths in which the new design has minimum overlap-
ping/equal configuration bits with the previous one, towards
increasing the recovery time.
(3) Since majority of configuration bits are zero, the proposed



algorithm not only deals with the active bits (those which have
a role in routing the design’s used nets), it also periodically
flips the major inactive bits during the configuration time to
balance/mitigate aging stress there, as well.
(4) We elaborate and minimize the likelihood of ever-constant
configuration bits (we call them hotspot aging points) that
cause imbalance aging.

In order to evaluate the proposed method, we used VTR
7.0 toolset [10] – an open-source software suite that can model
arbitrary FPGA architectures and provides CAD flow from
HDL code to place and routing– along with MCNC bench-
marks [11]. Experimental results showed that our proposed
method reduces, on average, the stress time of configuration
cells by 41%. In addition, by reducing the stress time of routing
transistors, the proposed method improves the aging-induced
delay by 18.3% which translates to average 130% improvement
in device lifetime.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III discusses the motivation
behind this paper. Section IV elaborates the proposed method.
Details of experiments and results are provided in Section V,
and finally, Section VI concludes the paper and presents the
future work.

II. PREVIOUS WORK

Previous research in the scope of aging in FPGAs can be
categorized into two main classes. While the main aim of the
first class is to measure or monitor the aging using sensors
(i.e., aging detector circuits) that are mostly built based on
FPGA resources [12], [13], the second class aims to mitigate
its impact in FPGAs, mainly through alleviating the stress time.
Our proposed work resides in the second class, which mitigates
the aging effects in the routing fabric, e.g., SRAM cells and
multiplexers.

Aging effects in different LUT structures, e.g., pass-gate
and standard cells, are investigated in [4]. By performing
SPICE simulation on two-input LUT implementations, the
authors concluded that parameters such as LUT structure, input
probability, and current and previous configuration bits have
key effect on induced aging. In addition, they propose that
the conventional all-zero configuration for unused LUTs may
lead to worst aging. Sensitivity of two-input Transmission-
Gate (TG) based LUT with respect to NBTI effect is analyzed
in [6]. Based on the proposed observation, degradations can
be mitigated in a circuit by alleviating the stress of critical
inputs. In [14], the relation between process variation in FPGA
(i.e., variability in original performance) and aging-induced
delay variation is examined. It is found that process variation
and aging degradations are uncorrelated. Thus, overall perfor-
mance variation might increase as FPGA ages. To mitigate
aging degradation in a design, it suggests incorporating sparse
LUTs available in the same FPGA. However, this necessi-
tates availability and proximity of such LUTs in order to
impose minimum change in the global routing. The authors
also propose using sparse routing resources, however, even
partial re-routing a mapped circuit incurs additional delay that
counteracts the possible gain of non-aged resources. Altering
LUT configuration bits to mitigate the aging of LUT cells
is proposed in [15]. In this method, configuration bits of a

LUT can be shuffled (permuted) to have minimum overlapping
with previous bits, putting the previously stressing transistors
into recovery state (and vice versa). Accordingly, this method
requires swapping the LUT inputs, as well, which can incur
routing delay in depopulated crossbars. Nevertheless, while
aging of configuration bits can impair their noise margin, it
has no impact on LUT delay. An aging-aware placement which
targets the runtime reconfigurable applications is proposed in
[16]. This method enhances the aging by optimizing the stress
distribution by evenly placing the accelerators (i.e., runtime
reconfigurable modules) such that converges the overall toggle
rate of the transistors within different logic blocks. A similar
approach has also been exploited in [17] which uses different
pre-defined configurations for runtime reconfigurable modules
that attempts to balance the stress by determining the fraction
of time each configuration should be used.

There are also few studies that analyze aging in the routing
fabric. In this regard, the effects of aging on configurable
resources of FPGA routing fabric has been investigated in [18].
Using SPICE simulations, the effect of wire length, cascaded
switches, fan-out, and supply voltage on four different routing
switches has been studied. The assumptions made in [18] about
switch types and their connectivity, however, are not typically
considered neither in industrial nor in academic FPGAs. The
authors suggest pass-gate based and TG-based structures for
technologies susceptible to NBTI and NBTI/BTI, respectively,
but do not propose any approach for mitigating the aging.
Finally, different reliability threats of FPGAs and approaches
to mitigate them, including a bit inversion and shuffling method
to mitigate the aging of configuration cells, is studied in [15].
For the unused multiplexers (i.e., multiplexers with undriven
inputs and output) of routing fabric, this method suggests peri-
odic flipping of configuration bits. The proposed method does
not provide any approach for the other types of multiplexers
(i.e., when any input or the output is driven). Furthermore,
this method neglects the aging of multiplexers’ transistors.
For example, inverting the configuration bits of unused TG-
based multiplexers exposes all of its pMOS transistors to aging.
Nevertheless, efficiency of the proposed method has not been
examined.

Among the manifold of studies that target mitigating aging
of ASIC applications, [19]–[23] have focused on optimizing
the aging in SRAM-based memories. These studies either
attempt to improve the stress time of cells with bit rotating
[19], [20] or bit inversion [21], [22]. Nonetheless, these meth-
ods impose considerable area and power overhead due to the

0

5

10

15

20

No-St
ripin

g
Avera

ge

Routing 1 Routing 0 LUT 1 LUT 0

Plane
-wise

Die-w
ise

Chip-
wise

Plane
-Chip

Die-P
lane Plane

-Die

N
um

be
r
of
Bi
ts
(×

10
00
0)

Fig. 1. Distribution of configuration bits in different FTL algorithms for a
Virtex-II 2V80 device



1

0

Q

1

0

Q

1

1

2

3

1

2

3

ON

OFF

Shared

1

(a) Two-level used
multiplexer

(b) Two-level unused
multiplexer

(c) Look-Up Table

Fig. 2. Two-fold degradation in routing resources

support circuitries (e.g., Barrel shifters for rotating) or write
schemes since increasing the data hamming distance in order
to balance the stress time increases the dynamic power.

III. MOTIVATION

The abundance of routing configuration cells coupled with
low utilization of these cells makes them particularly sus-
ceptible to aging. To clarify the scenario, we have imple-
mented sample Flash Translation Layer (FTL) algorithms,
which are employed in Solid-State Drives (SSD) controllers,
on a minimum size Virtex-II device. Fig. 1 illustrates the
distribution of inter-cluster routing and LUT configuration
bits of these algorithms, obtained by probing their bitstream
[24]. As represented in this figure, routing configuration cells
contribute to more than 90% of total cells (92% on average),
while for each circuit only 8% of routing cells are configured
to logical “1”, compared to 41% in LUTs1. As a rule of thumb,
average Duty Cycle (DC, the ratio of stress time to the total
time) of routing configuration cells can be estimated as:

DCrouting = P0→0 +P1→1 = 0.92 · 0.92 + 0.08 · 0.08 = 0.85

This number is higher than DCLUT = 0.52, which means it
will impose higher aging impact on the routing resources2.
In addition, in contrary with LUTs, SRAM cells of routing
fabric are directly involved in path delay. This concept is
demonstrated in Fig. 2 for conventional two-level routing
multiplexers, and fully-encoded tree-based LUT [25]. Constant

0%
2%
4%
6%
8%
10%
12%
14%
16%
18%

0 1 2 3 4 5 6 7 8 9 10

A
g

in
g

 I
n

d
u

ce
d

 D
e

la
y

 

year 

PG-Mux PG-Buffer PG-Combined
TMG-Mux TMG-Buffer TMG-Combined
LUT

Fig. 3. Aging-induced delay in switch box (multiplexer and buffer) and LUT

1On average, 90% of LUTs in the FPGA device are utilized in these
benchmarks.

2DCLUT = 0.41 · 0.41 + 0.59 · 0.59 = 0.52.

0Q

0Q

0Q

0Q

1Q

1Q

Q
Q

LB LB

SM SM

LB

LB LBLB

SM SM

LB LBLB

CB CB

CB CB

CB CB

CB CB CB

CB CB CB

(a) Island-style architecture (b) Bi (top) and uni-
directional SM (bottom)

(c) Bi (top) and uni-
directional SB (bottom)

(d) SRAM cell (top)
and 3x1 Mux (bottom)

Fig. 4. FPGA architecture and structures used to employ the proposed method

configuration bits in routing multiplexers not only degrade
these cells, but impose high stress interval in corresponding
transistors (Fig 2.a). In an unused multiplexer (Fig 2.b), all
SRAMs are configured to zero, and hence, do not age the asso-
ciated nMOS transistors. However, in this scenario, the output
buffer is under a ceaseless stress. In addition, configuration
cells of LUTs are separated from the pass-gates by an isolating
inverter to improve speed and robustness (e.g., by preventing
flowing of rush current from pass-tree back to SRAM cells).
While constant value in LUT configuration bits degrades the
cells and associated inverters, it does not influence the delay
since the inverters can still drive a strong voltage.

To validate our observation, aging-induced degradation
over 10 years for a pass-gate (PG) and transmission-gate
(TMG) based switch-box multiplexer along with its output
buffer, and a tree-based LUT is demonstrated in Fig. 3 3. It
can be observed that routing buffers have highest proportion in
delay increase while they are under the same stress interval.
As expected, aging in configuration cells of LUTs has little
impact on its delay. Observations in this section establish the
skeleton of the proposed method which will be detailed next.

IV. PROPOSED METHOD

A. Preliminary

Similar to commercial FPGAs as Xilinx Virtex IV [26]
and Altera Stratix II [27], we use the popular island-style
architecture (shown in Fig. 4) to implement our proposed
method. We also target both the multiplexer-based (used in
commercial FPGAs) and buffer-based switch boxes to examine
the proposed method. For the multiplexers, here we exploit
tree-based structure since it requires only two SRAM cells.

B. Proposed Algorithm

Since the optimal DC for a SRAM cell is 0.5 (otherwise
one of the nMOS-pMOS pairs will be weak spot), we attempt
to invert the utmost configuration bits during each device
reconfiguration. This periodic inversion of SRAM cells not
only yields their minimum degradation, but also changes the
corresponding transistors’ state −from stress to recovery or
vice versa− and makes the stress/recovery uniform among
different resources. To achieve this, during configuring the
FPGA with a new design, we first exploit our routing algorithm

3Simulation details are explained in Section V.



New 1 New 0

Prev. 0

Prev. 1
Overlapping 1

Overlapping 0

Noninvertible 
Zeros

Design 
Zeros

1→0

0→1 Invertible✓

✓

✓

Fig. 5. Distribution of configuration bits in two consecutive designs

in which the segments with highest configuration hamming-
distance with the previous design take the minimum routing
cost (which turns in higher priority), while the most overlap-
ping (equal configuration bits) segments get the maximum cost
to avoid using overlapping configuration bits. These segments
in a multiplexer-based routing fabric are the multiplexer’s
selected input, and in a buffer-based structure, the active
terminals (e.g., East to South) are determined as segments.
As an example, for a two-input multiplexer with previous
configuration bits as Q0Q1=10, the highest priority is 01
while both 00 and 11 configurations have the second priority,
and eventually, the least priority is for 10. For buffer based
switches, the condition is simple because each segment is
controlled by a unique SRAM cell, thus, for a previously used
segment (Q=1) the current priority will make it off (Q=0),
and vice versa. Determining the costs depends on the routing
algorithm, and in our case, it is obtained empirically; while
specifying large costs for undesirable segments enforces the
routing tool to entirely avoid these paths, assigning small costs
might ignore the priorities.

Each design consists of a manifold of used ones and zeros
that refer to the configuration bits of the used multiplexers in
the multiplexer-based architecture. For the previous and new
designs, these configuration bits are distinguished by “Prev.
0”, “Prev. 1”, “New 0”, and “New 1”, as shown in Fig. 5.
All other bits (white spaces) are the default zero configuration
bits of unused resources. Accordingly, the first step of the
proposed algorithm attempts to reduce the “overlapping 0” and
“overlapping 1” configuration bits and increase the “0 → 1”
and “1→ 0” regions (i.e., cells holding 0-value in the previous
design that are configured to 1 in the new circuit and vice
versa) between consecutive designs.

In the second step, the proposed algorithm inverts the safe
zero bits, i.e., unused (zero) configuration cells in the new
design that also hold zero in the previous circuit, whether in its
used cells (“Prev. 0”) or unused cells (white spaces). Note that
current unused zero cells that were holding one in the previous
design (“Prev. 1”) should not be inverted. Furthermore, there
is a set of zero configuration bits in the new design that belong
to unused multiplexers that cannot be inverted. These bits are
distinguished by Noninvertible Zeros in Fig. 5. This happens
whenever a multiplexer is not used but one or some of the
wires passing through its inputs is used in the design. In such
scenarios, changing the configuration of multiplexers does not
affect the circuit functionality but it imposes dynamic power

overhead since the output of the multiplexers will be driven
by an active net.

Therefore, the proposed algorithm changes the configura-
tion bits of the unused multiplexers in the new design (that
have 00 configurations which comprise more that 75% of
the configurations) according to their previous configurations.
If it was previously Q0Q1=00, it will change to 11 if the
multiplexer input corresponding to 11 configuration (the first
input in Fig. 4.d) is not driven by any net, otherwise, it changes
to 01 or 10. Similar procedure applies to other conditions, e.g.,
when Q0Q1 is equal to 11 in the previous design, the current
00 configuration is the best choice.

In addition, as revealed by our experiments, even after
applying the proposed algorithm, there is a minority of con-
figuration cells that hold the same constant value between
several consecutive reconfigurations. This makes these cells
and their corresponding resources as unknown aging hotspots
that necessitates incurring the maximum guardband to address
the aging problem. We resolve this issue by keeping track of
the overlapping configuration cells, i.e., Config1∩Config2∩
Config3∩ ... and forcing them to be inverted after a threshold
value. Indeed, when the number of these cells falls below a
specific ratio of the used configuration bits of the new design
(e.g., 8% of the used bits which corresponds to 2.5% to 3% of
the total configuration bits), the proposed algorithm entirely
inverts these cells and re-route the design. Typically, after
four reconfigurations, this condition occurs. It is noteworthy
that this threshold value is also achieved empirically. High
threshold values turn off larger number of paths and hence it
imposes higher delay overhead and requires more additional
memory if these bits are kept in configuration memory. On the
other hand, low threshold value keeps these cells under stress
for larger intervals.

It is also noteworthy that we assume several reconfigura-
tions take place in an FPGA device. The proposed method
does not apply for the cases that a device is being configured
for once, unless it is reconfigured periodically (e.g., once
a year) with the same design to alleviate the degradation.
For these cases, considering the fact that any design has
various potential place and route mappings, one can produce
several configurations (place and routing steps) for a single
design using the proposed algorithm and try to periodically
reconfigure the device with different mappings of the same
design in order to mitigate the aging effects. Therefore, in these
cases, it is only required to periodically reconfigure the same
design using the proposed algorithm. The proposed method is
summarized in Algorithm 1.

V. EXPERIMENTAL SETUP AND RESULTS

A. General Setup

We perform the experiments using VTR 7.0 toolset with
20 largest MCNC benchmarks. The place and route (VPR)
tool is modified to generate the bitstream after routing each
circuit based on the value of SRAM cells. Therefore, for each
unused segment in buffer-based switch boxes, a zero bit is
assigned, while the used segments take one. For multiplexer-
based implementation, the select bits corresponding to each
input are assigned as shown in Fig. 4.d (so the first input takes
Q0Q1=11). A subset structure for Switch Matrices (SMs) is



Fig. 6. Comparing the stress time (duty cycle) of configuration cells of the proposed method and baseline (denoted by Conv)

Fig. 7. Minimum number of reconfigurations that all of the configuration cells are inverted at least once

Algorithm 1: Aging-aware Routing Algorithm
Input: Configprev: Previous design configuration bits
Input: Netlistnew: New placed design
Input: Configoverlap: Overlapping configuration bits
Output: Confignew: New design configuration bits
for each Muxi ∈ Configprev do1

costi ← determine priority(Muxi);2

Confignew ← route(Netlistnew, cost);3
for each Muxi ∈ Confignew do4

if Muxi = 00 then5
Muxi ←6
newConfig(Configprev, Netlistnew);

update Confignew;7
Configoverlap ← Configoverlap ∩ Confignew;8
if Configoverlap < threshold then9

for each Muxi ∈ Configoverlap do10
Muxi ← invert(Muxi);11

update cost;12
Confignew ← route(Netlistnew, cost);13

assumed which also has been employed in commercial FPGAs
[10]. Since VPR maps the circuits to device with the minimum
logic array and routing channel width by default, in both
the proposed method and baseline we set the channel width
to 1.2X of the obtained minimum to provide the tool with
sufficient flexibility to route the circuits, particularly consid-
ering the fact that in commercial FPGAs, the utilized routing
resources are considerably below the available resources [9].
Transistor sizes for both multiplexer-based and buffer-based
structures are directly obtained from VTR repository, while

the buffer sizes are derived by reverse engineering the buffer
area used in L(wire segment length)= 1 architecture files in
which the first stage of the buffer is minimum sized. Finally,
we assume a typical minimum-size six-transistor SRAM cell
is employed in FPGAs [25], [28].

For aging-related simulations, we have used high perfor-
mance 22nm High-K models from PTM [29]. In order to
jointly model the BTI and HCID, we employ recent physics-
based model that is obtained for 22nm technology consid-
ering various duty cycles ranging from 0 to 1 [3], i.e., a
pMOS/nMOS transistor is under 0% and 100% stress time
(from total operation time), respectively.

B. Stress Reduction

Fig. 6 compares the duty cycle of configuration cells in
the proposed method with the baseline (i.e., no inverting
approach) for both the buffer-based and multiplexer-based
architectures. These results are obtained by placing and routing
each benchmark with different seed numbers which keeps the
same FPGA array size but results in different placement and
routing, i.e., different circuits. By reconfiguring the FPGA with
the same benchmark but different placement and routing, we
can also examine the effectiveness of the proposed method in
mitigating the aging of a long-lasting design by periodical re-
configuring and inverting. By reducing the stress time by 41%
on average, the proposed method could achieve DC = 0.53
and DC = 0.56 for the multiplexer-based and buffer-based
architectures, respectively, which is very close to the optimum
duty cycle (i.e., DC=0.5).

In addition, as mentioned previously, there are a set of
hotspot configuration bits that hold their constant 0 or 1 value
even after several different reconfigurations which extremely



Fig. 8. Aging-induced delay in the baseline and proposed method after 3 and 10 years

degrades them and corresponding transistors. The minimum
number of different reconfigurations in which all of the con-
figuration bits are inverted at least once is shown in Fig.
7. For each circuit, the number is obtained by placing and
routing with different initial placements (which results in
different routing, as well). Accordingly, these hotspot cells
have DC = 0.95, on average. In the proposed algorithm,
all of the configuration cells are inverted after at most four
reconfigurations, however, as discussed in Section IV-B, we
smooth the stress interval of these cells by forcing them to
hold the inverse value in the next reconfigurations.

C. Aging Mitigation

We compare the efficiency of the proposed method in
enhancing the aging-induced delay in both average and worst-
case scenarios. In the first scenario, we find the average stress
time of multiplexer transistors in consecutive reconfigurations
for each benchmark. Furthermore, to find the aging in buffers,
we calculate the signal probabilities of each benchmark using
[30]. Fig. 8 compares the aging-induced delay in routing
switch-boxes (and associated wire segment) in the baseline
and proposed algorithm after 3 and 10 years which is obtained
by HSpice simulations using the degraded Vth and µ models.
According to this figure, the proposed method can mitigate the
aging effects by 8.70% and 17.52% after 3 and 10 years, re-
spectively. In long-term, the efficiency of the proposed method
increases since the effect of high stress intervals exacerbates in
the long time. It is noteworthy that, theoretically, considering
an optimum balanced stress and recovery between all routing
resources, e.g., assuming DC = 0.5 for the buffers, the
maximum achievable aging mitigation is 11.15% and 19.66%
after 3 and 10 years, respectively. Therefore, the efficiency of
the proposed method in aging mitigation is 89%, compared
with the optimum solution.

In the worst-case scenario, we consider the hotspot re-
sources, e.g., multiplexers or buffers driven by a constant
signal in the long-time. Fig. 9 illustrates the improvement of
the proposed method over the baseline in term of reducing
the required timing guardband over 3 and 10 years. The
timing required guarband is reduced by 9.72% and 18.32%,
respectively, which implies to 93% efficiency of the proposed
method.

D. Lifetime Improvement

In order to interpret the stress reduction and aging-induced
delay mitigation of the proposed method to the enhancement

Fig. 9. Mitigating the aging-induced delay considering hotspot (maximally-
aged) resources

in the device lifetime, we assume the term ∆delay as the
maximum tolerable aging-induced delay increase that is con-
sidered during the design time by setting a timing guardband.
We denote the corresponding threshold increase by ∆V thfail.
Therefore, for a specific ∆V thfail value, we calculate −using
the threshold model and improved stress time− the time
that the proposed method takes to break this guardband. For
example, if a device is supposed to work for 5 years in
the baseline method, the corresponding ∆V thfail would be
equal to 44.6mV (i.e., the degradation reaches to 44.6mV
after 5 years), however, due to reducing the stress time, the
proposed method reaches this degradation after 11.9 years, so
our method increases the lifetime by 6.9 years.

Fig. 10 shows the lifetime of the proposed method with re-
spect to the given baseline device lifetimes (i.e., with different
degradation thresholds). The stress time used to calculate the
∆V th is averaged among all the benchmarks in the baseline
and the proposed method. Our proposed method on average
could increase the device lifetime by 130%.

0

5

10

15

20

25

4 5 6 7 8 9 10P
ro

p
o

se
d

 M
et

h
o

d
 (

ye
ar

) 

Baseline lifetime (year) 

Fig. 10. Comparing the lifetime of the proposed method and baseline



Fig. 11. Comparing the benchmarks frequency of the proposed method with the baseline

E. Delay Overhead

To investigate the possible delay overhead of the proposed
method, we obtained the average frequency of each bench-
mark during the reconfigurations. As demonstrated in Fig. 11,
the proposed method incurs 0.2% performance overhead in
the multiplexer-based architectures, which is very negligible.
Nonetheless, in the buffer-based architecture, the proposed
method does not impose any delay overhead. The difference
of the obtained frequencies for each benchmark during con-
secutive reconfigurations is due to the different seed numbers
of benchmarks, i.e., different placements, which can reduce or
even improve the performance. Therefore, due to the abundant
routing resources in FPGAs, the proposed algorithm generally
does not affect the performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed aging mitigation technique to
alleviate the aging effects in the routing resource of FPGAs by
enhancing the routing algorithm to alleviate the stress time by
evenly using the routing resources and inverting the configu-
ration cells. As demonstrated by the experimental results, our
proposed method reduces the stress time of configuration cells
to 0.53 which is close to optimal value. In addition, aging-
induced delay was reduced by 18.3% which is interpreted
to 130% increase in the device lifetime. In this work, for
the sake of brevity, we focused on a specific type of routing
architectures, i.e., subset switch matrices with short segment
lengths. As an extension of this work, we will incorporate the
aging of logic resources and consider a more comprehensive
set of architectures and different routing resource structures
to precisely investigate and mitigate the aging in commercial
FPGAs.

ACKNOWLEDGEMENT

This work is supported by the AICT Innovation Cen-
ter of Sharif University of Technology and in parts by the
German Research Foundation (DFG) as part of the prior-
ity program “Dependable Embedded Systems” (SPP 1500 -
spp1500.itec.kit.edu).

REFERENCES

[1] “7 series fpgas overview,” Data Sheet, Xilinx, May 2015.
[2] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 26, no. 2, pp. 203–215, 2007.

[3] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel,
“Towards interdependencies of aging mechanisms,” in Computer-Aided
Design (ICCAD), 2014 IEEE/ACM International Conference on. IEEE,
2014, pp. 478–485.

[4] S. Kiamehr, A. Amouri, and M. B. Tahoori, “Investigation of nbti
and pbti induced aging in different lut implementations,” in Field-
Programmable Technology (FPT), 2011 International Conference on.
IEEE, 2011, pp. 1–8.

[5] K. Ramakrishnan, S. Suresh, N. Vijaykrishnan, M. J. Irwin, and
V. Degalahal, “Impact of nbti on fpgas,” in VLSI Design, 2007. Held
jointly with 6th International Conference on Embedded Systems., 20th
International Conference on. IEEE, 2007, pp. 717–722.

[6] E. Stott, P. Sedcole, and P. Y. Cheung, “Modelling degradation in fpga
lookup tables,” in Field-Programmable Technology, 2009. FPT 2009.
International Conference on. IEEE, 2009, pp. 443–446.

[7] H. Asadi, M. B. Tahoori, B. Mullins, D. Kaeli, and K. Granlund, “Soft
error susceptibility analysis of sram-based fpgas in high-performance
information systems,” Nuclear Science, IEEE Transactions on, vol. 54,
no. 6, pp. 2714–2726, 2007.

[8] H. Asadi and M. B. Tahoori, “Analytical techniques for soft error
rate modeling and mitigation of fpga-based designs,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 15, no. 12, pp.
1320–1331, 2007.

[9] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “Fpga-based
protection scheme against hardware trojan horse insertion using dummy
logic,” Embedded Systems Letters, IEEE, vol. 7, no. 2, pp. 46–50, 2015.

[10] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “Vtr 7.0: Next generation
architecture and cad system for fpgas,” ACM Transactions on Recon-
figurable Technology and Systems (TRETS), vol. 7, no. 2, p. 6, 2014.

[11] S. Yang, Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[12] M. D. Valdes-Pena, J. Fernandez Freijedo, M. J. M. Rodriguez, J. J.
Rodriguez-Andina, J. Semiao, I. M. Cacho Teixeira, J. P. Cacho Teix-
eira, and F. Vargas, “Design and validation of configurable online aging
sensors in nanometer-scale fpgas,” Nanotechnology, IEEE Transactions
on, vol. 12, no. 4, pp. 508–517, 2013.

[13] C. Leong, J. Semião, I. C. Teixeira, M. B. Santos, J. P. Teixeira,
M. Valdes, J. Freijedo, J. J. Rodriguez-Andina, and F. Vargas, “Ag-
ing monitoring with local sensors in fpga-based designs,” in Field
Programmable Logic and Applications (FPL), 2013 23rd International
Conference on. IEEE, 2013, pp. 1–4.

[14] E. Stott, J. S. Wong, and P. Y. Cheung, “Degradation analysis and
mitigation in fpgas,” in Field Programmable Logic and Applications
(FPL), 2010 International Conference on. IEEE, 2010, pp. 428–433.

[15] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan,
M. J. Irwin, and K. Sarpatwari, “Toward increasing fpga lifetime,”
Dependable and Secure Computing, IEEE Transactions on, vol. 5, no. 2,
pp. 115–127, 2008.

[16] H. Zhang, M. A. Kochte, E. Schneider, L. Bauer, H.-J. Wunderlich,
and J. Henkel, “Strap: Stress-aware placement for aging mitigation in
runtime reconfigurable architectures,” in Proceedings of the IEEE/ACM



International Conference on Computer-Aided Design. IEEE Press,
2015, pp. 38–45.

[17] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E.
Imhof, H.-J. Wunderlich, and J. Henkel, “Module diversification: Fault
tolerance and aging mitigation for runtime reconfigurable architectures,”
in Test Conference (ITC), 2013 IEEE International. IEEE, 2013, pp.
1–10.

[18] A. Amouri, S. Kiamehr, and M. Tahoori, “Investigation of aging effects
in different implementations and structures of programmable routing
resources of fpgas,” in Field-Programmable Technology (FPT), 2012
International Conference on. IEEE, 2012, pp. 215–219.

[19] S. Kothawade, K. Chakraborty, and S. Roy, “Analysis and mitigation
of nbti aging in register file: An end-to-end approach,” in Quality
Electronic Design (ISQED), 2011 12th International Symposium on.
IEEE, 2011, pp. 1–7.

[20] H. Amrouch, T. Ebi, and J. Henkel, “Stress balancing to mitigate nbti
effects in register files,” in 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2013,
pp. 1–10.

[21] S. Wang, T. Jin, C. Zheng, and G. Duan, “Low power aging-aware
register file design by duty cycle balancing,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe. EDA Consortium,
2012, pp. 546–549.

[22] T. Siddiqua and S. Gurumurthi, “Recovery boosting: A technique to
enhance nbti recovery in sram arrays,” in 2010 IEEE Computer Society
Annual Symposium on VLSI. IEEE, 2010, pp. 393–398.

[23] M. Shafique, M. U. K. Khan, O. Tüfek, and J. Henkel, “Enaam: energy-
efficient anti-aging for on-chip video memories,” in Proceedings of the
52nd Annual Design Automation Conference. ACM, 2015, p. 101.

[24] A. Upegui and E. Sanchez, “Evolving hardware by dynamically recon-
figuring xilinx fpgas,” in Evolvable Systems: From Biology to Hardware.
Springer, 2005, pp. 56–65.

[25] C. Chiasson and V. Betz, “Should fpgas abandon the pass-gate?”
in Field Programmable Logic and Applications (FPL), 2013 23rd
International Conference on. IEEE, 2013, pp. 1–8.

[26] “Virtex-4 platform FPGA user guide,” User Guide, Xilinx, December
2008.

[27] “Stratix-2 platform FPGA hand book,” Hand Book, Altera, April 2011.
[28] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-

submicron FPGAs. Springer Science & Business Media, 2012, vol.
497.

[29] (2013 (accessed March 20, 2016)) Predictive technology model (ptm).
[Online]. Available: http://ptm.asu.edu/

[30] J. Lamoureux and S. J. Wilton, “Activity estimation for field-
programmable gate arrays,” in Field Programmable Logic and Appli-
cations, 2006. FPL’06. International Conference on. IEEE, 2006, pp.
1–8.


