
PADSA: Priority-Aware Block Data Storage
Architecture for Edge Cloud Serving Autonomous

Vehicles
Mostafa Kishani

Dep. of Telecommunication Engineering
Czech Technical University in Prague

Prague, Czech Republic
kishamos@fel.cvut.cz

Zdenek Becvar
Dep. of Telecommunication Engineering

Czech Technical University in Prague
Prague, Czech Republic

zdenek.becvar@fel.cvut.cz

Hossein Asadi
Dep. of Computer Engineering
Sharif University of Technology

Tehran, Iran
asadi@sharif.edu

Abstract—An efficient Input/Output (I/O) caching mechanism for
data storage can deliver the desired performance at a reasonable
cost to edge nodes serving autonomous vehicles. Current storage
caching solutions are proposed to address common applications
for autonomous vehicles that are less demanding in terms of
the latency (e.g., map or software upgrades). However, a serious
revision of these solutions is necessary for autonomous vehicles,
which rely on safety- and time-critical communication for services,
such as collision avoidance, requiring very low latency. In this
paper, we propose a three-level storage caching architecture for
virtualized edge cloud platforms serving autonomous vehicles.
This architecture prioritizes safety-critical services and allocates
the two top-level caches of Dynamic Random Access Memory
(DRAM) and Non-Volatile Memory (NVM) to the top priority
services. We further evaluate optimum cache space allocated to
each service to minimize the average latency. The experimental
results show that the proposed architecture reduces the average
latency in safety-critical applications by up to 70% compared to
the state-of-the-art.

I. INTRODUCTION

Recent advancements in 5G and beyond mobile networks
support and enable new applications that were not feasible
in previous generations of mobile networks. The emerging
application scenarios, such as autonomous vehicles, healthcare,
industrial internet, or virtual/augmented reality require high
reliability, low latency, and high security/privacy. In specific,
the autonomous vehicles are characterized by a huge volume of
data transmission exceeding 100 GB per day per vehicle, while
each vehicle roughly contains 50-200 IoT-like devices. A part
of these transmissions is associated to safety- and time-critical
services, such as collision avoidance that mandate a very low
latency in order of few milliseconds.

Previous surveys [1–4] assert that 5G networks are supposed
to satisfy tight network latency requirements of cloud platforms
for autonomous vehicles to provide “beyond the line of sight”
visibility to the vehicles. These surveys mention a vehicle to
infrastructure communication as a key challenge and propose
Mobile Edge Computing (MEC) [2] as a suitable solution that

This project is supported by international mobility of research, technical
and administrative staff of research organizations, with the project number
CZ.02.2.69/0.0/0.0/18 053/0016980.

can deliver the required low latency, since the MEC hosts the
applications close to the users at a low network latency.

The technology stack of autonomous driving includes
three major subsystems [5]: i) driving logic subsystem, ii)
vehicular edge subsystem, and iii) cloud platform. The driving
logic subsystem is responsible for sensing, perception, and
decision; the vehicular edge subsystem contains operating
system and hardware platforms; and the cloud platform is
responsible for data storage, high-definition mapping, and deep
learning model training. Existing cloud platforms are mostly
responsible for offline computing including, for example, high-
definition map production or deep learning model training,
while future advancements in communication industry can
enable to also handle safety-critical, real-time tasks, such as
collision avoidance, by the (edge) cloud [5].

While low-latency and high-bitrate network communication
is a major concern in autonomous vehicle applications, a
serious performance bottleneck in MEC for the autonomous
vehicles is a storage subsystem1 of the edge nodes. The storage
demands of the autonomous vehicles call for a revolution in
storage architecture of cloud and edge infrastructures. Services
and applications of the autonomous vehicles mostly have a
real-time nature, unstructured data type [10, 11], and require
very low latency in order of milliseconds. The autonomous
vehicles also produce a traffic pattern that is quite different from
common internet and smartphone usage. While the majority of
present applications have a large downlink traffic and limited
uplink traffic, the autonomous vehicles require a heavy and
real-time uplink traffic of sensed data while the downlink
traffic is usually limited to control commands, maps, and
software updates. Due to this big difference between workload
characteristics of the autonomous vehicles and common internet
applications, the storage stack of edge nodes should be re-
architectured. Meantime, while the majority of automotive
services mandate very low latency, these services are not on a
par with each other. In addition, although we cannot compensate

1The storage subsystem is responsible for permanent data storage in a
high-reliable and high-available manner [6–9].

Edge Node

Unikernel1 Unikernel2 Unikernel3 Unikerneln. . .

Some services such as collision avoidance need communication to the services of other vehicles.
An alternative is that a single service is simultaneously serving multiple vehicles or all vehicles in the sight of RSU.

Collision
Avoidance

Sensing
Data

Map/SW
Update

Unikernel4

R&D
Data

Unikernel5 Unikernel6 Unikernel7

Collision
Avoidance

Sensing
Data

Map/SW
Update

Unikernel8

R&D
Data

Shared
Services

Fig. 1: Overview of service and connection mechanism between vehicles and edge node. Some services, such as collision avoidance, require communication to the services of other
vehicles. An alternative is that a single service simultaneously serves multiple vehicles (or all vehicles) in the sight of edge node, shown as Shared Service in the figure. Dashed lines
represent the communication between shared services and vehicles.

reliability and latency in some safety-critical services (such as
collision avoidance) at any cost, some other services, such as
software updates, map updates, and data collection for research
and development purposes, can tolerate lower performance
standards. Hence, to balance latency and storage cost and to
prioritize demanding services for the autonomous vehicles,
more diverse storage options are required. By developing
smart mechanisms such as data tiering and caching, we can
dynamically and transparently manage edge storage for a big
spectrum of autonomous vehicle services motivating a large
investment on emerging storage architectures [5, 11–13].

The edge nodes for the autonomous vehicle services can
be located in different facilities, such as base stations (in 5G
denoted as gNBs) or Unmanned Aerial Vehicles (UAVs) [14–
16]. For the sake of security and ease of management and
mobility, these edge platforms typically employ virtualization
paradigms, such as containers, Virtual Machines (VMs), or
Unikernels [13]. In such platforms, the edge node takes
over multiple services per vehicle, while each service is
associated to an independent unikernel. The unikernel services
are typically interconnected and share storage space. There is
also a possibility of having shared services among multiple
vehicles, or having a single unikernel responsible for multiple
related services. Since storage is shared among multiple
unikernel services, I/O and storage can become the performance
bottleneck of mission-critical services and adversely affect
system functionality.

Performance of the storage stack in virtualized platforms
have been the subject of many studies [17–21]. However,
existing I/O caching methods for virtualized systems do not
consider the priority of applications and services [17–21] and
most of these methods focus on general datacenter applications
and workloads, managing to improve the average latency of all
VMs [17, 19–21]. To our best knowledge, there is no previous
work addressing the storage subsystem performance in the edge
and cloud platforms of the autonomous vehicles. A commonly
used approach to manage and improve performance of virtual
platforms is I/O caching [17–21]. An efficient I/O caching
mechanisms for the autonomous vehicles should: a) consider
the worst-case latency of safety- and time-critical services,
such as collision avoidance, to assure the safety of passengers,
b) prioritize the safety- and time-critical services for limited
storage resources, and c) consider realistic autonomous vehicle
workloads rather than commodity datacenter applications.

In this paper, we propose a novel priority-aware block data
storage architecture for edge cloud serving the autonomous
vehicles, denoted as PADSA, represented by a three-level

storage caching architecture of Dynamic Random Access
Memory (DRAM), Non-Volatile Memory (NVM), and Solid-
State Drive (SSD) for virtualized platforms serving autonomous
vehicle services. PADSA prioritizes time- and safety-critical
services and allocates the two top-level caches of DRAM and
NVM to these services. This architecture dynamically manages
cache resources allocated to each unikernel during runtime
and finds the optimum cache resource allocation regarding the
recent workload behavior. Furthermore, we find the optimum
cache resource allocation that minimizes the average latency.
The efficiency of the proposed architecture is validated using
realistic storage traces of the autonomous vehicle services.
Our experiment results show that PADSA reduces the average
latency of safety-critical applications by up to 70% compared
to the state-of-the-art.

The rest of paper is organized as follows. Section II dis-
cusses the system model including the edge computing model
considered in this work. Section III elaborates the problem
and provides its formulation, parameters, and constraints.
Section IV presents the proposed priority-aware block data
storage architecture. Section V presents the experimental setup
and results. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we outline the edge computing model,
including storage stack and virtualization platform addressed
in this paper. The edge node serves unikernels from different
vehicles, while each unikernel handles an arbitrary service
of a specific vehicle. Hence, the edge node hosts multiple
unikernels per vehicle for different services, such as collision
avoidance, map update, or software update. Fig. 1 illustrates
an interconnection between the vehicles and the edge node.
The unikernels resemble the VMs while having much lower
space and computation complexity, as the unikernel contains
only necessary libraries of operating system (OS) rather than
the whole OS and has only one addressing space (not switch
between user and kernel mode). As the VMs are very heavy
to migrate and boot and have large computation overhead due
to complex software layers, the more popular solution for the
vehicular edge computing are containers running under the
management of edge OS, or unikernels running under an edge
hypervisor, while the latter solution is getting more popular
due to security benefits [13].

The hypervisor allocates I/O storage cache space to each
unikernel independently. Fig. 2 shows the overview of re-
source management in a typical hypervisor. The hypervisor
is responsible for an allocation of computing, communication,

2

Unikernel1 ...

CPU

Dynamic RAM (DRAM)

Non‐Volatile Memory (NVM)

High‐End SSD

Mid‐Range
SSD

RAID

Pr
oc
es
si
ng

Re
so
ur
ce
s

I/
O
 C
ac
he

 R
es
ou

rc
es

M
ai
n
St
or
ag
e

Re
so
ur
ce

Unikernel2 Unikernel3

Base Station (BS)
Host Base Adaptor (HBA)

Co
m
m
un

ic
at
io
n

Re
so
ur
ce
s

Hypervisor

Mid‐Range
SSD

Mid‐Range
SSD

Mid‐Range
SSD

Mid‐Range
SSD

Fig. 2: Resource management of hypervisor in a typical virtualized system.

memory, and storage resources to each unikernel regarding
predefined requirements and runtime demands of each VM.
The unikernels have different processing and storage demands.
Hence, an efficient resource allocation regarding the demands
of each unikernel and its priority is crucial. In this paper
our major focus is managing I/O cache resources (cache size
allocated to each unikernel).

III. PROBLEM DEFINITION

Here, the problem definition is to find the optimum cache
size for every unikernel to minimize the objective function.
We consider our objective a function of average latency and
frequency of accesses in each unikernel. In the objective
function, the frequency of accesses is multiplied by the average
latency, so the weight of each unikernel in our objective is
proportional to its data access rate. This way, we prioritize the
latency of unikernels with high data access rate. Accordingly,
we formulate the problem as:

min
NU

∑
i=1

AUi ×FUi (1)

s.t.
NU

∑
i=1

Ci, j ≤ S j, ∀ j ∈ ⟨1,Nl⟩ ,

where NU is the number of the unikernels, AUi is the average
latency of unikernel i, FUi is the access frequency of the
unikernel i, Nl is the number of cache memory layers, Ci, j is
the cache size allocated to the unikernel i from cache memory
layer j, , and S j is the total size of cache memory layer j. The
constraint in (1) assures that total cache allocated from each
memory layer is not greater than the size of that layer.

IV. PROPOSED STORAGE ARCHITECTURE AND
ALLOCATION

In this section, we present the proposed priority-aware block
data storage architecture for the edge cloud nodes serving the
autonomous vehicles. We first discuss two major shortcomings
of contemporary edge architectures when they are employed for
autonomous vehicles, and present the motivational results and
analysis that inspired the proposed architecture. Afterwards, we
elaborate the proposed storage architecture and its management
policy. Finally, we demonstrate the process of efficient cache
size allocation.

TABLE I: Read/Write latency and price per terrabyte of high-end DRAM [22], NVM
(Intel Optane Persistent Memory) [23, 24], SSD [24, 25], and HDD [24, 26].

Latency (ns) DRAM NVM (PCM) SSD (Flash) HDD
Read Lat. (ns) 7.9 70 25,000 5,000,000
Write Lat. (ns) 7.9 500 200,000 5,000,000
Price ($/TB) 41,152 11,176 3,200 693

A. I/O cache challenges in edge nodes serving autonomous
vehicles

1) Performance gap between cache layers: Previous I/O
cache architectures for virtualized platforms typically use one
or two levels of cache, with combinations such as DRAM-
SSD and DRAM-NVM [17–21]. However, reducing the latency
gap between cache layers can benefit performance, motivating
us to propose a novel I/O cache architecture. Table I shows
the latency and cost of high-end DRAM [22], NVM (Intel
Optane Persistent Memory [23, 24]), SSD (Intel Optane SSD
900p [24, 25]), and HDD [24, 26] available in the market.
In the two-layer cache of DRAM-SSD, there is more than
3,000X difference between the read latency of DRAM and
SSD, while in the DRAM-NVM architecture, this difference
reduces to 9X. Meantime, in DRAM-NVM cache architecture
we observe a large read latency difference of 70,000X between
NVM and HDD, while this difference is 200X between SSD
and HDD. By architecting an efficient three-layer cache built
upon DRAM, NVM, and SSD, the maximum read latency
difference between two successive cache layers can be reduced
down to 357X (between NVM and SSD). To better demonstrate
the benefits of three-layer cache architecture, we compare the
performance of DRAM-NVM, DRAM-SSD, and DRAM-NVM-
SSD caches for a fixed hardware cost. To reduce the cases,
we assume fixed DRAM and HDD budget and consider the
three budget cases for NVM and SSD: a) all budget for NVM
(DRAM-NVM cache), b) all budget for SSD (DRAM-SSD
cache), c) half budget for NVM and half budget for SSD
(DRAM-NVM-SSD cache). Fig. 3 shows the average latency
for mentioned cache architectures for four mixed random
read/write (70/30) workloads with extremely low locality (with
Zipf 1.01 distribution), low locality (Zipf 1.05), medium locality
(Zipf 1.1), and high locality (Zipf 1.2). As Fig. 3 shows, all
four workloads benefit three layer cache architecture, while the
workload with high locality even shows a greater performance
gain, as the workloads with higher locality have a greater chance
of cache hit (having its request responded by the cache memory)
and benefit more from an efficient cache architecture, while in
workloads with very low locality, most of requests are finally
addressed by main storage subsystem and the improvements
in the cache memory architecture is of less effect.

2) Starvation of high-priority services: In edge nodes
serving autonomous vehicles, another shortcoming of existing
I/O cache architectures is the starvation of I/O cache resources
in high-priority applications, when traffic of edge node is
high. While in conventional edge computing applications, the
services have usually similar priorities and the objective of
storage architectures is reducing average latency of all services,
the inherent difference of autonomous vehicle applications

3

91.52 91.36 91.02 61.31 59.87 58.81
39.07 36.58 35.04

12.84 8.77 6.39

1.00

10.00

100.00

D
RA

M
‐S
SD

D
RA

M
‐N
VM

D
RA

M
‐N
VM

‐S
SD

D
RA

M
‐S
SD

D
RA

M
‐N
VM

D
RA

M
‐N
VM

‐S
SD

D
RA

M
‐S
SD

D
RA

M
‐N
VM

D
RA

M
‐N
VM

‐S
SD

D
RA

M
‐S
SD

D
RA

M
‐N
VM

D
RA

M
‐N
VM

‐S
SD

Low Locality (Zipf
1.01)

Normal Locality
(Zipf 1.05)

High Locality
(Zipf 1.1)

Very High Locality
(Zipf 1.2)

Av
er
ag
e
La
te
nc
y
(u
se
s)

Fig. 3: Comparison of average latency in DRAM-SSD, DRAM-NVM, and DRAM-NVM-
SSD cache architectures, considering equivalent cache memory cost.

t0

NVM

SSD

B
(Low

Priority)

Time
Access
NVM
SSD

A B A A B
hit miss miss hit miss

miss hit hit

t1 t2

A
(High

Priority)

t3

B
(Low

Priority)

t4

A
(High

Priority)

A
(High

Priority)

B
(Low

Priority)

A
(High

Priority)

A
(High

Priority)

B
(Low

Priority)

(a) Conventional cache

t0

NVM

SSD

B
(Low

Priority)

Time
Access
NVM
SSD

A B A A B
hit miss hit hit miss

miss hit

t1 t2 t3

A
(High

Priority)

t4

A
(High

Priority)

A
(High

Priority)

A
(High

Priority)

B
(Low

Priority)

B
(Low

Priority)

B
(Low

Priority)

A
(High

Priority)

(b) Priority cache
Fig. 4: Cache memory thrashing problem in conventional edge architectures

in having a combination of time-critical and normal services
mandates a caching mechanism aware of service priority. To
have a better illustration, Fig. 4 shows a simple example how
the conventional cache architectures that do not consider the
priority of services encounter cache thrashing2 and reduce the
performance of cache memory. As shown in Fig. 4a, at time
t0, t2, and t3, the high-priority block A is requested. However,
at time t1, a request for low-priority block B makes the cache
manager to evict block A from NVM to SSD, resulting an
NVM cache miss of block A at time t2. After requesting block
A at time t2, block A is promoted again to NVM and replaces
block B, resulting another extra write to NVM and another
extra write to SSD for evicting block B from NVM to SSD.
By requesting block B again at time t4, block B is promoted
to NVM and block A is evicted again from NVM to SSD. In
this case study, the accesses to the cache impose a) an extra
NVM cache miss, b) three extra writes to NVM, and c) two
extra write operations to SSD, compared to the case we forbid
writing low-priority requests into NVM (shown in Fig. 4b.)

In summary, we observed that the performance gap between
cache layers results in a huge latency increase in conventional
two-level I/O cache architectures, and, concluded that emerging
non-volatile memories can fill this gap by providing a latency
more near to DRAM when used as a cache layer between
SSD and DRAM. We also observed that in existing cache
architectures, high-priority services are susceptible to starvation
of cache resources in heavy traffics, resulting in reduced hit
ratio3. An efficient I/O cache architecture for autonomous
vehicles should consider the priority of services and make the
best use of emerging memories to provide minimum storage

2Cache thrashing phenomenon refers to the excessive use of resources or
conflicts in the cache memory.

3Hit ratio is the number of requests responded by the cache memory, divided
by the number of all requests received by the cache memory.

Th
re
e‐
Le
ve
l I
/O

 C
ac
he

Mid‐Range
SSD

Mid‐Range
SSD

Mid‐Range
SSD

Mid‐Range
SSD

Mid‐Range
SSD

M
ai
n
St
or
ag
e

Unikernel1 . . .

High End SSD

NVM

DRAM

Write‐Back

Write‐Back

Write

Read Only

**N
SC

Read

SC
 h
it

Ca
ch
e
M
is
s

Promote NSC

* Safety‐Critical ** Non Safety‐Critical

SC
 h
it

SC
 &
 N
SC

 h
it

Promote SC

Unikernel2 Unikernel3 UnikernelN
Hypervisor

Fig. 5: Write, read, and promotion mechanism in PADSA. SC: Safety-Critical, NSC: Non
Safety-Critical.

latency to the time- and safety-critical services. In the next
section, we propose our architecture addressing the mentioned
issues.

B. Proposed Cache Architecture

The block I/O cache architecture, PADSA, is outlined in
Fig. 5. We propose a three-layer cache architecture composed
of DRAM, NVM, and high-end SSDs4. In the main storage
subsystem, either of mid-range SSDs or high-end HDDs are
used, while in this work we consider employing mid-range
SSDs. As a volatile memory, DRAM cache is configured by
read-only5 policy to forbid data loss in the case of power
outages and system failures. In the proposed architecture,
DRAM cache is enabled only for safety-critical services
(unikernels) and disabled for other services. This way we
allocate larger DRAM cache resources to safety critical services
and achieve greater hit ratio. NVM cache resides under
DRAM level and is configured by write-back policy. Write-
back policy buffers both new read and write requests in
the cache memory and writes a dirty block back into the
storage subsystem, when the block is evicted from the cache.
The write-back policy is preferred over write-through, which
does not help the performance of write requests and only
improves read performance [19]6. Similar to DRAM cache,
NVM cache is dedicated to safety-critical services. Finally,
SSD cache is configured by write-back policy and is shared
between all services. We also consider Least Recently Used
(LRU) replacement policy for all three cache layers. In the
following, we describe how the proposed architecture manages
the incoming read and write requests at the block I/O layer.

4SSDs can have diverse performance characteristics, regarding their technol-
ogy and manufacturing quality, but high-end SSDs in the market can roughly
deliver 10x less latency and 10x more Input/Output Per Second (IOPS) and
bandwidth compared to mid-range SSDs.

5In read-only policy, the cache memory is used only for promotion from
either lower cache memory hierarchies or main storage, to speed up further
read requests. Read-only cache does not keep any write-pending data, as the
true data copy is available in the lower cache hierarchies or main storage.

6In the write-through policy, write requests are directly sent to either main
storage or lower cache hierarchy and the write acknowledgment is sent when
writing to the main storage (or lower cache hierarchy) is accomplished. This
policy is usually used in volatile cache memories, where the cache memory is
prone to data-loss in the case of power outages or system failures.

4

We also describe the cache eviction and promotion mechanism
in the proposed architecture.

1) Write Requests: Upon receiving a new write request
of a high-priority service, the block is written on the NVM
level, as shown in Fig. 5. In the case of normal services, the
block is written on SSD level. This mechanism provides lower
write latency to high-priority services. Moreover, the future
read requests belonging high-priority services will have more
change to be addressed by NVM. Per write operation, cache
metadata is updated and the other samples of written data
in other cache levels (if any) are invalidated to assure cache
coherency, despite the priority of service.

2) Read Requests: Upon receiving a read requests for a
high-priority service, the content of cache memory levels is
checked from DRAM layer. In the case of cache miss, NVM
and SSD layers are respectively checked. In the case of miss,
data is finally fetched from the storage subsystem.

3) Promotion: Upon a read request, in the case of high-
priority services, the requested data is promoted to the DRAM
layer to be accessed by a low latency for the next possible
requests. In the case of normal services, only if cache miss
happens (in which data is fetched from the storage subsystem),
the data is promoted to SSD cache layer. Here, both DRAM
and NVM layers are dedicated to high-priority services to
increase their hit ratio.

4) Eviction: Eviction logic of each cache layer manages to
provide empty cache space for future writes/promotions, when
the cache is full. We consider Least Recently Used (LRU)
replacement policy for all three cache layers, to select the
victim cache block and evict it from the cache memory. In the
case of DRAM cache, the eviction logic selects the victim block
and simply removes its data and metadata. In this case, no
write-back to NVM layer is needed, as DRAM layer only keeps
clean data whose copy exists in either lower cache memory
level or storage subsystem. In the case of NVM cache, the
eviction logic selects the victim block and checks its dirty
status. If the block is dirty, it is written back to the SSD layer.
Otherwise, if the block is clean, the eviction logic removes the
data and metadata of the victim block. Similarly, in the case
of SSD cache, the dirty victim blocks are written back to the
storage subsystem and the clean blocks are removed.
C. Efficient Cache Size Allocation

Our proposed architecture dynamically manages cache
resources allocated to each unikernel during runtime and finds
the optimum cache resource allocation regarding the recent
workload behaviour. We consider our objective a function of
average latency and frequency of accesses in each unikernel.
Average latency AUi of the i-th unikernel in the hierarchical
cache is a function of requests filtered in each cache hierarchy
determined by cache hit ratio [27], i.e., AUi is calculated as [27]:

AUi =

LrD +(1−HDi)×

(
LrN +

((
1−HNi

)
×

LrS +
(
(1−HSi)×LrZ

)))
, Ui ⊂US,

LrS +(1−HSi)×LrZ , Ui ̸⊂US,
(2)

where U is the set of unikernels corresponding to the au-
tonomous vehicles served by the edge node, US ⊂U is the set
of safety-critical unikernels, HDi , HNi , and HSi are the hit ratio
of DRAM cache, NVM cache, and SSD cache, respectively,
allocated to the unikernel i, and LrD , LrN , LrS , and LrZ are
the expected read latency of DRAM cache, NVM cache, SSD
cache, and storage subsystem, respectively.

We proceed further to find the optimum cache resource
allocation that minimizes the average latency. During runtime,
we monitor storage accesses and in specific periods, we estimate
efficient cache and reallocate the cache resources (if different
from the previous allocation). The average latency is a function
of cache hit ratio. The hit ratio of every cache level is calculated
by Miss Ratio Curves (MRC) [21, 28] that plots the cache miss
ratio as a function of cache size by analysing the stack distance7

when the cache memory uses LRU replacement policy. The
MRCs are already available for some known distributions such
as Zipf distribution. However, as the workload of autonomous
vehicles does not resemble the conventional workloads, in the
proposed architecture, the MRCs are constructed in specific
runtime periods.

V. PERFORMANCE ANALYSIS
In this section, we first present the experimental setup.

Afterwards, we demonstrate how the proposed storage cache
architecture improves the performance of the edge node in
terms of the average latency, the cache hit ratio, and endurance
compared to the state-of-the-art.
A. Experimental Setup

Fig. 6 shows the overview of our experiment flow. To
evaluate the proposed architecture, we use a cache simulator
that post-processes the real block-layer traces of the edge
node serving the autonomous vehicles. The experiments are
conducted on a Linux Ubuntu server distribution using a
Supermicro server with X10DRL-i motherboard, 16 core Intel
(R) Xeon (R) E5-2620 CPU, and 128GB RAM. We capture
highway tracks data from highD dataset [29]. The number of
vehicles connected to the edge node varies over time and the
number of vehicles connected as well as the duration of the
connection of the vehicle to the edge node is derived from the
highD trajectory metadata [29]. We further consider running
representative services for each vehicle, while each individual
service runs as a single unikernel. The latencies of DRAM,
NVM, SSD, and HDD are captured from commercial products,
as detailed in Table I.

We use four different representative workloads for the
vehicles as summarized in Table II. These workloads include
a combination of four basic services S1-S4 of the autonomous
vehicles. The basic services are generated using FIO bench-
marking tool [30]. The characteristics of the storage traces
associated to each service is summarized in Table III. S1
represents collision avoidance workload that is considered as a

7Stack distance of a memory address, also known as reuse distance, is the
number of unique references to other memory addresses before a successive
access to the same memory address. In a cache memory with LRU replacement
policy, when cache size is K +1, all memory addresses with stack distance of
K and below have a cache hit.

5

•Synthesize
Connected
Vehicle Services

•Use FIO

Generate
Workload

Linux Ubuntu
Server

Running
Workloads Blktrace

Collect
Storage
Traces

•3‐layer cache
simulator

•Developed in
Python

Simulate
Cache

Fig. 6: Experiment flow

high-priority and real-time characteristics. This workload has
combination of small read/writes (70%/30%) with relatively
high temporal locality (achieved by Zipf 1.2 distribution). S2
represents sensing data upload from the autonomous vehicle to
the edge node. This service is of a normal (medium) priority and
generates sequential big writes in the edge node. S3 represents
map and software update sent from the edge node to the
autonomous vehicles. Also, this service is of a normal priority,
but generates sequential big read requests in the edge node.
Finally, S4 represents any other autonomous vehicle services
with normal priority and with random distribution of requests.
The storage block accesses for each service are collected using
Linux blktrace tool [31].

Our proposed architecture is compared to a state-of-the-
art storage I/O cache architecture for virtualized platforms,
ETICA [19], referred in the results as baseline. The ETICA [19]
proposes a two-level cache memory of DRAM-SSD for vir-
tualized platforms and proposes considering Policy-Optimized
Reuse Distance of requests, rather than conventional stack
distance to calculate the efficient cache size for every virtual
machine. This method monitors the workload behaviour and
periodically adjusts the cache size of virtual machines during
runtime, based on access history. To have a fair comparison,
we also consider a three-layer DRAM-NVM-SSD cache in the
evaluation of baseline method by extending the ETICA [19]
from DRAM-SSD to DRAM-NVM-SSD architecture.

To evaluate our proposed architecture, we simulate the 3-
level cache by post-processing the collected block accesses and
considering simultaneously running services for vehicles in the
sight of edge node. We report three metrics of average latency,
hit ratio, and endurance in this section, defined as follows:

Average Latency: The aggregation of average latency
achieved by each service multiplied to the access frequency of
that service, as shown in 1.

Hit Ratio: The number of requests responded by the cache
memory, divided by the number of all requests received by the
cache memory.

Endurance: Both SSDs and NVMs fail after a limited
number of write operations, while this limit depends on
the technology, quality, and size of device. Endurance of a
SSD/NVM is proportional to the number of writes committed
to SSD/NVM. Here we report the normalized number of block
writes (lower value is better) as a representative for SSD/NVM
endurance. By considering normalized values, the endurance
is comparable regardless of technology and size.

B. Average Latency and Cache Hit Ratio
Fig. 7 shows the average latency of the proposed architec-

ture compared to the state-of-the-art [19] block I/O caching
mechanism, shown in figures as a ”baseline”. The results are
reported for ”high-priority” services, ”normal-priority” services,
and for ”all” services including both normal- and high-priority

TABLE II: Combination of services types in examined workloads. Each workload is
constructed by concurrently running one or more samples of each service type. This table
shows the number of samples from each service type appeared in each workload.

Workload
S1: Collision

Avoidance
S2: Sensing
Data Upload

S3: Map/Update
Download S4: Other

A 1x 1x 1x -
B 1x 2x 2x -
C 1x 3x 3x -
D 1x 1x 1x 1x

TABLE III: Characteristics of autonomous vehicle service types
S1: Collision

Avoidance
S2: Sensing
Data Upload

S3: Map/Update
Download

S4:
Other

Read/Write % 70/30 0/100 100/0 70/30
Access Pattern Zipf 1.2 Sequential Sequential Zipf 1.2

Priority Real-time Normal Normal Normal

services. The proposed architecture improves average latency
by up to 70%, this improvement is observed for workload C.
For high-priority services, the smallest improvement of 47%
is reached for workload A, while we observe a relatively
high improvement of 61% and 70%, compared to the baseline
algorithm for workload B and workload C, respectively. This
observation is justified by the fact that in workload B, the
number of S2 and S3 services is twice higher than in the
workload A. S2 and S3 services, respectively, have a sequential-
write and sequential-read nature with normal priority. Intensity
of these services in previous works that do not take the priority
into account can result in significant performance degradation.
We observe even a greater improvement in workload C due
to having the most intensity of S2 and S3 workloads (3x of
the workload A). In the case of workload D, we observe 53%
latency improvement in high-priority services, not as high as
improvement observed in workload B and workload C. This
observations is justified by comparably lower intensity of S2
(sensing data upload) and S3 (map/update download) service
types in workload D. S2 and S3 service types, due to their
sequential nature, have a very destructive impact on average
latency, as they pollute the cache memory by large data writes
and promotions, decreasing the chance of cache hit in high-
priority services. While workload D contains 1X of S4 (other
random type services with normal priority), it suffers less from
cache pollution compared to workload B and workload C,
as S4 contains small request sizes with less pollution impact
(compared to large request sizes in S2 and S3).

Looking at the normal-priority services, we observe neither
performance improvement nor performance degradation in
the case of workload A, workload B, and workload C. This
observation is justified by the nature of normal-priority services,
S2 and S3, appeared in the three mentioned workloads. S2
and S3 respectively have sequential write and sequential read
nature with zero locality. Hence, the read requests does not
benefit the residence of data in the cache memory, as there is
zero chance of re-reference to a block address. Accordingly,
all read requests are responded by accessing the main storage
subsystem, and the cache memory is of no effect in both
proposed and baseline architectures. The only exception is
workload D having a sample of service S4 with random
read/write nature and normal priority. This service, as shown
in Table III, is characterized by high locality (by using Zipf 1.2
distribution) and can benefit much from cache memory. Hence,

6

1
1
0
8

3
8
3

5
0
0
0

1
6
6
0

4
1
6

5
0
0
0

2
0
7
4

4
3
9

5
0
0
0

1
00
2

4
4
9 1
4
6
8

1
2
6
0

5
6
4

5
0
0
0

1
8
4
6

6
7
1

5
0
0
0

2
27
0

7
45

5
0
0
0

1
0
5
3

6
8
6 1
3
6
3

0

1000

2000

3000

4000

5000

6000

A
ll

H
ig
h
 P
ri
o
ri
ty

N
o
rm

al
 P
ri
o
ri
ty A
ll

H
ig
h
 P
ri
o
ri
ty

N
o
rm

al
 P
ri
o
ri
ty A
ll

H
ig
h
 P
ri
o
ri
ty

N
o
rm

al
 P
ri
o
ri
ty A
ll

H
ig
h
 P
ri
o
ri
ty

N
o
rm

al
 P
ri
o
ri
ty

Workload_A Workload_B Workload_C Workload_D

A
ve
ra
ge
 L
at
en

cy
 (
u
se
c)

Proposed

Baseline

Fig. 7: Average latency for autonomous vehicle services.

0
.7
8

0
.9
2

0
.6
7 0
.9
2

0
.5
9 0

.9
1

0
.8
0

0
.9
1

0
.7
5

0
.8
9

0
.6
3 0
.8
7

0
.5
5

0
.8
5

0
.7
9

0
.8
6

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

A
ll

H
ig
h
 P
ri
o
ri
ty

N
o
rm

al
 P
ri
o
ri
ty A
ll

H
ig
h
 P
ri
o
ri
ty

N
o
rm

al
 P
ri
o
ri
ty A
ll

H
ig
h
 P
ri
o
ri
ty

N
o
rm

al
 P
ri
o
ri
ty A
ll

H
ig
h
 P
ri
o
ri
ty

Workload_A Workload_B Workload_C Workload_D

H
it
 R
at
io
 (
n
o
 u
n
it
)

Proposed

Baseline

Fig. 8: Cache hit ratio for all autonomous vehicle services and high-priority services.

by dedicating DRAM and NVM cache to high-priority services,
we could predict performance degradation in service S4. As
shown in Fig. 7, our architecture results in 7.7% performance
degradation of normal-priority services in workload D.

As shown in Fig. 7, the proposed architecture also improves
average latency for all services (aggregation of normal- and
high-priority services) for all examined workloads. However,
the average latency improvement for all services is less than
improvement observed in high-priority services. This result
is expectable, as prioritizing time- and safety-critical services
in the proposed architecture has a negative impact on the
average latency of normal services. This negative impact
on normal-priority services can affect the overall average
latency of all services. In our experiments, however, the
impact of performance reduction in normal services is less
than improvement achieved for high-priority services, resulting
an overall average latency improvement for all workloads.
In conclusion, we observe average latency improvement for
high-priority services in all examined workloads, while the
improvement is greater in the workloads with high intensity
of normal-priority services.

Fig. 8 shows the overall cache hit ratio and the hit ratio
of high-priority services. As the figure shows, the proposed
architecture improves cache hit ratio compared to the base-
line by 6%, in average, for the high-priority services. This
improvement is translated to, in average, 6% less accesses to
the storage subsystem and, consequently, this contributes to
latency reduction reported in Fig. 7. By dedicating DRAM
and NVM to high-priority services, the proposed architecture
also increases the percentage of the read accesses responded
in DRAM and NVM cache layers, respectively by 8% and
7%, as shown in Fig. 9. The increase in high-priority accesses
responded by two top cache layers, translates to less number
of accesses to the SSD and main storage, which both have
relatively higher latency compared to DRAM and NVM.

0%

20%

40%

60%

80%

100%

Proposed Baseline Proposed Baseline Proposed Baseline Proposed Baseline

Workload_A Workload_B Workload_C Workload_D
DRAM NVM SSD Storage

Fig. 9: Read distribution in different levels of cache memory and main storage for
high-priority services. This chart shows what percentage of read requests are responded
by DRAM, NVM, SSD, and main storage.

0
.6
9

0
.4
7

0
.5
3

0
.3
6

0
.4
3

0
.3
2

0
.3
8

0
.8
2

0.00

0.20

0.40

0.60

0.80

1.00

NVM SSD NVM SSD NVM SSD NVM SSD

Workload_A Workload_B Workload_C Workload_DEn
d
u
ra
n
ce
 (
N
o
rm

al
iz
ed

)

Proposed

Baseline

Fig. 10: NVM and SSD endurance for proposed architecture and baseline, normalized to
baseline.

C. Endurance
Fig 10 shows the endurance of NVM and SSD cache

layers, normalized to the baseline, and shows, the proposed
architecture improves the endurance by up to 315%. We
define the endurance via the number of block writes (lower
value is better) and normalize the values by dividing the
raw value of the proposed method into the baseline, for
each individual experiment. Improving NVM endurance is
expected, as the proposed architecture dedicates DRAM and
NVM cache to the high-priority services, reducing the number
of accesses to both DRAM and NVM. Moreover, less accesses
to DRAM reduces the number of evictions from DRAM to
NVM, further improving the NVM endurance. While in the
proposed architecture, all write requests of normal-priority
services are directed to the SSD cache, we still observe
endurance improvement even in the SSD layer. This observation
is explained by the large number of evictions from NVM to
SSD layer in the baseline method. In write-intensive workloads,
write requests of normal-priority services result in extra writes
into the NVM layer and consequently, extra evictions to SSD.

VI. CONCLUSION
In this paper, we proposed a novel three-level data storage

cache architecture for the edge nodes serving the autonomous
vehicles. The proposed architecture prioritizes time- and safety-
critical services and allocates the two top-level caches of
DRAM and NVM to these services. The architecture further
evaluates optimum cache space allocated to each service to
minimize the average latency. Our experiment results show
that the proposed architecture improves average latency in
safety-critical applications by 47% to 70% compared to the
state-of-the-art work. Moreover, the cache hit ratio is increased
by up to 8% and the endurance of NVM and SSD devices is
extended by up to 315% thanks to the proposed efficient cache
allocation. In the future, an impact of edge nodes’ mobility
should be investigated in terms of balancing storage traffic and
network latency, achieving the optimum quality of service.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computing—a key technology towards 5g,”
ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

7

[2] P. Mach and Z. Becvar, “Mobile edge computing: A
survey on architecture and computation offloading,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 3, pp.
1628–1656, 2017.

[3] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach,
and F. Giust, “Mobile-edge computing architecture: The
role of mec in the internet of things,” IEEE Consumer
Electronics Magazine, vol. 5, no. 4, pp. 84–91, 2016.

[4] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Dier-
meyer, “Survey on scenario-based safety assessment of
automated vehicles,” IEEE access, vol. 8, pp. 87 456–
87 477, 2020.

[5] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi,
“Edge computing for autonomous driving: Opportunities
and challenges,” Proceedings of the IEEE, vol. 107, no. 8,
pp. 1697–1716, 2019.

[6] M. Kishani, M. Tahoori, and H. Asadi, “Dependability
analysis of data storage systems in presence of soft errors,”
IEEE Trans. Rel., vol. 68, no. 1, pp. 201–215, 2019.

[7] M. Kishani and H. Asadi, “Modeling impact of human
errors on the data unavailability and data loss of storage
systems,” IEEE Trans. Rel., vol. 67, no. 3, pp. 1111–1127,
2018.

[8] M. Kishani, S. Ahmadian, and H. Asadi, “A modeling
framework for reliability of erasure codes in ssd arrays,”
IEEE Trans. Comput., vol. 69, no. 5, pp. 649–665, 2020.

[9] M. Kishani, R. Eftekhari, and H. Asadi, “Evaluating
impact of human errors on the availability of data storage
systems,” in Design, Automation & Test in Europe (DATE).
IEEE, 2017, pp. 314–317.

[10] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila,
and T. Taleb, “Survey on multi-access edge computing
for internet of things realization,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 4, pp. 2961–2991, 2018.

[11] (2021) Automotive edge computing consor-
tium: General principle and vision. [Online].
Available: https://aecc.org/wp-content/uploads/2020/07/
General Principle and Vision January 31 2020.pdf

[12] J. A. Dias, J. J. Rodrigues, N. Kumar, and K. Saleem,
“Cooperation strategies for vehicular delay-tolerant net-
works,” IEEE Communications Magazine, vol. 53, no. 12,
pp. 88–94, 2015.

[13] D. Grewe, M. Wagner, M. Arumaithurai, I. Psaras, and
D. Kutscher, “Information-centric mobile edge computing
for connected vehicle environments: Challenges and
research directions,” in Proceedings of the Workshop on
Mobile Edge Communications, 2017, pp. 7–12.

[14] I. Labriji, F. Meneghello, D. Cecchinato, S. Sesia, E. Per-
raud, E. C. Strinati, and M. Rossi, “Mobility aware and
dynamic migration of mec services for the internet of
vehicles,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 1, pp. 570–584, 2021.

[15] J. Plachy, Z. Becvar, E. C. Strinati, and N. di Pietro,
“Dynamic allocation of computing and communication
resources in multi-access edge computing for mobile
users,” IEEE Trans. Netw. Service Manag., 2021.

[16] F. Zhou, R. Q. Hu, Z. Li, and Y. Wang, “Mobile edge
computing in unmanned aerial vehicle networks,” IEEE
Wireless Communications, vol. 27, no. 1, pp. 140–146,
2020.

[17] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and
D. Liu, “vCacheShare: Automated server flash cache
space management in a virtualization environment,” in
USENIX Annual Technical Conference, 2014.

[18] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and
M. Zhao, “Cloudcache: On-demand flash cache man-
agement for cloud computing,” in File and Storage
Technologies (FAST), 2016, pp. 355–369.

[19] S. Ahmadian, R. Salkhordeh, O. Mutlu, and H. Asadi,
“Etica: efficient two-level i/o caching architecture for
virtualized platforms,” IEEE Trans. Parallel Distrib. Syst.,
vol. 32, no. 10, pp. 2415–2433, 2021.

[20] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou,
“S-cave: Effective ssd caching to improve virtual machine
storage performance,” in International conference on
Parallel architectures and compilation techniques. IEEE,
2013, pp. 103–112.

[21] R. Koller, A. J. Mashtizadeh, and R. Rangaswami,
“Centaur: Host-side SSD caching for storage performance
control,” in International Conference on Autonomic Com-
puting (ICAC), 2015.

[22] (2021) Column address strobe latency. [Online]. Available:
https://en.wikipedia.org/wiki/CAS latency

[23] (2021) Intel optane persistent memory.
[Online]. Available: https://www.intel.com/
content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html

[24] (2021) 3d xpoint: A guide to the future of storage-class
memory. [Online]. Available: https://www.tomshardware.
com/reviews/3d-xpoint-guide,4747-9.html

[25] (2021) Intel optane ssd 900p. [Online]. Available:
https://ark.intel.com

[26] (2021) Seagate enterprise performance 15k hdd. [Online].
Available: https://www.seagate.com

[27] P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis
of web caching architectures: Hierarchical and distributed
caching,” IEEE/ACM Trans. Netw., vol. 9, no. 4, pp. 404–
418, 2001.

[28] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation techniques for storage hierarchies,” IBM
Systems journal), 1970.

[29] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The
highd dataset: A drone dataset of naturalistic vehicle
trajectories on german highways for validation of highly
automated driving systems,” in International Conference
on Intelligent Transportation Systems (ITSC), 2018.

[30] (2021) Fio: Flexible I/O tester synthetic benchmark.
[Online]. Available: https://github.com/axboe/fio

[31] (2021) blktrace: A block layer I/O tracing tool. [Online].
Available: https://www.cse.unsw.edu.au/∼aaronc/iosched/
doc/blktrace.html

8

