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Erasure codes arewidely used in data storage systems to protect against disk failures. Employing erasure codes in
an array of Solid-State Drives (SSDs) in storage systems necessitates designers to revisit different characteristics
in comparison to Hard Disk Drives (HDDs), due to non-mechanical property of SSDs. One of the most important
characteristics of SSDs is their limitation on the number of Program/Erase (P/E) cycles. By taking into account
the characteristics of SSDs, this paper presents a comprehensive analysis to investigate the effects of three
well-known erasure codes on the endurance and performance of SSD-based disk subsystems. The three erasure
codes, i.e., Reed–Solomon, EVENODD, and RDP are implemented on the SSD-extension of DiskSim simulator. The
results show that the endurance and performance of Reed–Solomon are on average 90% and 60% higher than
other erasure codes, respectively. Additionally, the three erasure codes are compared in terms of different stripe
unit sizes, number of disks, and various request sizes. The results show that configuring a disk array with a 4 KB
stripe unit size will improve the endurance and performance of EVENODD by 1.8× and 2.9×, respectively,
as compared to 128 KB stripe unit size.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decade, Hard Disk Drives (HDDs) have been gradually
replaced by flash-based Solid-State Drives (SSDs) due to their higher
performance, lower power consumption, and higher shock resistance
as compared to HDDs. SSDs, however, suffer from a limited number
of Program/Erase (P/E) cycles that can be applied to a block of flash
memory. The number of P/E cycles in a block of flash memory is
known as the write endurance of that block [1]. It has been reported
that the endurance of a block in flash memories used in mainstream
applications is lower than 104 cycles [2]. This means that the number
of P/E cycles in write-intensive applications significantly affects the
reliability of SSDs [2].

A commonly used scheme to enhance the reliability of HDD- and
SSD-based storage systems is employing erasure codes. These codes
are typically implemented in Redundant Array of Independent Disks
(RAID) [3]. Erasure codes are stored in disks, called parity disks, to
recover from failures occurring in data disks. Several erasure codes
have been presented in the literature to improve both reliability
[4–10] and performance of disk subsystems [11–13].

Due to non-mechanical characteristics of SSDs, the RAID arrays
employing SSDs exhibit different reliability and performance levels
d Chamazcoti),
(S.G. Miremadi),
as compared toHDD-based counterparts as follows: 1) Thewrite endur-
ance of flashmemories affects the aging of SSDswhile HDDs do not suf-
fer from this limitation [1]. 2) SSD-based RAID arrays can provide
improved performance as compared to HDD-based RAID arrays due to
not employing mechanical components in the SSD structure. Applying
erasure codes in SSDs and HDDs may change the figures of the write
endurance and performance. There has been no effort in the literature
to investigate the performance and endurance of different erasure
codes on SSD-based RAID arrays.

This paper presents a comprehensive analysis of comparing the
performance and endurance of different erasure codes applied in SSD-
based storage systems. The comparison is done with respect to some
characteristics of storage systems, such as the Stripe Unit Size (SUS)
and theNumber of Disks (NoD). Various real traces are run in the SSD ex-
tension of DiskSim simulator. The analysis in this study helps designers
to effectively configure storage systems to adapt an appropriate erasure
code for different applications. In particular, the contributions of this
work are two-fold:

First, the write endurance of SSDs as a main concern in SSD-based
storage systems is evaluated for various erasure codes. In the evalu-
ation, different erasure codes are compared in terms of Number of
Cleans (NoC) and Number of Writes (NoW). In the comparison, the
impact of different erasure codes on the endurance of system is stud-
ied. Second, the performance of different erasure codes is compared
in terms of the number of I/O operations per second. To this end, the
effect of different erasure codes on the number of I/O operations is
evaluated by reporting the Average Response Time (ART) of the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2015.07.046&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2015.07.046
mailto:alinezhad@ce.sharif.edu
mailto:delavari@ce.sharif.edu
mailto:miremadi@sharif.edu
mailto:asadi@sharif.edu
Journal logo
http://dx.doi.org/10.1016/j.microrel.2015.07.046
http://www.sciencedirect.com/science/journal/


2454 S. Alinezhad Chamazcoti et al. / Microelectronics Reliability 55 (2015) 2453–2467
requests. It is notable tomention that this paper presents afirst study on
the performance and endurance of different erasure codes applied in
SSD-based storage systems. Although the use of erasure codes in stor-
age systems is so common to provide reliability, applying these codes
in SSD-based storage systems brings some reliability concerns such as
endurance limit. The effect of erasure codes on the endurance of SSD-
based storage systems is investigated in this paper, and also the config-
urations of disk subsystems such as the number of disks in a RAID array
and the size of stripe unit are evaluated for the target erasure codes. The
results of our evaluation will help storage vendors to choose the best
erasure code with optimal configuration in storage systems.

Several observations are concluded from the proposed analysis
as follows:

1) Unlike using large size of stripe unit in storage venders such as IBM
and Hitachi (i.e., 256 KB in IBM [15] and 512 KB in Hitachi [16]),
the best performance for erasure codes in SSD-based system is
achieved by configuring the array to employ small SUS.

2) Considering the structure of erasure codes, Reed–Solomon and
EVENODD provide the best and the worst performance among the
under study erasure codes, respectively.

3) The impact ofmodifying SUS on the performance of different erasure
codes is more significant than modifying NoD.

4) The variation of performance for different erasure codes in various
system configurations has similar trend to the variation of endurance.

This paper extends our previous work presented in [14] in
two-folds: a) as opposed to our previous work, where only the num-
ber of write cycles is explored, this work investigates the endurance
of RAID arrays in the presence of erasure codes in terms of both the
number of write cycles and the number of block erases. To accurately
model the number of block erases, we have implemented the target
erasure codes in DiskSim. b) In our previous work, only endurance
of erasure codes has been studied while this paper investigates
both endurance and performance of the target erasure codes in
SSD-based storage systems.

The remainder of this paper is organized as follows: In Section 2,
a background of SSD-based storage systems and a brief overview of
erasure codes are presented. Section 3 reports an analytical comparison
of different erasure codes applying in SSD-based storage systems. The
experimental results of comparing the endurance and performance of
target erasure codes are presented in Section 4. Next, Section 5 reviews
the previous studies on endurance and performance of erasure codes.
Finally, the paper is concluded in Section 6.

2. Background

2.1. SSD-based storage systems

The use of SSD technology is currently more attractive in storage
systems due to its higher performance and lower power consumption,
as compared to the HDD technology [1]. Besides the benefit of SSDs,
they suffer from inherent characteristics such as erase-before-write prob-
lem and inherent limitation on endurance. SSDs endure a limited number
of P/E cycles and after that the stored data is not reliable anymore.

Storage systems based on either SSD or HDD technologies, are
protected against faults by two common approaches called complete
replication [17,18] and encoding method [4–10]. The complete replica-
tion causes extremely high storage overhead, while the encoding
methods provide redundancy with lower storage overhead. Erasure
codes are a kind of encoding method implemented in RAID [3]; these
codes are stored in the parity disks to recover possible failures in data
disks. Although the first aim of designing these codes was enhancing
reliability in storage systems, further research on design and implemen-
tation of these codes was with the aims such as improved performance
or faster recovery.
2.2. Overview of erasure codes

Erasure codes are kind of Forward Error Correction (FEC) which
protect data in storage systems against disk failures. In these codes,
nblocks of data are encoded intom+nblocks of data andparity (mparity
blocks and n data blocks), tolerating up to m failed blocks. These
codes are typically applied in RAID6 n + 2, which can tolerate
concurrent failures of any two data or parity blocks. Several erasure
codes have been proposed in literatures based on RAID6, including
Reed–Solomon code [4], Cauchy Reed–Solomon code [11], EVENODD
code [5], RDP code [12], Blaum–Roth code [6], Liberation code [7], Cyclic
code [8], HDP-Code [13], X-Code [9], and P-Code [10]. The erasure codes
can be classified into two main classes: 1) non-XOR based and 2) XOR
based. Among the mentioned erasure codes, in this paper, we choose
two sample codes from each class, namely “Reed–Solomon” and
“EVENODD”. These erasure codes are the most popular and applicable
codes in its class. We also choose RDP as an improved version of
EVENODD in terms of XOR complexity, as the last target erasure code.
RDP code is chosen to investigate whether the improvement of the
code in terms of computation complexity will improve the endurance
or not. These codes are discussed briefly in the following subsections.
The analysis provided in this paper can be further applied to other
erasure codes as well.

2.2.1. Reed–Solomon
Reed–Solomon code [11] is the most popular and applicable non-

XOR based erasure code, which has widely been used in communica-
tions and storage systems. The main advantage of this code is its
scalability to recover up to m failed blocks including data and parity
blocks (m greater or equal to 2). This code imposes complex computa-
tion in both encoding and decoding operations due to usage of Galois
Field arithmetic during coding operation. Due to complicated opera-
tions used in Galois Field arithmetic, table-lookup is used for required
operations to decrease computation intensity. Complex computation is
the major drawback of Reed–Solomon, which prevents it from widely
being used in enterprise applications. The layout of Reed–Solomon
encoding is illustrated in Fig. 1.

2.2.2. EVENODD
EVENODD code [5] is an XOR-based array codewhich is employed in

storage systems, reliable communication, and dynamic load balancing
applications. The computational complexity of EVENODD is much
lower than the Reed–Solomon code due to the use of XOR operations
in its computation.

This code is defined as a (p− 1)× (p+2)matrix, where p is a prime
number. Data and parities are stored in the p first blocks (columns), and
the last two blocks, respectively. This codeuses twoparity disks, and can
tolerate up to two disk failures. The row and diagonal parity disks are
constructed by applyingXORoperation, over data in a rowanddiagonal,
respectively. In this code, an adjusting factor (S) is computed by XORing
data blocks in themain diagonal. This factor is used for computing diag-
onal parities. The construction of horizontal and diagonal encoding of
this code is illustrated in Fig. 2.a and b, respectively. The cells with the
same shape share the same parity. Data cells are placed horizontally in
the same row in the horizontal layout, and the corresponding parity is
placed in the same row. For example, in Fig. 2.a, cells with the “circle”
shape located in (4,0), (4,1), (4,2), (4,3), (4,4), and (4,5) entries share
the row parity unit in (4,6). In the diagonal layout, data cells which
are placed in the same diagonal share the common diagonal parity.
For example, the circle shape placed in (0,4), (1,3), (2,2), (3,2), and
(4,0) entries share the shape placed in (4,7).

2.2.3. RDP
In Row-Diagonal Parity (RDP) code [12], a (p− 1)× (p+1)matrix is

defined where p is a prime number. Data is stored in the p − 1 first
blocks, while parities are stored in the two last blocks. RDP is the



Fig. 1. Reed–Solomon encoding layout [14].
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improved version of EVENODD in terms of computational complexity as
it removes the calculation of the adjusting factor S, which is used in con-
structing diagonal parity. The RDP layout is illustrated in Fig. 3.

Among several proposed erasure codes, we just analyze and
compare the abovementioned codes (i.e., Reed–Solomon, EVENODD,
and RDP) with respect to the configuration of storage system and
workload characteristics such as the number of disks, the size of stripe
units, and the size of updated requests. The analysis is performed by
using trace-driven simulation in the following sections.

2.3. Terminology

A brief description about the conceptual terms and abbreviation of
this study is given in Fig. 4 and Table 1, respectively. As shown in
Fig. 4, stripe unit size is the granularity of data distribution over disks.
Each data unit in this figure is labeled by a 2-bit digit, which indicates
the corresponding row and column (e.g., unit 03 belongs to row
#0 and column #3).

Stripe Unit Size (SUS): It is the smallest access unit of disk in a RAID
array bywhich any access to the stored data such as updating, decoding,
and encoding procedures is scaled. For simplicity, the term ‘unit’ is used
as an alternative to stripe unit in this paper.

Size of Request (SoR): This term indicates the length of request,
which is specified in the trace file. This size determines the number of
stripe units in the array that should be updated.

Number of Disks (NoD): This term refers to the number of data disks
used in a RAID array, excluding the parity disks.

Code Pattern: This term refers to the structure of erasure codes in
which the placement of data and parities in the array of disks are
specified. The encoding of erasure codes is a key factor in design
of code pattern. The code pattern of erasure codes under study are
depicted in Figs. 1, 2, and 3.
Fig. 2. Horizontal and diagonal layout of EVENODD code (p =
P should be a prime number, but for the sake of fair compariso
3. Analytical comparison of erasure codes

In this section, we first explain our definition of performance and
endurance of erasure codes in SSD-based RAID array. Then, we compare
the erasure codes employed in SSD-based RAID arrays in terms of
performance and endurance. Using SSDs in the configuration of RAID
array brings new concern in evaluating erasure codes. The specifications
of SSD and its limitations in the number of P/E cycles are the main
distinction between our study and other studies which have examined
erasure codes. The number of P/E cycles is the key factor in evaluating
the performance and endurance of different erasure codes. The code
pattern of erasure codes, i.e., the placement of data and parity in the
layout of code array, affects the number of P/E cycles committed to
the system by running applications. Additionally, the configuration of
the RAID array such as stripe unit size and the number of disks impose
different number of P/E cycles to the system. In this section, an analyti-
cal comparison on the performance and endurance of erasure codes is
conducted by considering the above-mentioned issues, i.e., the code
pattern of erasure codes and the configuration of RAID arrays.

3.1. Metrics of comparison

3.1.1. Performance
The performance metric used in the proposed analysis is defined

as an average response time to perform the incoming requests. The
computation complexity of erasure codes is, however, excluded in this
definition. The novelty of our work is to perform comparison of erasure
codes in SSD-based RAID arrays; thuswe just consider those parameters
thatmay be affected by the type of disk technology either SSDs or HDDs,
in our evaluation. It is evident that the computation complexity of
erasure codes is independent of the underlying disk technology, either
SSDs or HDDs.
61).
n across different erasure codes, here we set p equal to 6.

Image of Fig. 2


Fig. 3. Horizontal and diagonal layout of RDP code (p = 7) [13].
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The average response timeof different erasure codes is affected by IO
operations, i.e., read, write, and erase operations. Due to the character-
istics of SSDs, the erase time is almost one order of magnitude higher
than read and write operations. Thus, the effect of NoC on performance
is much higher than the other IO operations. Because of different code
patterns of erasure codes in encoding and decoding, different numbers
of I/O operations (i.e., read, write, and erase) would result in different
performance of erasure code. The performance comparison in this
paper is based on the I/O access performance, and the computation
complexity has not been included in the evaluation. The reason is that
the I/O operations are typically much more time-consuming than CPU
operations (i.e., encoding and decoding time). While a single encoding
or decoding can be accomplished in a CPU running at 2 GHz in order
of hundreds of nanoseconds (or less than one microsecond), a single I/
O operation typically takes from 100 microseconds to milliseconds. To
this end, the computation time can be neglected in comparison to the
I/O time.

A comparison on the computation complexity of target erasure
codes is shown in Table 2. Reed–Solomon requires the minimum XOR
operations for encoding; however, its decoding is the worst as
compared to the other erasure codes. Reed–Solomon also offers the
least complexity in updating while the other codes (EVENODD and
RDP) impose variant complexity depending on the starting address of
updating data blocks.
3.1.2. Endurance
In the proposed analysis, the Number of Cleans (NoCs) is used as a

metric for comparing the endurance efficiency of erasure codes. In this
analysis, we report the number of writes (NoWs) for each erasure
code providing a comparison between NoCs and NoWs.
Fig. 4. Definition of conceptual terms used in this study.
Due to the characteristics of SSDs, thewrite and erase operations are
performed on the granularity of page and block, respectively. Thus, by
writing several pages of a block (in sequential write), only one erase
operation should be performed. As a result, the number of writes is
greater than the number of cleans. On the other, when a few number
of pages of a block is written (trace with random size of request), the
number of cleans is almost equal to the number of writes committed
to the disks.

3.2. Analytical comparison

In this section, we analytically compare different erasure codes
in terms of NoW. Modifying data units would require updating the
corresponding parities (either row or diagonal parities). As such,
parities should be recomputed, and rewritten to the parity disks. Since
updating parities requires performing XOR calculation and I/O
operations, this increases the number of P/E cycles admitted to
system, affecting both system performance and endurance. The
effect of code pattern, request size, and stripe unit size on the
number of writes is evaluated as follows:

3.2.1. Impact of code pattern on NoW
The code pattern of erasure codes has the main impact on the

endurance of different erasure codes. The number of parities for each
data is determined in the code pattern. As shown in Fig. 1 through
Fig. 3, Reed–Solomon, EVENODD, and RDP have different code patterns
due to various encoding. The minimum dependency between data and
parities results in smaller number of updated parities for each updated
data unit. A comparison among different erasure codes for updating
one data unit and their corresponding updated parity units is shown
in Fig. 5. As can be concluded from this figure, Reed–Solomon imposes
the smaller number of updated parities for each data update. As a result,
one should expect higher endurance for Reed–Solomon in comparison
to EVENODD and RDP.

A code with higher dependency between data and parities requires
more XOR operations and more I/O operations to update the additional
Table 1
Abbreviation and its meaning.

Abbreviation Meaning

SoR Size of Request
NoD Number of Disks
SUS Stripe Unit Size
NoW Number of Writes
NoR Number of Reads
NoC Number of Cleans
ART Average Response Time
UD Updated Data in terms of stipe unit
UP Updated Parities (UP) = Updated Row Parity (URP) + Updated

Diagonal Parity (UDP).

Image of Fig. 3
Image of Fig. 4


Table 2
A comparison on the computation complexity of erasure codes (n + 2 disks,
i.e., n data + 2 parity disks).

Code Computation (n, m = 2)

Encode Decode Update

Reed–Solomon code O(mn) O(n3) O(m)
EVENODD code O(n2) O(n2) O(1)–O(n)
RDP code O(n2) O(n2) O(1)–O(n)

Table 3
Effect of SoR on NoW for P1 and P2.

Code SoR SRI SDI NoD SUS NoW

P1 P2 P

Reed–Solomon 4 KB X D0 4 + 2 4 KB 1 1 2
X D3 1 1 2

16 KB X D0 1 1 2
X D3 2 2 4

32 KB X D0 2 2 4
X D3 3 3 6

64 KB X X 4 4 8
EVENODD 4 KB R1 D0 5 + 2 4 KB 1 1 2

R1 D3 1 4 5
16 KB R1 D0 1 4 5

R1 D3 2 4 6
32 KB R1 D0 2 4 6

R1 D3 3 4 7
64 KB X X 4 4 8

RDP 4 KB R1 D0,D3 4 + 2 4 KB 1 1 2
R2 D0 1 2 3

16 KB R1 D0 1 4 5
R1 D3 2 4 6

32 KB R1 D0 2 4 6
R1 D3 3 4 7

64 KB X X 4 4 8
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parity units. The location of updated data units in the code pattern spec-
ifies which parity units should be updated. In Reed–Solomon, updating
one data unit would update just two parity units irrespective to the
place of the updated data. On the other hand, in EVENODD, the place
of updated data does not affect the number of updated parity units.
If the updated data is placed on the main diagonal, all the units of the
diagonal parity disk should be updated. As an example, for a 4 KB
write request, only one data unit should be updated. Depending on
the place of the updated data unit within the array and the type of
erasure codes, the number of updated parity units varies from one
unit to five units.

In Fig. 5, we have illustrated cases where the minimum and the
maximum number of parity updates can take place for the erasure
codes under study. In erasure codes, depending on the place of updated
data, the number of updated parity units is different. As a result, there
are the minimum and maximum numbers of updated parity units for
each erasure code. As shown in Fig. 5, Reed–Solomon only updates
two parity units for any arbitrary updated data unit in the minimum
and the maximum case. RDP in the minimum case updates just one
parity unit, but in the maximum case, three parity units should be
updated. EVENODD also updates two parity units in the minimum
case but in the maximum case, when data units are placed in the main
diagonal, five parity units should be updated. Consequently, as shown
in Table 3, when SoR is equal to 4 KB, for updating one data unit, the
Fig. 5.Minimum and maximum number of updated parities when
average number of updated parity units in Reed–Solomon is lower
than two other erasure codes.

In Reed–Solomon, all data units in one row share the same parity
units. This means that by increasing the number of updated data units
in a row (i.e., sequential update), the number of updated parity units
remain constant. In RDP and EVENODD, however, the corresponding
diagonal parity units need to be updated when any arbitrary data unit
is modified. For example, if a row is updated in an array of four disks
(as shown in Table 3 when SUS is equal to 16 KB), only two parity
units would be updated in Reed–Solomon. However, in the similar con-
figuration using RDP and EVENODD codes, six and five paritieswould be
updating a data unit (UD = Updated Data, UP: Updated Parity).

Image of Fig. 5
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updated, respectively. When updated data units are within more than
one row, all the diagonal units should be updated in RDP and EVENODD.
However, the number of updated parity units in the Reed–Solomon
code only depends on the number of rows being updated.

Another scenario is when multiple rows of data units, which com-
pose a full data array of the erasure code are updated. This has been in-
dicated in Table 3 when SoR is equal to 64 KB. By updating a full data
array, all parity units of the array should be updated aswell. Considering
the same size of the array for all erasure codes, the number of parity
units being updated would be equal for all erasure codes under study.

3.2.2. Impact of request size on NoW
As mentioned earlier in Section 3.2.1, given a constant number of

updated data units, different number of parity units would be updated
in different erasure codes. The impact of request size on NoW can be
examined in two cases considering the relative size of SUS as compared
to SoR. This has been detailed as follows.

First, consider SUS is equal to SoR. As mentioned in the previous
subsection, the number of corresponding parities for each data unit
depends on the code pattern of erasure codes. This case has been illus-
trated in Fig. 5. As an example, for a 4 KB write request in a system
with 4 KB stripe unit size, only one data unit should be updated.
Depending on the place of the updated data unit in the array and the
type of erasure codes, the number of updated parity units varies from
two to five. As shown in Fig. 6, Reed–Solomon and EVENODD impose
smaller and larger NoWs, respectively when SoR is equal to 4 KB.

In the second case, let's consider the request size is much larger than
the stripe unit size. In this case, the updated data units are greater than a
row, or may even be equal to the size of the array (SoR N NoD ∗ SUS). As
mentioned before, when the updated units are equal to the size of array,
three codes under study almost impose the same number of updated
parities; in this case, all parity units should be updated.

Table 3 illustrates the NoW of a disk system for different SoRs with a
constant NoD and SUS. The NoWhas been reported for each parity disks
(i.e., P1 and P2) as well as the sum of NoWs committed to the parity
disks. The starting disk number where data units are updated can affect
the number of parity units being updated. Therefore, we consider two
sample Starting Disk Index (SDI) in our analysis. This has been shown
in Table 3 by D0 and D3. The index of the row in which the updated
request is taken can also affect the number of updated parities. This is
shown as Starting Row Index (SRI) in Table 3. To simplify our analysis
here, we assume that all the updated data units are placed in the
same array.

The difference of erasure codes in the number of updated parities
can be explained by an example. Let's consider a system with the SUS
of 4 KB, and an array with four data disks and two parity disks
(Table 3). For a given request size of 16 KB, we have to update 4
(=16 / 4) data units and their corresponding parity units. The locations
of updated data units specify the number of updated parity units, which
Fig. 6. Effect of SoR on average NoW in parity disks (NoD = 5, SUS = 4 KB).
is different for various erasure codes. For Reed–Solomon, if the updated
request starts from D0 (the first disk of the array), the updated data
units are located in the same rowand share the samenumber of parities.
In this case, four data units and two parity units will be updated. For
EVENODD and RDP, the number of updated parity units (P1, P2) is not
equal. The parity units in the row parity (P1) are dependent on the
number of rows being updated. In this case, all the updated data units
are placed in the same row and share the same row parity unit, but
their updated diagonal parities will be different.

According to Fig. 6 and Table 3, by increasing SoR in a systemwith a
fixed NoD and fixed SUS, NoW is increased. According to the results
reported in Fig. 6, the difference of Reed–Solomon and EVENODD
codes for small (4 KB) and large (32 KB) SoR varies from 75% to 44%,
respectively, while Reed–Solomon and EVENODD offer the minimum
and maximum NoW among targeted erasure codes. As shown in
Fig. 6, EVENODD and RDP behave in the same manner for SoR longer
than a row (SoR N = SUS ∗ NoD).

3.2.3. Impact of Size of stripe unit on the NoW
In this subsection, the impact of stripe unit size on the endurance of

different erasure codes is investigated. Here we report the size of
updated parity units (in KB) rather than the number of updated units
to provide a fair comparison between two arrays with different stripe
unit sizes. In addition, when the request size is smaller than the stripe
unit size, considering the number of updated pages to calculate the
number of writes improves the accuracy of our analysis.

As mentioned before, each data unit corresponds to two parity
units (i.e., row and diagonal parity). Data units in the same row
share the same row parity, however, the corresponding diagonal
parities depend on the code pattern. The size of stripe unit is impor-
tant in two aspects: 1) the size of stripe unit determines the size of
updated parity units, and 2) with the same SoR, the number of
Updated Data (UD) units is dependent on the SUS (UD = SoR / SUS).

Depending on SoR and SUS, different number of data units would be
updated. If all data units are placed in the same row, the same rowparity
unit would be updated. The smaller stripe unit, the smaller size of parity
unit would be updated. On other hand, the number of the correspond-
ing diagonal parities depends on the number of updated data units.
Hence, the smaller parity units, the larger number of data units
(diagonal parities) should be updated. The total updated parity
units include one row parity unit and few diagonal parity units. For
fair comparison of two codes with different SUSs, the number of
updated parity units should be multiplied by SUS (i.e., SoR =
UD ∗ SUS). Therefore, the difference of two stripe units in updating
parity units is in the size of row parity unit. Consequently, the smaller
number of parity units would be updated for small SUSs.

Eq. (1) shows how the Size of Updated Parity Unit (SUP) can be
computed with respect to the SUS and NoD. As shown in this equation,
the SUP is computed by the sumof the Size of Updated RowParity (SURP)
and the Size of Updated Diagonal Parity (SUDP). In this equation, the
Number of Row (NoRO) stands for the number of updated parity rows
Table 4
Effect of SUS on NoW.

Code SoR NoD SUS NoW

p AVG Diff

Reed–Solomon 4 KB 5 4 KB 2 ∗ 4 8
16 KB 5 4 KB (2–4) ∗ 4 12 166%

16 KB 2 ∗ 16 32
EVENODD 4 KB 5 4 KB (2–5) ∗ 4 14

16 KB 5 4 KB (5–6) ∗ 4 22 155%
16 KB (2–5) ∗ 16 56

RDP 4 KB 5 4 KB (2–3) ∗ 4 10
16 KB 5 4 KB (5–6) ∗ 4 22 81%

5 16 KB (2–3) ∗ 16 40
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in the array, and UD stands for the number of updated data units in the
array. For example, let's consider the request size of 8 KB in an array
with four disks. The size of updated parity units for 2 KB and 4 KB stripe
unit size would be equal to 10 KB and 12 KB, respectively.

SUP ¼ SURPþ SUDP ¼ NoRO� SUSþ min SoR ;UD� SUSf g ð1Þ

Table 4 illustrates the NoW with different SUSs. According to the
number of parity units corresponding to the updated data units, the
NoW of erasure codes would be different. As an example, let's consider
the request size of 16 KB for two different SUSs (i.e., 4 KB and 16 KB) in
EVENODD. In this example, when the SUS is 4 KB, four data units
should be updated. On the other hand, for a SUS of 16 KB, just one
unit (16 KB/16 KB = 1) will be updated. The average size of updated
parity units (NoW) is equal to 22KB and 56KB, for small and large stripe
units, respectively. The NoW for large SUS is about 2.5× larger than
NoW for small SUS.

It is important to note that if the SoR becomes smaller than the
SUS, by increasing the SUS, the same NoW would be updated. It can
be concluded from Table 4 that the small SUS provides lower NoW
as compared to large SUS for all erasure codes. When the SoR is
smaller or equal to SUS, the effect of SUS on the NoW is negligible;
while for SoR much greater than SUS, the effect of SUS on NoW is
significant. In this case, the difference in NoWs between small and
large SUS in Reed–Solomon, EVENODD, and RDP are about 166%,
155%, and 81%, respectively.

3.2.4. Impact of number of disks on NoW
The size of array is denoted byNoD in this analysis. The effect of NoD

on the NoW of different erasure codes is investigated in this subsection.
We assume a fixed stripe unit size and request size for the array. When
small number of data units is updated (especially one stripe unit), by
increasing NoD, the difference of erasure codes in terms of updated
parity unit is significant. In Reed–Solomon and RDP, the corresponding
parity units for each data unit is independent of NoD, but in EVENODD, if
the updated data units are placed in the main diagonal, all the parity
units should be updated. The number of units in each disk is equal to
the NoD in the array. Therefore, in EVENODD, the average number of
updated data units increases by increasing NoD.

The impact of NoD on the NoW of different erasure codes is shown
by an example given in Table 5 (when SoR = 4 KB). In this example,
the request size of the updated data is 4 KB in an array with the strip
unit size of 4 KB for two NoDs (NoD = 5 or 13). It is obvious from this
table that Reed–Solomon imposes the minimum NoW in comparison
to other erasure codes. This code also provides the same NoW for both
large and small NoD. (In Reed–Solomon, NoD has no effect on NoW
when the updated data is small). In EVENODD and RDP, two different
values are reported for NoW, which indicate the minimum and
maximum NoW for different cases.
Table 5
Effect of NoD on NoW.

Code SoR NoD SUS NoW (p)

SoR = SUS Reed–Solomon 4 KB 5 4 KB 2
13 2

EVENODD 4 KB 5 4 KB 2–5
13 2–13

RDP 4 KB 5 4 KB 2–3
13 2–3

SoR N N SUS Reed–Solomon 24 KB 5 4 KB 4
13 2–4

EVENODD 24 KB 5 4 KB 6
13 7–15

RDP 24 KB 5 4 KB 7
13 8–10
Investigating the results reported for small SoRs in Table 5, NoD
affects NoW only in EVENODD code. In this code, if the updated data
units are placed in the main diagonal of the array, all the units of
diagonal parity disks will be updated. For example, considering the
small and large NoDs in Table 5, since the SoR and SUS are equal, only
one data unit will be updated. Updating one data unit in an array
of five disks in EVENODD would update two up to five parity units
depending on the location of the updated data units (the average
number of updated parities is 3.5). The number of updated parity
units for the array of 13 disks varies from 2 to 13 units. The average
number of updated parity units for NoD equal to 13 disks is 2.14×
greater when NoD is equal to five.

The effect of NoD on NoW for large sequential request size is
significantly different from small requests. In this case, the number of
updated row units in the array is also important. Considering
Reed–Solomon code in Table 5 (when SoR = 24 KB), two up to four
parity units would be updated depending on whether the extension
of data units are placed in one or two rows (each row corresponds to
two parity units). For small NoDs, the updated data units are placed in
two rows, but for large NoDs, one or two rows of data units may be
updated depending on the starting disk. As can be seen in Table 5, the
average number of updated parity units for small NoD is about 30%
greater than large NoD. In EVENODD, besides the number of updated
rows, the number of parity units in the diagonal disk is also affected
by NoD. This means that in EVENODD, the impact of NoD on the
updated parities is more significant than the other two codes.

As discussed earlier, the number of updated parity units in erasure
codes is dependent on different parameters such as SoR, SUS, and
NOD. In addition, SDI and SRI can also affect the number of updated
parity units. One can formulate the number of updated parity units in
terms of the above parameters. The number of updated parity units in
Reed–Solomon (either P1 or P2) can be calculated according to
Eq. (2). In this equation, SDI ranges from zero to NoD-1. The number
of updated parity units for each request can be computed in two cases.
The first case is when either SoR is less than or equal to SUS or SoR is
not greater than the updated data units within the row. This means
that all updated data units are placed in the same row. The second
case is when the updated data units are distributed over multiple rows.

P1 ¼ P2 ¼
1; if SoR ≤ SUS jj SoR ≤ SUS � NoD− SDIð Þ
1þ q SoR− NoD− SDIð Þ � SUS

N� SUS a
 !

;otherwise

8><
>: ð2Þ

According to the analytical evaluation of Reed–Solomon and
Eq. (2), if updated data units are placed within one row
(SoR ≤ SUS ∗ (NoD − SDI)), the number of updated parity units will
be independent of NoD. This mainly happens for the traces with small
random request size. On the other hand, for large sequential request
size, NoD affects the number of updated parity units.

The main findings of the analytical evaluation presented in this sec-
tion can be summarized as follows:

1) Considering the code pattern of erasure codes, Reed–Solomon and
EVENODD impose smaller and larger NoW, respectively. As shown
in Fig. 5, Reed–Solomon would update at most two parity units for
each updated data, while EVENODD would update more than two
parity units.

2) The difference of erasure codes in terms of NoW for small SoR is
significant (up to 75%), while for large SoR all erasure codes
impose almost the same NoW. The reason is that, for large size
of request the updated data are covered a great number of data
units in the layout, which would update all the parity disks. As
the ratio between parity disks and data disks is almost the same
in the layout of different erasure codes, for large SoR, the same
number of parity units would be updated. As a result, the same
NoW would be imposed to the system.



Table 7
Characteristics of the evaluated I/O traces.

Workload Total I/O
request

Write
request

Avg. size write
request

Std. dev. write
request

Build08–10 100,000 28% 76.3 KB 1116.4
CAM03-lvm0 100,000 38% 9.7 KB 28.3
Exchange 200,000 64% 675 KB 952
Financial1 100,000 52% 818 KB 4294.8
Iozone2 94,641 99.9% 4 KB 4.8
Postmark 62,257 17% 833 KB 2395.8
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3) By increasing SUSwhen SoR is greater than SUS, NoW is increased
in all target erasure codes. Smaller SUS provides the minimum
NoW for the disk subsystem. The reason is that when SoR is larger
than SUS, the updated data will in the same row and will share
the same row parity unit. The smaller the size of SUS, the smaller
size will be updated.

4) NoW in Reed–Solomon is independent of NoD for small request
size, while in EVENODD, NoW is strictly dependent on NoD. This
is because of the layout of Reed–Solomon, in which the corre-
sponding parities for each data are placed in the same row. In
Reed–Solomon, irrespective of the number of disks in the array,
only two parity units would be updated for each data unit.

4. Experimental results

In this paper, in order to investigate the effect of erasure codes on the
performance and endurance of storage systems, three erasure codes
(Reed–Solomon, EVENODD, and RDP) are implemented using the SSD
extension of DiskSim v4.0 simulator [19]. The implementation of these
codes is appended to the source code of DiskSim, evaluating their effect
on the parameters of systems (i.e., performance and endurance).

4.1. Experimental setup

The experimental setup used in DiskSim has been depicted in
Table 6. The storage system includes an array of seven disks, with the
size of 32 MB. Please note that the default value for NoD in the experi-
ments is 7. Storage vendors usually do not use larger value for NoD
since it significantly deteriorates the reliability of the RAID array. Five
disks hold data and two disks store parities. As the main consideration
in this paper is to evaluate the effect of different erasure codes on the
performance and endurance of system, for the sake of simplicity in the
implementation, dedicated parity disks (similar to RAID4) are used for
this purpose. We believe that the structure of RAID (i.e., dedicated or
distributed) has no effect on the relative comparison among different
erasure codes, when these codes are implemented on the same struc-
ture. Employing distributed parity disks would enhance the perfor-
mance and endurance of the disk subsystem for each erasure code
individually, but we believe that the relative performance remains
almost constant.

In the experiments, NoW, NoC, and ART are reported for three era-
sure codes. The simulation is done by running six I/O traces as represen-
tatives of two class of I/O traces, i.e., sequential-dominated workloads
(Postmark [20], Financial1 [21], and Exchange [22]) and random-
dominatedworkloads (Build08-10 [23], CAM03-lvm0 [24], and Iozone2
[25]). The characteristics of these workloads are reported in Table 7.

Three sets of experiments are analyzed in our simulations. Various
request sizes, stripe unit sizes, and number of disks are evaluated for
the three target erasure codes. In each set of experiments, the number
of clean cycles and the average response time are reported as a metric
of endurance and performance, respectively. The number ofwrite cycles
is calculated with respect to the effect of all the updated data units on
the parity disks. The average response time is the average response
time over all requests within a given trace. NoW is also reported for
Table 6
Experimental setup.

Parameter Value Parameter Value

Number of Disks 7 Page Read Latency 25 μs
Disk Size 32 MB Block Erase Latency 1.5 ms
Plane per Die 2 Page Write Latency 200 μs
Block per Plane 1024 The number of buses 1
Page per Block 4 Flash packages 1
Page size 4 KB Dies per package 1
Reserve pages percentage 15% Garbage Collection Greedy
Garbage Collection Threshold 5% Cache Policy No cache
each set of experiments to provide a comparison with NoC. In the
following subsections, the results of our experiments are presented.

4.2. Number of disks

Here, the effect of NoD on the performance and endurance of storage
systems is analyzed. In this analysis, a constant size of stripe unit
(i.e., SUS = 4 KB) is considered for storage system. The effect of the
number of disks on NoW, NoC, and ART of target erasure codes are
illustrated in Figs. 8, 9, and 10, respectively. In each figure, the results
of six different traces are reported; the first row in each figure reports
the results for small SoR, while the second row shows the results of
large SoR.

As shown in Fig. 8, for all traces with SoR larger than SUS (Fig. 8.b, c,
d, e, and f), by increasingNoD, theNoW in all erasure codes is decreased.
As the average number of writes is reported in the evaluation section,
it is generally expected that the average number of writes is decreased
when the number of disks is increased. Furthermore, in the cases of
small or large size of stripe unit, the corresponding parity units for
updated data are different. For the case of small size of request, the
code pattern of erasure codes significantly affects the NoW. As men-
tioned previously in Section 3.2.4, the number of updated parity units
in EVENODD is a function of number of disks when the updated data
is placed in themain diagonal. For the case of large size of request, by in-
creasing the number of disks, a large number of disks share the same
row parity unit. Thus, smaller number of parity units would be updated.

For example, NoW is decreased by 21%, 17%, and 17%, in Reed–
Solomon, EVENODD, and RDP, respectively, in Fig. 8.f. On the other
hand, as shown in Fig. 8.a, for traces with SoR equal to SUS, when the
number of disks is doubled from 7 to 15 disks, NoW for EVENODD is
increased by 11.7%, while NoW is decreased by 2.3% for RDP, and is
remained constant for Reed–Solomon. As mentioned before, in Reed–
Solomon, NoW is independent of NoD, while in EVENODD, the number
of disks in each row can affect the number of updated parity units. It is
clear from Fig. 8 that Reed–Solomon imposes theminimumNoW to the
system compared to EVENODD and RDP.

As shown in Fig. 9, by increasing NoD from 7 to 15, NoC is decreased
in the three erasure codes for traces with both small and large SoR.
Because of distributing writes among larger NoD, the average number
of writes for each disk is decreased, requiring smaller NoC for each
Fig. 7. write amplification of different erasure codes on various workloads (Financial1,
Exchage: randomworkload, CAM03-lvm0, Build08-10: sequential workload).

Image of Fig. 7


Fig. 8. Effect of number of disks on NoW for different erasure codes: (a) Iozone2, (b) CAM03-lvm0, (c) Build08-10, (d) Exchange, (e) Financial1, and (f) Postmark.{SUS = 4 KB}.
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disk. For traces with large SoR, by increasing the NoD, the average NoC
in all trace is decreased with significantly different rates when running
various traces. For example as shown in Fig. 9.b, by doubling the NoD
from 7 to 15 disks, NoC is decreased by 155%, 170%, and 175% in
Fig. 9. Effect of number of disks on NoC for different erasure codes: (a) Iozone2, (b) CAM0
EVENODD, Reed–Solomon, and RDP, respectively. On the other hand,
for traces with small SoR, all erasure codes have almost the same rate
of decrement. For example, as shown in Fig. 9.a for a trace with
small SoR, by doubling NoD from 7 disks to 15 disks, NoC is decreased
3-lvm0, (c) Build08-10, (d) Exchange, (e) Financial1, and (f) Postmark. {SUS = 4 KB}.

Image of Fig. 8
Image of Fig. 9


Fig. 10. Effect of number of disks on ART for different erasure codes: (a) Iozone2, (b) CAM03-lvm0, (c) Build08-10, (d) Exchange, (e) Financial1, and (f) Postmark. {SUS = 4 KB}.

Fig. 11. Effect of strip unit size on NoW for different erasure codes: (a) Iozone2, (b) CAM03-lvm0, (c) Build08-10, (d) Exchange, (e) Financial1, and (f) Postmark. {NoD = 7}.
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by 29.4%, 26.7%, and 25% for RDP, EVENODD, and Reed–Solomon,
respectively.

As shown in Fig. 10, by doubling NoD from 7 to 15 disks, ART is
decreased in all erasure codes. This means an improved performance
for erasure codes in large NoDs. As mentioned earlier, the performance
in this paper refers to the I/O access performance. Thus, the perfor-
mance is extremely affected by the number of cleans, writes, and
reads. The effect of NoD on the performance of erasure codes in traces
with large SoR (Fig. 10.d, e, and f) is greater than traces with small
SoR (Fig. 10.a, b, and c). For example as shown in Fig. 10.d and a, in
Reed–Solomon, ART is decreased by 180% for large SoR, while this
decrement is about 26% for a small SoR. In addition, the Reed–Solomon
has the greatest ART in comparison to EVENODD and RDP for large SoR.
On the other hand, the ART of Reed–Solomon is significantly smaller
than the other erasure codes for small SoR. As shown in Fig. 10.a, the
performance of Reed–Solomon for small SoR is greater than EVENODD
and RDP by 80% and 100%, respectively.

As shown Figs. 10 and 9, Reed–Solomon outperforms the other
erasure codes in terms of performance and endurance for small SoR.
However, RDP has the lowest performance and endurance as compared
to EVENODD and Reed–Solomon for small SoR. Additionally, the differ-
ence between EVENODD and RDP for small SoR in terms of NoW, NoC,
and ART is considerable, while these two codes behave similarly for
large SoR.

4.3. The size of stripe units

Here, the effect of various stripe unit sizes (i.e., 4 KB, 8 KB, 16 KB,
32 KB, 64 KB, 128 KB, and 256 KB) on the performance and endurance
of erasure codes is evaluated. Increasing SUS has different effects on
the NoW, NoC, and ART of different erasure codes, as shown in
Fig. 12. Effect of stripe unit size on NoC for different erasure codes: (a) Iozone2, (b) CAM
Figs. 11, 12, and 13. This analysis is performed on six different traces.
By increasing SUS in traces with large SoR, the performance and endur-
ance of erasure codes are decreased when SUS is increased for all three
erasure codes. For instance, when the stripe unit size is set to 4 KB, the
performance and endurance of SSD-based RAID array in EVENODD are
improved up to 100% and 70%, respectively, as compared to the stripe
unit size of 128 KB (Figs. 13.f and 12.f). This improvement in the perfor-
mance and endurance of Reed–Solomon is 43% and 20%, respectively.
On the other hand, considering traces with small SoR, by increasing
SUS, the performance and endurance of EVENODD and RDP are
decreased significantly (up to 21× for endurance and 17× for perfor-
mance at Figs. 12.b and 13.b, respectively). However, the performance
and endurance of Reed–Solomon remains almost constant for different
SUSs in traces with small SoR.

Reed–Solomon demonstrates different performance in comparison
to the other erasure codes in traces with small and large SUS, while its
endurance is always better than two other erasure codes. For example,
as shown in Fig. 13.f, considering a workload with large SoR, Reed–
Solomon imposes 40% lower performance in comparison with RDP
and EVEODD when SUS is equal to 4 KB. However, when SUS is
equal to 256 KB, Reed–Solomon improves performance by 60%
as compared to RDP and EVEODD. In addition, EVENODD degrades
the performance as compared to other erasure codes for large SUS.
Moreover, EVENODD has lower endurance as compared to the other
erasure codes for any SUS.

For small SUS, the NoW, NoC, and ART of three codes are almost
equal, but by increasing SUS, the difference of the erasure codes in
terms of performance and endurance becomes considerably high. This
shows that although different erasure codes perform similarly for
small SUS, for large SUS, the difference of erasure codes in terms of
performance and endurance is significant. In this case, choosing the
03-lvm0, (c) Build08-10, (d) Exchange, (e) Financial1, and (f) Postmark. {NoD= 7}.
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Fig. 13. Effect of stripe unit size on ART for different erasure codes: (a) Iozone2, (b) CAM03-lvm0, (c) Build08-10, (d) Exchange, (e) Financial1, and (f) Postmark. {NoD = 7}.
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appropriate erasure code would significantly improve the performance
and endurance of storage subsystems.

4.4. The average write amplification

Here, the effect of different erasure codes on the write amplification
is evaluated. This evaluation determines the averagewrite amplification
for the considered erasure codes in terms of different page reservation
percentages. We perform this evaluation on three workloads including
random (i.e., CAM03-lvm0) and sequential (i.e., Exchange, and
Financial1) dominated ones. The results of comparing the write am-
plification of different erasure codes are reported in Fig. 14. As shown
in thisfigure, the reserve page has no effect on thewrite amplification of
different erasure codes. As reported in this figure, in the case SUS and
Fig. 14. Effect of page reservation on the write amplification for different erasure
NoD are set to 4 K and 7, respectively, RDP imposes greaterwrite ampli-
fication as compared with EVENODD and Reed–Solomon. It is admitted
the results of comparing target erasure codes in terms of the number of
writes as shown in Fig. 8, where RDP has the maximum number of
writes as compared with other erasure codes. It can be concluded
that a code with higher write amplification imposes the higher NoW
to the disk subsystem. Fig. 7 reports a comparison among different
erasure codes in terms of write amplification when running four differ-
ent workloads (Financial1 and Exchange are random-dominated work-
loads) (note CAM03 and Build08 are sequential-dominatedworkloads).
In this comparison, the default experimental setups are applied in
the system. In both kinds of workloads, Reed–Solomon imposes the
minimum write amplification compared to RDP and EVENODD. As
shown in Fig. 7, the difference among erasure codes is considerable
codes: (a) Exchange, (b) Financial1, (c) CAM03-lvm0 {NoD = 7, SUS = 4 K}.
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Fig. 15. The distribution of NoC between parity disks for different erasure codes: (a) Exchange, (b) Financial1, (c) CAM03-lvm0 {NoD = 7, SUS = 4 K}.
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when running randomworkloads. For CAM03-lvm0workload, RDP and
EVENODD impose about 2.2× and 1.8× higher write amplification as
compared with Reed–Solomon. The reason is that in a random
workload, each updated data imposes extra writes to the system
while in the sequential workloads some of data share the same parity
unit as well as extra writes.

We also evaluate the effect of page reservation percentage on the
performance and endurance of different erasure codes. The results of
simulation show that for each of the erasure codes, the evaluated
parameters, i.e., NoW, NoC, and ART remain unchanged by increasing
the page reservation percentage. For the brevity of the paper, detailed
results have not been included in the paper.

4.5. The distribution of number of cleans between parity disks

The distribution of NoC among disks is a key factor that should be
considered in the endurance evaluation. As we use the dedicated parity
disks in our evaluation, the distribution of NoC among data disks is same
for all erasure codes, but the distribution of NoC among parity disks are
different. As shown in Fig. 15, Reed–Solomon has evenly distributed
NoC among parity disks for different workloads. It can be concluded
from this evaluation that Reed–Solomon does not only impose the
minimum number of cleans to the system, it also evenly distributes
the NoC across parity disks.

The number of cleans on parity disks are not the same due to differ-
ent patterns for computing each of parity disks in target erasure codes.
As shown in Fig. 15, both parity disks impose the same number of cleans
in Reed–Solomon, while the diagonal parity disk imposes higher NoC as
compared to row parity disk in EVENODD and RDP. This is due to the
layout of erasure codes. In Reed–Solomon, as show in Fig. 1, both parity
disks are computed with the same pattern in the layout of erasure code.
While, in EVENODD and RDP as shown in Figs. 2 and 3, respectively, the
row and diagonal parity are computed with different patterns. The dif-
ference of NoC among parity disks is considerable for randomworkload
(i.e., CAM03-lvm0), because in this case, updated data units do not
Fig. 16. The effect of NoD on the distribution of NoC between parity disks for EVE
share the same parity units. Hence, for each updated data unit, the
difference between the corresponding row and diagonal updated parity
disks should be considered individually. The effect of NoD and SUS are
also evaluated for the parity disks in EVENODD in Figs. 16 and 17,
respectively. By increasing SUS, the difference between parity disks is
increasedwhen running randomor sequentialworkloads. By increasing
NoD, the difference of NoC between parity disks is not the same for
random and sequential workloads. This difference is decreased for
sequential workloads, while it is increased for random workloads.

It can be concluded from this evaluation that Reed–Solomon not
only imposes the minimum number of cleans to the system, it also
distributes the NoC between parity disks as well.

4.6. Discussion

The main observations concluded from the results are summarized
as follows:

1. System characteristics (i.e., SUS and NoD) can significantly affect
the endurance and performance of erasure codes. The experimen-
tal results revealed that to achieve the best performance for era-
sure codes, small SUS and a large number of SSDs should be used
in the configuration of disk subsystem. In applications with large
SoR, the performance of a disk subsystem is improved by 295%
when NoD is doubled (from 7 to 15), while this improvement is
51% in applications with small SoR (by averaging of all erasure
codes). It is notable to mention that the customary size of stripe
unit reported by storage venders such as IBM and Hitachi in
SSD-based storage system is 256 KB–512 KB [15,16], which is
not an optimal stripe unit size for the performance and endurance
of disk subsystem. It is worthy to mention that the optimal configu-
ration for SSDsmay be different than for HDD-based disk subsystems
due to the different characteristics of these two technologies. For ex-
ample, the well-known storage vendors employ large size of stripe
units since the arm positioning time in HDDs dominates the data
NODD: (a) Exchange, (b) Financial1, (c) CAM03-lvm0 {NoD= 7, SUS = 4 K}.
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Fig. 17. The effect of SUS on the distribution of NoC between parity disks for EVENODD: (a) Exchange, (b) Financial1, (c) CAM03-lvm0 {NoD= 7, SUS = 4 K}.
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transfer time in small stripe unit sizes. However, our study on SSD-
based RAID shows that large stripe unit size is not optimal anymore
for the SSD-based disk subsystems. The results of our evaluations
also confirm the results of [29] for stripe unit size in SSD-based stor-
age system.

2. When the stripe unit size is increased, the performance of XOR-based
erasure codes (i.e., EVENODD and RDP) is decreased 3.7× faster than
non-XOR based ones (i.e., Reed–Solomon). On the other hand, the
performance of different erasure codes increases with almost the
same rate when NoD is increased from 7 to 15.

3. With regard to SoR when running different applications, NoD has
significantly different effect on the performance of erasure codes.
For example, if Reed–Solomon is employed in a system with small
SoRs (Fig. 9.a), by doubling the NoD from 7 to 15, the performance
is improved by 26%, while the performance improvement is 125%
for large SoRs (Fig. 9.f).

4. The experiments reveal that the characteristics of I/O traces have a
significant impact on the behavior of erasure codes for different sys-
tem characteristics. For example, by doubling NoD from 7 to 15, the
endurance of Reed–Solomon is improved up to 170% when running
Finacial1, while this improvement is 20% while running Exchange.

5. Considering the average of the results of all workloads, it can be con-
cluded that: the endurance and performance of Reed–Solomon are
on average 90% and 60% higher than other erasure codes, respective-
ly. In addition, this code provides the even distribution of NoC be-
tween parity disks as compared with EVENODD and RDP.

6. The results show that configuring a disk array with a 4 KB stripe unit
size will improve the endurance and performance of EVENODD by
1.8× and 2.9×, respectively, as compared to 128 KB stripe unit size.

7. As noted in [26], erasure codes are used to protect systems against
the failures of entire disk or a sector, where the position of failed
disks is specified. On the other hand, the wear-out of SSDs will lead
to a permanent failure on the target flash chip, when the number
of P/E cycles reaches to the endurance limit. One of the important
open issues in the community is modeling the impact of endurance
on the reliability of storage systems. There have been several models
taking into account different failure mechanisms such as latent
sector error or disk operation failure. However, there is no study to
investigate the impact of limited endurance on storage reliability.
Employing the erasure codes will increase the number of writes
which in turn accelerate SSD wear-out. Investigation of such impact
on overall SSD reliability is beyond the scope of this paper and is part
of our ongoing research work.

5. Related works

Several studies on erasure codes have been done in recent decades.
These studies include designing new erasure codes or analyzing and
enhancing the performance of these codes. Different approaches for
performance enhancement are also proposed including improving
XOR complexity [7,27], optimizing I/O load balancing [8], and I/O
optimal recovery [28].

A comparison of different erasure codes in terms of the NoW is
performed in [14], indicating the impact of the structure of erasure
codes on NoW imposed to the disk subsystem. A study on the impact
of stripe unit size on the performance and endurance of SSD-based
RAIDs reveals that unlike HDDs, the small stripe unit size provides the
optimum performance in SSD-based system [29]. The authors of [30]
compared the implementation of different erasure codes in terms of
encoding and decoding. The main aim of their proposed study is to
compare the implementations of erasure codes, to discern whether
theory matches practice. They also attempt to demonstrate how
parameter selection, especially that concerns memory, has impact on
a code's performance.

To analyze the effect of erasure codes on the performance of the
multiprocessor systems, two erasure codes, i.e., RDP and X-Code, are
utilized in FT-MPI [31]. In their proposed study, the effect of each code
on the checkpoint is evaluated. The checkpoint indicates the length of
time for storing the state of processor in the memory. The shorter this
time, the system has better performance. The results show that the
checkpoint is shorter when using RDP in comparison with X-Code
resulting in improved performance in a FT-MPI system.

In distributed systems, a file is divided into multiparts, each part is
stored in one server. In these systems, erasure codes are used to protect
files against failures. The study presented in [32] considers a network
including 300 servers. Each 100 MB file is divided into N files and all N
files along with M parity files are put on the server. Reed–Solomon
and LDPC are employed in the servers to generate parity bits. This
study considers the download time to evaluate the performance of
each erasure code. The results show that Reed–Solomon imposes
shorter download time to the server in comparison with LDPC.

In the work presented in [33], a developed redundancy placement
algorithm is presented which determines the best placement for
maximum reliability. For determining the best placement, an analytical
model called Relative MTTDL Estimate (RME) is used to compare
different placements of erasure codes.

In addition to the methods employed in the RAID arrays to enhance
the endurance of storage systems [34,35], some papers concentrated on
the reliability by modifying the architecture of storage systems and
RAID structure [36]. Some studies also investigate the performance
of SSD-based storage systems in terms of write-cycles [37], response
time for parity update [38,39], andwrite buffer management [40,41].

Another major concern in storage systems is Silent Data Corruption
(SDC) which refers to undetectable corrupted data in disk drivers [43,
44]. SDCs could result in fatal errors in the application level if it is not
properly handled in the disk subsystem. A conventional RAID array is
designed to protect against only detectable errors with no protection
against SDCs. To protect data against SDC, an integrity protection
scheme is added to the RAID layer. Several schemes have been proposed
to cope with silent data corruptions which are classified in four classes
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[42]: self-check summing [43], physical identity [45], version mirroring
[45], and checksum mirroring [44]. Using either of these schemes, an
SDC in a block of data could be detected and can prevent manifesting
such error to higher system levels. The detailed discussion of such
techniques is beyond the scope of this paper.

6. Conclusion

Erasure codes are employed in RAID arrays to improve the reli-
ability of storage systems. Applying SSDs in the configuration of
RAID array brings new concerns in evaluating erasure codes. In this
paper, a comprehensive analysis investigating the performance and
endurance of erasure codes was conducted by considering the code
patterns of erasure codes and the configuration of RAID arrays. Our
experimental results showed that Reed–Solomon is the best choice
for applications with small and random request sizes. In addition,
modifying the number of disks in an array and the size of stripe
unit would affect the performance and endurance of target erasure
codes differently. Our results also revealed that the small size of
stripe unit provides the best performance and endurance for SSD-
based storage systems.

As a future work, the same comparison can be done on open-source
implementation of erasure codes to investigate the effect of these
codes on the performance and endurance of systems. Comparing
the reliability of these codes in the SSD-based systems is part of our
ongoing research.
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