
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

CEDAR: Modeling impact of component error derating and read
frequency on system-level vulnerability in high-performance processors

Hossein Asadi a,⇑, Alireza Haghdoost a, Morteza Ramezani a, Nima Elyasi a, Amirali Baniasadi b

a Department of Computer Engineering, Sharif University of Technology, Islamic Republic of Iran
b Department of Electrical and Computer Engineering, University of Victoria, Canada

a r t i c l e i n f o

Article history:
Received 16 July 2013
Received in revised form 8 January 2014
Accepted 8 January 2014
Available online 5 February 2014

a b s t r a c t

Reliability of the current microprocessor technology is seriously challenged by radiation-induced soft
errors. Accurate Vulnerability Factor (VF) modeling of system components is crucial in designing cost-
effective protection schemes in high-performance processors. Although Statistical Fault Injection (SFI)
techniques can be used to provide relatively accurate VF estimations, they are often very time-consum-
ing. Unlike SFI techniques, recently proposed analytical models can be used to compute VF in a timely
fashion. However, VFs computed by such models are inaccurate as the system-level impact of soft errors
is overlooked.

In this paper, we propose a system-level analytical technique, called Component Error Derating And Read
frequency (CEDAR) vulnerability model, combining the advantages of previously presented analytical
models and the SFI techniques. The key idea behind CEDAR is to take into account component error der-
ating and read frequency for data-path blocks in high-performance processors. To further investigate the
impact of read frequency and component error derating on the system-level VF, we use Input-to-Output
Derating (IOD) factor of system components in the proposed analytical model. As a case study, we study
system-level vulnerability for cache memory by providing IOD analysis for different processor core con-
figurations. Our experimental results reveal that processor core IOD can significantly affect the system-
level vulnerability of cache memories. The experimental results show that CEDAR improves the accuracy
of previous analytical VF estimation techniques up to 91% and 5% for write-through and write-back cache
memories, respectively, while it speeds up estimation time up to 10� as compared to SFI techniques.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few years, radiation-induced transient errors have
been a severe threat to data integrity in high-end and mainstream
microprocessors. These errors, also referred to as soft errors, are ini-
tiated by alpha particles from packaging, high-energy neutrons,
and low-energy neutrons interacted with the isotope Boron-10
(10B) [1]. A field study over several thousands of systems indicates
that in the current processor technology, the majority f system re-
boots are initiated by Single Event Upsets (SEUs) occurring in data-
path components such as cache memory and register files [2]. Er-
rors in such structures can easily propagate to the system outputs
and significantly reduce the overall system reliability.

With continuous downscaling of CMOS technology into the
nanometer era coupled with the increasing importance of process

variation in the newer CMOS technology, the threat of radiation-in-
duced soft errors is becoming more severe than previous CMOS
generations [3]. At the same time, since the number of transistors
per chip continues to move up, Soft Error Rate (SER) per chip is ex-
pected to increase for the next several years [4]. Accordingly,
designers would need to incorporate aggressive protection tech-
niques in future microprocessor designs. As a result, the issue of
estimating and mitigating the impact of radiation-induced tran-
sient errors becomes more important.

A challenging aspect of designing a cost-effective protection
technique is developing accurate soft error vulnerability models
for individual components. Having accurate vulnerability models
facilitates accurate evaluation of the SER contribution of each
data-path component to the overall system SER. This helps design-
ing cost-effective SER-aware protection schemes across data-path
components and for target workloads. The right protection level
for data-path structures can reduce data loss probability and hence
increase the overall system reliability.

Among previous modeling techniques, Statistical Fault Injection
(SFI) has been commonly used by designers to extract SERs or

0026-2714/$ - see front matter � 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.microrel.2014.01.007

⇑ Corresponding author. Tel.: +98 2166166639.
E-mail addresses: asadi@sharif.edu (H. Asadi), haghdoost@ce.sharif.edu (A.

Haghdoost), mramezani@ce.sharif.edu (M. Ramezani), elyasi@ce.sharif.edu (N.
Elyasi), amirali@ece.uvic.ca (A. Baniasadi).

Microelectronics Reliability 54 (2014) 1009–1021

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier .com/locate /microrel

Author's personal copy

Vulnerability Factors (VFs) of system components [5–9]. The
concept of VF has been first introduced by Biswas et al. [10]
to estimate processor vulnerability to soft errors in early design
stages of processors. Although SFI techniques can provide rela-
tively accurate VFs, they are often very time-consuming. In par-
ticular, extracting VF for system components is an order of
magnitude more time-consuming than extracting VF of the
overall system. Therefore, given the limited design time
frame, the computed VFs for system components using SFI tech-
niques may have large variances. As a result, SFI techniques are
either time-consuming, due to the large number of SFI runs, or
prone to inaccuracy, due to the limited number of addresses
targeted.

Unlike SFI techniques, recently presented analytical models
provide VFs in a timely fashion. Such models, however, do not
take into account the system-level impact of soft errors. In previ-
ously presented analytical models, the VF of a data-path compo-
nent such as cache memory or register file is computed based
on the propagation probability of an error from an internal site
of a data block to the block outputs [5–8]. This is done by measur-
ing the time period in which an error occurring in a data block
could potentially propagate in the system, also referred to as
the critical time, to estimate vulnerability [11]. In these models,
however, two important factors, i.e., read frequency and compo-
nent error derating have been overlooked. As we show in this pa-
per, these two factors can affect the system-level VF of a
component significantly.

In this work, we first examine the shortcomings of previous
analytical models and then propose a modeling technique to accu-
rately compute system-level VF of data-path components. The pro-
posed technique, called Component Error Derating And Read
frequency (CEDAR) vulnerability model, improves the accuracy of
previous estimation methods while preserving low estimation
time. The accuracy is improved by incorporating the impact of read
frequency and component error derating into earlier analytical
models. In the CEDAR model, we define Component-level Vulnera-
bility Factor (CVF) and System-level Vulnerability Factor (SVF) to ac-
count for read frequency and component error derating. CVF and
SVF of a component are defined as the percentage of errors occur-
ring within the component, propagating to the component outputs
and the system outputs, respectively. Therefore, higher CVF and
SVF is indicative of higher component and system failure rate,
respectively.

We also demonstrate that higher CVF does not necessarily lead
to higher SVF. This is explained by proposing another important
parameter referred to as the Input-to-Output Derating (IOD) factor.
The IOD of a component is the portion of errors not being masked
when propagating erroneous values from primary inputs to pri-
mary outputs of the component. IOD can be computed by perform-
ing a very limited number of SFI experiments in a timely fashion.
Our experimental results show that the IOD of a CPU core can vary
from 23% up to 77%, depending on the application. Therefore, over-
looking IOD in VF estimations can result in significant over-estima-
tion of the system-level VF.

We also develop a reference model based on Statistical Fault
Injection (SFI) and Monte-Carlo (MC) simulations and compare
SVF estimations to the reference model for SPEC2K benchmarks
as well as previously proposed analytical models. These compari-
sons have been provided for Write-Through (WT) and Write-Back
(WB) cache memories. Our results show that the VFs obtained by
CEDAR are more accurate compared to those provided by previous
analytical models by 91% while CEDAR is 10� faster than the SFI
technique.

A preliminary version of this work has been presented in
[12,13]. This work extends our previous work by offering the fol-
lowing contributions:

� Extending Access Patterns: In this work, the accuracy has been
improved by considering the impact of read frequency. To this
end, we extend access patterns presented in [12,13] and com-
pute the corresponding vulnerability factor.
� SFI: We develop an SFI reference model to validate the accuracy

of the CEDAR model. The SFI reference model also reveals the
inaccuracy of previously vulnerability models.
� VF Accuracy Analysis in WT vs. WB Caches: Our observations

indicate that the IOD of CPU cores has higher impact on the vul-
nerability of WT caches than WB caches. This is due to the fact
that WB caches contain dirty blocks whose vulnerability impact
is often not affected by IOD. Our analysis also reveals that the
previously proposed VF models have less accuracy in WT caches
compared to WB caches. CEDAR improves the accuracy of vul-
nerability estimation for both WB and WT caches by taking
the IOD of the CPU cores into account.
� Proposed Algorithm for WT and WB Caches: We present an

algorithm to compute SVF for both WT and WB cache configu-
rations. In the proposed algorithm, different access patterns
are accurately modeled to compute the SVF of cache blocks.

The rest of the paper is organized as follows. In Section 2, we
present reliability background. In Section 3, we review previously
suggested vulnerability modeling techniques and their shortcom-
ings. In Section 4, we investigate the inaccuracies existing in
previous analytical techniques. In Section 5, we present the CEDAR
model. In Section 6, we describe VF computation for different
access patterns. In Section 7, we present the algorithm used to
compute CVF and SVF for cache memory. In Section 8, we
explain the experimental setup. In Section 9, we present our meth-
odology and report results. Finally, in Section 10, we conclude the
paper.

2. Background

An energetic particle striking a CMOS transistor induces a local-
ized ionization capable to change the state of a memory cell, logic
gate, latch, or flip-flop causing a soft error [4]. In the past two dec-
ades, researchers have discovered three major sources resulting in
soft errors in semiconductor devices at terrestrial altitudes. These
sources are (a) alpha particles, (b) high-energy neutrons, and (c)
low-energy neutrons interacted with the isotope Boron-10 (10B)
[1].

Soft Error Rate (SER) is defined as the system failure rate due to
soft errors. Failures-in-Time (FIT) is another commonly used error
rate metric. The FIT of a component is inversely proportional to
the Mean-Time-To-Failure (MTTF) of the component. This is shown
in Eq. (1). One FIT is equal to one failure in a billion hours of system
operation.

FITrate ¼
109

MTTF � 24hours � 365days
ð1Þ

The overall FIT of a chip is calculated by adding the effective FIT
rates of all the individual components as follows [11]:

FITchip ¼
X

i

FITComponentðiÞ ð2Þ

The FIT of each component in a chip is the product of its raw FIT
rate, associated Architectural Vulnerability Factor (AVF), and Timing
Vulnerability Factor (TVF) as follows:

FIT ¼ AVF � TVF � RawFITrate ð3Þ

AVF expresses the probability that a transient fault in a storage
cell (such as SRAM) results in a user visible error [14]. For example,
a bit-flip in a branch predictor may cause a mis-prediction,

1010 H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021

Author's personal copy

however, it will never result in a user-visible error. As a result, the
branch predictor’s AVF ¼ 0%. In contrast, a bit-flip in a program
counter register will most likely crash the instruction execution se-
quence and produce control flow error. Therefore, a program coun-
ter’s AVF is about 100%. Computing the AVF of other components
such as cache memory is more complicated because an erroneous
value in such components can be masked by the CPU [15].

TVF is the fraction of time for which the circuit is vulnerable to
transient faults. As an example, a simple latch is vulnerable against
radiation-induced faults during 50% of its clock cycle time [15].
SRAM cells (used in cache memory) are always susceptible to these
faults. Therefore, the associated TVF for SRAMs is 100%.

Finally, RawFITrate is the circuit-level soft error rate of a device
from radiation-induced faults. RawFITrate of a storage element de-
pends on the device characteristics and the flux that comes across
the device [15].

3. Related works and their limitations

In this section, we first review the limitations of conventional
protection techniques. We follow with discussing previous vulner-
ability factor modeling techniques and their drawbacks.

3.1. Limitations of traditional protection techniques

Spatial redundancy techniques (e.g., byte or block-based parity
or error correction code) are commonly used to protect data in
cache [16]. Such protection techniques, however, are rarely used
for tag addresses as they impose several limitations. First, redun-
dancy incurs area and power overhead. This overhead increases
proportionately with the cache size. Second, such techniques can
degrade performance by increasing cache access time.

Error detection techniques such as parity can be used to detect
errors in tag arrays. However, the recovery of an erroneous tag ar-
ray is either impossible or very difficult [11] under such tech-
niques. Scrubbing is an alternative technique that could be used
to improve cache reliability in conjunction with Error Correction
Codes (ECCs) [17]. Scrubbing involves reading values from cache
memory, correcting any single-bit errors, and writing the bits back
to cache memory. While scrubbing has proven to be effective for
very large memory systems, it is not recommended for L1 and L2
caches as it could interfere with processor accesses and reduce
the effective L1/L2 bandwidth. Moreover, scrubbing requires dedi-
cated hardware, which could significantly increase design com-
plexity and system cost [16].

As it is difficult to provide guaranteed reliability for caches, an
alternative approach is disabling the cache in safety–critical appli-
cations [5]. By disabling the cache, the area susceptible to SEUs is
drastically reduced, increasing processors reliability considerably.
This, however, can come with significant performance loss which
may not be tolerable for many applications. It is due to limitations
listed above that designing a reliable cache memory continues to
serve as a serious challenge for microprocessor designers.

3.2. Previous vulnerability factor modeling techniques

Many previously proposed cache reliability estimation methods
rely on Fault Injection (FI) strategies [5–8,18,19]. When using an FI
strategy, a limited number of memory addresses are targeted. Sev-
eral workloads are then executed to measure the number of de-
tected failures. Consequently, FI studies are both time-consuming
(due to the large number of runs), and prone to inaccuracy (due
to the limited number of addresses targeted).

Li et al. introduced SoftArch as a model (and a tool) to enable
soft error analysis at the architecture level [20]. SoftArch uses a
probabilistic error generation and propagation process model in

the processor. This tool, however, does not consider device or cir-
cuit-level details and does not support application-level masking.
Somani et al. presented a cache error propagation modeling tech-
nique [21]. The proposed model uses software fault injection to
determine the cache vulnerability to soft errors. Kim et al. used
the same model to measure data cache access reliability [16].

Mukherjee et al. [14,22] introduced Architectural Vulnerability
Factor (AVF) to analyze and quantify the architectural masking of
soft errors in different processor structures using the processor
performance model. The AVF of a structure is the likelihood of a
failure occurring due to a raw error event in the structure
[14,22]. To measure the AVF of a structure, the bits that affect
the final program outcome are identified on a cycle-by-cycle basis.
These bits are referred to as Architecturally Correct Execution (or
simply ACE) bits. All other bits are termed un-ACE. Examples of
un-ACE bits are the operand bits of an NOP instruction or opcode
bits in a killed instruction. All bits are assumed as ACE bits unless
proven un-ACE.

Biswas et al. extended the AVF model to cover caches and other
address-based structures [10]. Their proposed model extends AVF
measurement to data and tag arrays but does not cover status bits.
The model determines the vulnerability factor of a cache based on
the ACE lifetime of cache words. They performed several experi-
ments on various data cache configurations. Accordingly, they sug-
gested a flushing technique to enhance reliability.

Asadi et al. introduced a critical time model to estimate the reli-
ability of an unprotected or partially protected cache [11]. The pro-
posed model computes cache vulnerability using the residency
time of Critical Words (CW) in the cache. A CW is defined as a cache
word that is guaranteed to propagate to other locations in the
memory system or to the CPU. Using the proposed model, Asadi
et al. developed a simulation model and measured the reliability
of L1 caches.

Wang et al. introduced Temporal Vulnerability Factor (TVF) as a
soft error characterization model [23] to capture the upper bound
of the cache vulnerability factor. Their proposed model extends the
work presented in [11] by calculating the critical times at various
granularity levels, e.g., cache line, word, or byte.

More recently, Tang et al. extends the proposed model in [23]
for the private L1 data cache in the context of Chip-MultiProcessors
(CMPs) [24]. This model includes vulnerable cache lines in the
MESI coherence protocol and then characterizes the L1 data cache
vulnerability and proposed early cache line invalidation technique
to reduce the total vulnerability factor.

Online measurement of the AVF at run-time is extremely
expensive and requires specialized hardware and dedicated com-
putation power. Therefore, Sridharan et al. classified the AVF into
Program Vulnerability Factor (PVF) [25] and Hardware Vulnerability
Factor (HVF) [26] to speed up AVF computation at run-time. It al-
lows software developers to influence the run-time AVF estimates
by providing architecture-independent PVF. Duan et al. further ex-
tend online AVF measurement for the multithreaded applications
[27]. They proposed a two-level prediction scheme which predicts
PVF with contention-free assumption at first level and then incor-
porates threading contention in the second prediction level.

Li et al. studied the limitations of AVF modeling [28] and
showed that AVF estimations can result in large discrepancies
where the raw error rates of individual components are very large.
As an example, they showed that in space applications the calcu-
lated vulnerability factor using the AVF technique is twice greater
than the actual vulnerability factor.

Wang et al. reported that SFI at Register Transfer Level (RTL) can
generate more accurate AVFs compared to ACE analysis [29]. In re-
sponse, Biswas et al. demonstrated that ACE analysis accuracy can
be improved up to 40% by adding more detail to the processor per-
formance model [30].

H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021 1011

Author's personal copy

There have been also numerous circuit-level sensitivity analysis
techniques investigating circuit-level masking factors such as elec-
trical, logical, and timing derating factors [1]. These techniques
mainly examine the effect of Single Event Transients (SETs) or Multi-
ple Event Transients (METs) as possible sources of failures that can
occur in combinatorial logic. SETs/METs occurring in combina-
tional logic can propagate into sequential elements, but they still
may be masked similar to SEUs. The main shortcoming of circuit-
level SER estimation techniques is that they are not scalable to
large circuits since their execution time becomes intractable for
circuits containing millions of gates and FFs. To alleviate this short-
coming, Costenaro et al. have introduced a method to estimate the
SET sensitivity of complex combinational logic at the RTL level
[31,32]. This is achieved by characterizing SET sensitivity at cell li-
braries and integrating them into coarse-grained block level mod-
els to speed up SET propagation in very large circuits. Further
discussion of circuit-level SER estimation techniques is beyond
the scope of this work.

4. Motivation and limitations of previous analytical models

Previous vulnerability analytical models mainly focus on com-
puting vulnerability at the component-level. Such studies often de-
fine the vulnerability factor as the percentage of errors occurring
within a component that propagate to the outputs of the compo-
nent [10,11,14,23]. These studies assume that any error occurring
within the component and propagating to the component outputs
leads to a system failure. As we show in this work, many errors
could potentially be masked by different processor components.

To provide better understanding, in Fig. 1(a) we present an
example using L1 data cache. We assume that the target byte with-
in the L1 data cache ðDL1Þ is struck by an SEU changing one of its
bits. The target byte is then sent to the ALU unit. We also assume
that the byte is used as an operand in a Logical AND arithmetic
operation. This example shows that even though the incorrect va-
lue of the byte is transferred from the DL1 to the inputs of the ALU
unit, it does not propagate from the ALU inputs to the outputs of
the ALU unit.

To elaborate this in more detail, as illustrated in Fig. 1(a), we as-
sume that the target byte value is initially equal to 0 � FA (denoted
in hexadecimal format) and that an SEU event inverts the most sig-

nificant bit of this byte, changing the byte from 0 � FA to 0 � 7A. If
this byte is used as an operand of a logical AND operation with a
second operand equal to 0 � 32, the erroneous value would not
propagate to the outputs of the ALU unit. This is because the logical
AND masks the error bit when producing the final outcome, i.e.,
(0 � FA ^ 0 � 32) = (0 � 7A ^ 0 � 32) = 0 � 32.

As another example illustrated in Fig. 1(b), assume that the tar-
get tag address is 0 � 2B, and an SEU event inverts the 6th bit of
this byte, changing the tag address from 0 � 2B to 0 � 0B.
This would cause a wrong data (0 � 8E) to be selected as an oper-
and of logical AND operation with a second operand equal to
0 � 32. Please note that here the erroneous data would not
propagate to the output of the ALU unit since the logical AND
masks the erroneous data when producing the final outcome,
i.e., (0 � CE ^ 0 � 32) = (0 � 8E ^ 0 � 32) = 0 � 02. An alternative
masking scenario is when a fault occurs in the cache but the erro-
neous value is never used or the fault changes an unused address of
the cache. Finally, another instance of masking scenario is when a
fault changes a valid data block in the cache, but the block is
overwritten and the erroneous value gets vanished.

Error masking can occur in both data- and control-path compo-
nents. In this work, we investigate the impact of error masking in
data-path components on the overall system-level vulnerability.
Analysis of error masking in the control logic is beyond the scope
of this work.

5. The CEDAR model: Computing SVF using input-to-output
derating factor

The main objective in CEDAR is to accurately compute Compo-
nent-level Vulnerability Factor (CVF) and System-level Vulnerability
Factor (SVF) of data-path components in a high-performance pro-
cessor. CVF is defined as the percentage of errors occurring within
a component and propagating to other components of the system
whereas SVF is defined as the portion of errors occurring within
a component that propagate to the system outputs and cause a sys-
tem failure.

In order to accurately compute CVF and SVF, we define the IOD
of a component as the probability of propagating an erroneous
value from the component inputs to the component outputs. As
an example, if 85% of erroneous input values are masked when

(a) (b)
Fig. 1. Examples of error masking in a CPU.

1012 H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021

Author's personal copy

propagating to the components outputs, the IOD factor would
equal to 0.15. We refer to the complement of IOD as Input-to-Out-
put Masking (IOM). Hence, IOM is defined as the percentage of er-
rors being masked when propagating erroneous values from the
component inputs to the component outputs (i.e., IOM ¼ 1� IOD).

Fig. 2 illustrates an example of how SVF of data-path compo-
nents of a processor can be computed. According to the CVF defin-
tion, CVFIS can be obtained by computing the portion of errors
occurring within Instruction Scheduler (IS) and propagating to the
inputs of either the Integer Unit (IU) or the Floating Point (FP Unit).
Therefore, considering running integer benchmarks, the SVF of IS
(SVFIS) can be computed as CVFIS � IODIU . Using the same assump-
tion, the SVF of Instruction Front End (SVFIFE) can be computed as
CVFIFE � IODIS � IODIU . This expression means that an erroneous va-
lue within IFE will propagate to the CPU outputs if it is neither
masked by IS nor IU.

It is notable to mention that here we have assumed errors prop-
agating to the L1 data cache will cause a data integrity issue and
result in a system failure. In order to further increase the accuracy
of the computed SVFs, we should take into account the input-to-
output masking factor of the L1 data cache (DL1). As an example,
SVFIFE can be rewritten as CVFIFE � IODIS � IODIU � IODDL1. In this
analysis, we ignore IODDL1 since we believe the masking factor of
the L1 data cache is negligible, i.e., erroneous values propagating
to the DL1 cache are very unlikely to be overwritten by the CPU
core.

6. Case study: Using CEDAR model to compute SVF and CVF of
cache memory

The CVF and the SVF of data-path components can be accurately
measured using IOD factor. The proposed technique can be used for
computing the vulnerability of any data-path component. How-
ever, for the sake of clarity, we apply the CEDAR model to measure
the vulnerability of cache memory in this section. In the next sub-
sections, we first elaborate why the vulnerability of cache memory
in the presence of ECC codes is still an issue. Then, we present a
simple example to elaborate how the CEDAR model can be used
to compute the SVF of a cache block. Finally, general cases and
the corresponding formulations to compute the SVF of cache
blocks are presented next.

6.1. Motivation for this case study

One may argue that with ECC protection schemes, computing
vulnerability of cache memory to soft errors is meaningless.

Note ECC schemes can effectively detect and correct SEUs and
Single Event Multiple Upsets (SEMUs) in the main memory [33]
but such schemes in cache memory have less efficiency in the
nanometer era as compared to the main memory. Unlike the
main memory where the bits of a memory word are interleaved
across multiple memory banks, the bits of a cache block are
physically located nearby in the device layout. A SEMU in the
main memory is translated to multiple single errors in multiple
banks, which can be effectively detected and corrected by ECC
codes such as Single Error Correction-Double Error Detection
(SEC-DED).

Employing ECC and interleaving in cache memories, how-
ever, comes with significant power and performance penalties.
While SEC-DED is commonly employed in L2 and L3 caches
in high-end processors such as Itanium 9500 [34,35] or Power
7 [36], it is rarely used in L1 caches due to the significant per-
formance penalty imposed to the system. Protecting DL1 cache
with SEC-DED scheme increases cache access latency, which
may require one or more extra clock cycles to access a cache
block. This, in turn, can significantly affect the overall system
performance.

In enterprise applications, even ECC schemes such as SEC-DED
are not accountable for high rate of SEMUs in recent nanoscale
technologies (40 nm and beyond). It has been demonstrated in
[33] that the rate of SEMUs simultaneously affecting three cells
or more is getting more pronounced in 40 nm technology and be-
yond. Thus, employing SEC-DED in a cache memory is not able to
detect or correct SEMUs affecting more than two bits in a cache
memory not equipped with interleaving. As an example, a particle
strike affecting four adjacent cells cannot be detected by the SEC-
DED scheme. Employing more aggressive protection techniques
such as Double Error Correction-Triple Error Detection (DEC-TED)
will impose significant power and performance overhead to the
cache memory. According to numerous studies [37,38], interleav-
ing is not employed in cache memories since interleaved cache
memory imposes significant power penalty. Therefore, there is still
a high probability of soft error susceptibility in cache memory even
in the presence of ECC codes.

To summarize, ECC schemes can be employed in L1 caches
with significant performance penalty. Such schemes, however,
are still susceptible to SEMUs in 45 nm nodes and beyond.
Other error correction schemes such as two-dimensional ECC
(and Parity) [39] can be employed to achieve higher level of
dependability [39–42]. Such protection schemes, however, typi-
cally come with significant cost and limited applicability [37–
39,43]. Therefore, with accurate VF modeling using CEDAR,
microprocessor designers could accurately estimate the FIT rate
of an entire processor in design cycle and choose appropriate
error detection or correction schemes to offer a cost-effective
fault-tolerant design [14]. As a future work, one can investigate
the effect of the IOD factor in other processor structures such as
register file.

Fig. 2. Components of a typical multi-core processor.
Fig. 3. An example with two different access patterns to demonstrate the limitation
of previous methods to compute vulnerability of cache memory.

H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021 1013

Author's personal copy

6.2. SVF of a cache block: Basic concept

The concept of critical byte or critical word presented in [11] is
used in our proposed vulnerability modeling technique. A Critical
Word (CW) or Critical Byte (CB) refers to a byte or a word of cache
that definitely propagates an erroneous data from cache memory
to other data-path components. Critical Time (CT) is the residence
time of a CW or a CB in the cache. In this work, we extend this con-
cept to more accurately estimate the impact of cache vulnerability
factor on the overall system reliability.

In the CEDAR model, we have defined System-level Vulnerability
(SV) factor that is the sum of time periods in which an error occur-
ring in a byte of cache in these times produces a system failure.
Using IOD and SV definitions, the SV of the bytes in Case A and Case
B, illustrated in Fig. 3, can be computed using Eqs. (4) and (5),
respectively. SVcaseA is the propagation probability of an error
occurring in time interval ðt4 � t1Þ to the system output by the first
read access, i.e., R1.

SVcaseA ¼ ðt4 � t1Þ � IODcpu ð4Þ

SVcaseB ¼ ðt2 � t1Þ � IODcpu þ ðt3 � t2Þ � IODcpu þ ðt4 � t3Þ
� IODcpu þ ðt2 � t1Þ � IOMcpu � IODcpu þ ðt3 � t2Þ

� IOMcpu � IODcpu þ ðt2 � t1Þ � IOM2
cpu � IODcpu ð5Þ

The first three terms in Eq. (5) are the probability that an error
occurring in time intervals ðt1; t2Þ; ðt2; t3Þ, and ðt3; t4Þ propagates
to the system output via R1, R2, and R3 read accesses, respectively.
The next two terms are also the probability that an error occurring
in time interval ðt1; t2Þ/ðt2; t3Þ is masked by the processor after the
first read, i.e., R1/R2 but is propagated by the second read access,
i.e., R2/R3. For example, the term ðt3 � t2Þ � IOMcpu � IODcpu ex-
presses the probability that an error is masked after being read by
R2 but is propagated to the processor output by R3. Finally, the last
term, i.e., ðt2 � t1Þ � IOM2

cpu � IODcpu is the probability that an error
is masked after being read by both R1 and R2 but is propagated
to the processor output by R3.

SV can be also represented by Eq. (6), where the second term,
i.e., CVcaseB is referred as component vulnerability. In other words,
the system-level vulnerability is the product of the Component
Vulnerability (CV) and the probability of not being masked by
the CPU. CVcaseB in example shown in Fig. 3 is computed using
Eq. (7).

SVcaseB ¼ IODcpu � CVcaseB ð6Þ

CVcaseB ¼ ðt2 � t1Þ þ ðt3 � t2Þ þ ðt4 � t3Þ þ ðt2 � t1Þ � IOMcpu

þ ðt3 � t2Þ � IOMcpu þ ðt2 � t1Þ � IOM2
cpu ð7Þ

It should be noted that when a byte within a dirty block is written
back to the main memory, the masking factor of the CPU would not
have any impact on the byte vulnerability. In fact, in this case, the

erroneous value that is written back to the main memory can even-
tually result in a program failure. Therefore, SV would be equal to CV
in this case.

For the sake of clarity, the SVF and CVF for Case A and Case B
have been reported for different IOD values in Fig. 4. In addition,
we have reported AVF to provide a comparison. In this figure, we
have assumed that t0 ¼ 0; t1 ¼ 1; t2 ¼ 2; t3 ¼ 3; t4 ¼ 4; t5 ¼ 5,
and t6 ¼ 6. Two observations can be concluded from the simple
example given in Fig. 4. First, vulnerability of a cache word is
highly dependent on the IOD of CPU. Second, vulnerabilities com-
puted by previous modeling techniques such as AVF [10] and CT
[11] can be inaccurate for smaller values of IODs (or larger values
of IOMs).

Note there are cases in which errors propagating to the main
memory can be masked at the application level. In this work,
however, we have assumed that an erroneous data propagating
to higher memories levels (L2 cache or main memory) would
result in a failure. This is one of the main limitations of the CE-
DAR model which does not account for application-level
masking.

6.3. General cases to compute SVF of a cache block

In general, there are different SV formulations for different
cache access patterns. Here, we compute SV for different possi-
ble scenarios. We explain five possible scenarios in detail as
follows:

� Case 1: A Clean Block with Multiple Read Accesses
As mentioned, in the first scenario, the accessed block does not
change during the critical time. In other words, we have only
read accesses during the critical time of the block and the block
eviction occurs before the cool-down phase (Case 1 in Fig. 5).
Eqs. (8)–(10) show the component vulnerability factors of case
1 for the R1; R2, and R3 read accesses, respectively. CVðF : R1Þ
measures the CV of the byte from the fill time to the first read
access, i.e., R1. Similarly, CVðF : R2Þ and CVðF : R3Þ are the CV
of the byte from the fill time to the second and third read acces-
ses. It should be noted that in Eqs. (8)–(10), we have assumed
that tFill ¼ t0 ¼ 0.

CVðF : R1Þ ¼ t1 ð8Þ

CVðF : R2Þ ¼ t1 þ ðt2 � t1Þ þ t1 � IOMcpu ¼ t2 þ t1 � IOMcpu

¼ t2 þ CVðF : R1Þ � IOMcpu ð9Þ

 0

 1

 2

 3

 4

 5

 6

SV CV AVF SV CV AVF

V
ul

ne
ra

bi
lit

y

Case A Case B

IOD=0.2 IOD=0.4 IOD=0.6 IOD=0.8 IOD=1

Fig. 4. Comparison SV and AVF for the example given in Fig. 3. Fig. 5. Read/write patterns to compute vulnerability.

1014 H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021

Author's personal copy

CVðF : R3Þ ¼ t1 þ ðt2 � t1Þ þ ðt3 � t2Þ þ t1 � IOMcpu

þ t1 � IOM2
cpu þ ðt2 � t1Þ � IOMcpu ¼ t3

þ t1 � IOMcpu þ t1 � IOM2
cpu þ ðt2 � t1Þ � IOMcpu ¼ t3

þ CVðF : R2Þ � IOMcpu ð10Þ

In general, Eq. (11) computes the CV of the byte from the fill time to
the last read access for n consecutive read accesses.

CVðF : RnÞ ¼ tnþ CVðF : Rn�1Þ � IOMcpu ð11Þ

Once CVðF : RnÞ is computed, we can compute SV using Eq. (12).

SVðF : RnÞ ¼ IODcpu:CVðF : RnÞ ð12Þ

In case that the block eviction occurs in the cool-down phase, for all
read accesses before the start of cool-down phase, SVs and CVs are
computed using Eqs. (11) and (12). The cool-down read accesses are
not considered in our computations.
� Case 2: A Clean Block with Numerous Read Accesses

The main shortcoming of the equations presented in case 1 is
that the computation can become time-consuming for larger
number of read accesses (e.g., for n > 100). On the other hand,
the difference between SVðF : RnÞ and SVðF : Rn�1Þ becomes neg-
ligible for n greater than 20 (especially for IOD > 0:4). This has
been shown in Fig. 6. To this end, we set an upper bound for
the number of read accesses in case that a block remains clean
before cool-down phase. We refer to the maximum number of
read accesses used in CV computations as Rmax. Based on this
assumption, we use Eq. (13) to compute CV and then use Eq.
(12) to calculate SV.

CVðF : RnÞ ¼ CVðF : RmaxÞ þ tn � tmax ð13Þ

If Rmax and the block eviction occurs within the cool-down phase,
we use Eq. (14) to calculate CV. Note that tn and tmax have been
shown in Fig. 5.

CVðF : RnÞ ¼ CVðF : RmaxÞ ð14Þ

� Case 3: A Dirty Block with no Write Operation on the Target Byte
In this scenario, the target byte (i.e., the byte whose vulnerabil-
ity is under study here) is accessed just by read operation, but
the other bytes in the corresponding block (the block that the
target byte belongs to) are accessed by both read and write
operations. In other words, the block is dirty while the target
byte is clean. Since the block will be written back to the higher
memory hierarchy, all bytes of the block are vulnerable from
the filling time to the eviction time. Consequently, the SV and
CV of the target byte in this case are computed by Eqs. (15)
and (16), respectively.

CVðF : RnÞ ¼ tevict ð15Þ

SVðF : RnÞ ¼ tevict ð16Þ

� Case 4: Dirty Block with Write Operation on the Target Byte
In contrary to the previous scenario, here the target byte is
accessed by both read and write operations. This is shown as
Case 4 in Fig. 5. Assume that there are n read and k write oper-
ations on the target byte. While twj refers to the jth write oper-
ation, tri refers to the ith read operation. In this scenario, we
compute SV and CV of the byte between all two consecutive
write operations, i.e., twj�1 to twj, using Eqs. (11) and (12),
respectively. The CV and SV of two consecutive write operations
are shown as CVðtwj�1; twjÞ and SVðtwj�1; twjÞ, respectively.
Finally, the overall SV and CV are computed by Eqs. (17) and
(18), respectively. As the block is dirty and eventually will be
written back to the main memory, the time interval between
the last write operation and the time of eviction is added to
the these two equations.

CV ¼ CVðtw1Þ þ CVðtw2Þ þ � � � þ CVðtwkÞ þ ðtevict � twkÞ
ð17Þ

SV ¼ SVðtw1Þ þ SVðtw2Þ þ � � � þ SVðtwkÞ þ ðtevict � twkÞ
ð18Þ

� Case 5: Other Situations
We use conventional life time analysis proposed in [11,23] for
computing vulnerability in other situations. The lifetime
model distinguishes among nine lifetime phases for each byte
according to the previous activity and the current status, and
further categorizes them into two groups, vulnerable and non-
vulnerable phases. Five lifetime phases, WRP (i.e., time
between the first read and the last read after a write), RR
(i.e., time between the first read and the last read of a clean
data item), WR (i.e., time between the last write and the first
read), WPL (i.e., time between the last write and the replace-
ment without any read in between) and WRPL (i.e., time
between the last read and the replacement of a dirty data
item) are vulnerable and we will consider their vulnerability
time. The other lifetime phases, RPL (i.e., time between the
last read and the replacement of a clean data item), Invalid
(i.e., time in the invalid state), RW (i.e., time between the last
read and the first write), and WW (i.e., time between the first
write and the last write without any read in between) are
non-vulnerable. Note that since we propose fine grained (per
byte) life-time analysis on data items, RW and WW are
unconditionally non-vulnerable.

6.4. Overall cache SV/CV calculation

Once the SVs of all bytes are calculated, we can compute the CV,
SV, CVF, and SVF of the cache memory as follows:

CVCache ¼
XN

i¼1

CVi ð19Þ

SVCache ¼
XN

i¼1

SVi ð20Þ

CVFCache ¼
CVCache

TT �M
ð21Þ

SVFCache ¼
SVCache

TT �M
ð22Þ

In these equations, TT is the total execution time, M is the size of the
cache in bytes, and N is the number of bytes for which CV and SV
have been calculated.

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

V
F

Number of Reads (n)

IOD=0.8

IOD=0.6

IOD=0.4

IOD=0.2

Fig. 6. Impact of the number of reads on the vulnerability factor.

H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021 1015

Author's personal copy

7. Algorithm

Algorithm 1. CVF and SVF computation

Algorithm 1 shows how CV and SV of target bytes are com-
puted. In particular, in lines 10 through 12 as well as lines 18
through 25, CV and SV of a dirty byte within a dirty block are cal-
culated. We use CVbi ;lw and SVbi ;lw to compute CVðtwjÞ and SVðtwjÞ
based on Eqs. (17) and (18), respectively. In lines 31 and 32, the
vulnerability of target byte between the last write operation and
eviction time is added to the overall vulnerability based on Eqs.
(17) and (18). CV and SV of a clean byte within a clean block are
computed in lines 14 through 17 according to Eqs. (11) and (12).
CV and SV of a clean byte within a dirty block are computed in lines
34 through 37 according to Eqs. (15) and (16). Finally, in lines 44
through 50, CVs and SVs of data blocks are summed up to calculate
the overall CV and SV of cache memory according to Eqs. (19) and
(20). In addition, we calculate CVF and SVF using Eqs. (21) and (22),
respectively. Algorithm 1 can be used to compute CV and SV of
both WB and WT caches.

8. Experimental setup

For our experimental system setup, we have used the sim-alpha,
a cycle accurate Alpha 21264 processor simulator [44]. In order to
implement CEDAR, we have modified the source code of the sim-
alpha. We have extended sim-alpha to include WT caches. In
addition, for the sake of comparison, we have employed AVF esti-
mation method implemented in sim-soda [45] in our simulation
framework.

We have used SPEC2K benchmark suite [46] compiled for Al-
pha ISA [47] (with different inputs for some benchmarks) as
our workload. We run 100 M instructions and 100 M cool-down
for SVF, CVF and AVF estimation as well as SFI experiments.
When running the workload, we have skipped the first 100 M
instructions. The default system parameters including cache size
and associativity are reported in Table 1 in detail. We extend the
simulator to perform two types of FI experiments as well as VF
estimations. Further detail of FI experiments is described in the
following sections.

Table 1
Default configuration parameters used in our simulations.

Configuration
parameter

Value

Processor
Functional units 4 integer ALUs, 4 integer multiplier/divider

1 FP ALUs, 1 FP multiplier/divider
LSQ Size/RUU Size 32 Instructions/32 Instructions
Fetch/Slot/Map/Issue/

Commit Width
4/4/4/4/11 instructions/cycle

Integer/FP issue queue size 20/15 instructions
Reorder buffer size 80 instructions
Register file 40 FP/40 Integer entry
Return address stack 32-entry
Victim buffer 8 entries, 1-cycle hit latency
MSHR entries 8/cache
Prefetch MSHR entries 2/cache
Cycle time 1 ns

TLB and Cache memory hierarchy
TLB 128-entry ITLB/128-entry DTLB,

fully-associative
L1 instruction cache 64 KB, 2-way, 64 byte lines
(IL1) 1 cycle latency
L1 data cache 64 KB, 4-way, 64 byte lines
(DL1) 3 cycle latency
L2 2 MB unified, direct-mapped 64 byte lines,

7 cycle latency
Memory 100 cycle latency

Branch logic
Predictor Hybrid, 4 K global two-level 1 KB local,

4 K choice
Branch miss-prediction penalty 7 cycles
BTB 512 entry, 4-way
Mis-prediction penalty 7 cycles

Fig. 7. Estimating IOD of the CPU core.

1016 H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021

Author's personal copy

8.1. IOD experimental setup

In order to measure the IOD of a processor core, we have per-
formed fault injection experiments. In our fault injection experi-
ments, a random load instruction is selected in each iteration
and a random bit of the instruction operand is flipped. Afterwards,
we trace the program to investigate if the injected error propagates
to the CPU outputs. As illustrated in Fig. 7, in our fault injection
experiments, faults are injected in load instruction operand (i.e.,
when a data block is fetched from D-cache and transferred to the
CPU core) and then store instructions (when data is copied from
the CPU core to the D-cache) are observed to investigate if the error
affects the output of the CPU core. For each application, we have
performed 100 fault injections and report the percentage of faults
being masked by the processor core. For instance, if 20 out of 100
fault injection experiments do not propagate to the CPU core out-
puts, IOMcpu would be 20

100 ¼ 0:20, (i.e., IOD ¼ 0:8). We have also
conducted 200 and 400 fault injections and discussed about the
accuracy of the experiment with 100 fault injections in Sections
9 and 9.1.

In our fault injection experiments, and in the interest of keeping
simulation time low, we have used functional simulation mode of
sim-alpha. Previous studies show that using functional simulation
mode runs much faster than circuit-level or RTL fault injection
approaches [5–8,48] while having negligible impact on accuracy.
Note in this work, we do not have any contribution in running

the functional simulation or other soft error injection techniques.
We have used an existing high-level fault injection model to
estimate the IOD of a single component in the processor data-path
(e.g., Load/Store queue). Our proposed model can be employed at
any abstraction level. To have a fair comparison between the pro-
posed model and the reference model, we have implemented both
models in the same abstraction level. In this work, we use a high-
level fault injection method so that it can be used at early design
stages where the micro-architecture low-level models (RTL, Flip-
Flop) are not available yet. Note that relatively accurate estima-
tions at early design stages can help designers improve system effi-
ciency with minimum cost while reducing the total design
turnaround time.

The run-time for IODcpu estimation of some programs for the
configuration presented in Table 1 is reported in Fig. 8. We have
illustrated different inputs of each benchmark within parenthesis.
For instance, gzip(1) means gzip benchmark with input number 1.

In Fig. 9, we also report the simulation time to compute SVF for
different application programs. Note unlike IOD or SFI experi-
ments, the SVF computation is executed only once and its execu-
tion time is negligible as compared to SFI or IOD execution time.
As shown in this figure, the time taken to compute SVF is less than
10 min which is orders of magnitude smaller than the SFI compu-
tation time.

8.2. SFI experimental setup

In order to verify the results of the proposed SVF estimations,
SFI experiments have been performed. In SFI experiments, in con-
trary to our approach in the IOD section, in each experiment at the
beginning, a random time of simulation is determined, i.e., a ran-
dom instruction number is selected. Then, a random valid address
of D-cache is selected. When the specified time reaches, a random
bit of a cache data block at the specified address is flipped. After-
wards, we trace the program to investigate if the injected error
propagates to the CPU core output. In our fault injection experi-
ments, faults are injected into data cache and then store instruc-
tions are observed to investigate if the error affects the output of
the CPU core. For each application, we have performed 1000 fault
injections and report the percentage of faults propagated to the
output of the CPU core.

In order to examine the propagation of an injected fault to the
output of the CPU core, we run several experiments without inject-
ing any faults into D-cache. We refer to such experiments with no
error injection as golden runs. A challenging issue is when the re-
sults of gold runs are not identical for each workload. Such phe-
nomenon will occur when a workload is not deterministic. For
this reason, only workloads with deterministic behavior have been
included in the experiments. To increase the number of bench-
marks, however, we have experimented deterministic workloads
with various inputs. Moreover, unlike IOD experiments, we have
used the timing simulation mode of sim-alpha. The run-time for
the SFI estimation of experimented workloads have been reported
in Fig. 10.

It is notable to mention that three sets of simulation times have
been reported in this section, i.e., IOD, SVF, and SFI simulation
times. These three sets of simulation times have been reported in
Figs. 8–10, respectively. SVF computation is performed only once
and as reported in Fig. 9, the SVF simulation time is less than
10 min for different benchmark programs. On the other hand,
IOD is computed for 100 runs as reported in Fig. 8. Finally, the
SFI technique which has been used as a reference model has been
simulated for 1000 runs. By comparing the results reported in
Figs. 8 and 10, it can be seen that 1000 runs in SFI, on average, is
approximately 10� greater than its 100 IOD runs, as expected.

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

applu
mesa

vpr
gcc-166

crafty
AVG

Si
m

ul
at

io
n

T
im

e
(h

)

100 Runs 200 Runs 400 Runs

Fig. 8. Fault injection simulation time to estimate the IOD factor of the CPU core.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

mesa
applu

vpr
gcc-166

crafty
AVR

Si
m

ul
at

io
n

T
im

e
(m

in
ut

es
)

Fig. 9. SVF simulation time to estimate the vulnerability factor of the CPU core.

 0

 50

 100

 150

 200

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

mesa
applu

AVG

Si
m

ul
at

io
n

T
im

e
(h

)

Fig. 10. Simulation time to estimate the vulnerability factor of the CPU core for
1000 experiments using the SFI method.

H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021 1017

Author's personal copy

9. Results

Simulation results are reported and discussed in this section. In
Section 9.1, we explain the IOD values as well as the impact of the
number of runs and processor configuration on IOD. In the subse-
quent subsections, we report SVF, CVF, and AVF for the WB and WT
caches. In Section 9.4, we discuss the accuracy of the proposed
technique. Finally, we verify the results of CEDAR estimation by
using SFI experiments.

9.1. IOD experiments

In Fig. 11, we report IODs of the CPU for the benchmarks used in
this work. Based on this figure, on average, 44% of single bit errors
are not masked by the CPU. Among the studied benchmarks, gcc-
166 and applu with IODs of 0.23 and 0.77 have the minimum and
maximum IOD, respectively. As depicted in Fig. 11, the IOD of each
program has been extracted for different number of fault injection
experiments. The IODs extracted using 100 fault injections, on
average, differs from the IODs extracted using 400 FI runs by less
than 5%, as reported in Fig. 11.

In Fig. 12, we report the impact of Speculative Load instructions
(SL) and disabling Speculative Update of Branch and Line Predictor
(SUBLP) on the processor core IOD. In this figure, both SL and SUB-
LP are enabled in the Base configuration. SL and SPUBL also show
the configuration in which speculative load instruction and specu-
lative branch update are disabled. In case of disabling SL, galgel(2)
and applu have the maximum and minimum impact on the IOD
with 8.5% and 0.94% changes. In case of disabling SUBLP, the max-
imum and minimum changes in IOD are 58.7% in galgel(1) and 1%
in gzip(1) programs. On average, by disabling of either SL or SUBLP,
IOD changes 2.4% and 6.2%, respectively.

We have done a similar investigation on the effect of Load and
Store Queue (LSQ) and Re-Order Buffer (ROB) size on the processor
core IODs. As shown in Fig. 13, on average, the IOD of the processor

core changes 1.9% and 12.4% while doubling the size of load store
and reorder buffer queues, respectively.

We conclude from Figs. 12 and 13 that the processor core IOD
has little sensitivity on the processor configuration while it is
highly sensitive to the running application. In other words, IOD
(or similarly IOM) is mainly workload dependent rather than con-
figuration dependent.

9.2. Write-back cache analysis

Fig. 14 shows the SVF, CVF, and AVF of a DL1 cache for the WB
cache configuration. As presented, there is little difference between
these three VF models in WB configuration. This is mainly because
in a WB cache, dirty blocks have to be written to a higher memory
hierarchy. Therefore, an error occurring in such blocks could easily
propagate to other components. In other words, the probability
that an erroneous bit results in a system failure is very high in a
WB cache. This probability is highly dependent on the percentage
of dirty blocks. The higher the percentage of dirty blocks, the
higher the probability of system failure, and as a result, the less
difference between estimations in SVF, CVF, and AVF. Among the

 0

 0.2

 0.4

 0.6

 0.8

 1

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

applu
mesa

vpr
gcc-166

crafty
AVG

IO
D

100 Runs 200 Runs 400 Runs

Fig. 11. IOD sensitivity to the total number of fault injections applied to load
operations.

 0

 0.2

 0.4

 0.6

 0.8

 1

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

applu
mesa

vpr
gcc-166

crafty
AVG

IO
D

Base SL SUBLP

Fig. 12. IOD sensitivity to speculative load and speculative update of branch and
line predictor.

 0

 0.2

 0.4

 0.6

 0.8

 1

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

applu
mesa

vpr
gcc-166

crafty
AVG

IO
D

Base LSQ ROB

Fig. 13. IOD sensitivity to double size of LSQ and ROB.

 0

 20

 40

 60

 80

 100

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

mesa
applu

vpr
gcc-166

crafty
AVG

V
F

(%
)

SVF CVF AVF

Fig. 14. Comparison of SVF, CVF, and AVF in a DL1 cache with write-back policy.

 0

 10

 20

 30

 40

 50

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

mesa
applu

vpr
gcc-166

crafty
AVG

V
F

(%
)

SVF CVF AVF

Fig. 15. Comparison of SVF, CVF, and AVF in a DL1 cache with write-through policy.

1018 H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021

Author's personal copy

benchmark programs, crafty and galgel(2) show the maximum
(14%) and minimum (0.17%) differences, respectively.

9.3. Write-through cache analysis

In Fig. 15, we show the SVF, CVF, and AVF of the DL1 cache for
the WT configuration. Compared to the WB cache, the cache is less
vulnerable in the WT configuration as the critical time of data
blocks is shorter. In addition, the difference between estimations
are higher than the difference in the WB cache since there is no
dirty block in a WT cache.

9.4. Accuracy improvement

Fig. 16 shows the amount of accuracy improvement by CEDAR
compared to AVF for both WT and WB caches. The results show
an accuracy improvement of about 91% for the WT cache while
having an accuracy improvement of about 5% for the WB cache.
As presented, the maximum accuracy improvement is achieved

in mcf(2) program in the WT cache up to 2�. In the WB cache, there
is no improvement for benchmark programs, such as galgel(1) and
galgel(2). The accuracy improvement reported in Fig. 16 has been
computed according to Eq. (23).

Accuracy Improvment ¼ AVF � SVF
SVF

����
����� 100 ð23Þ

9.5. SFI experiments

In this section, we discuss the results of SFI experiments. We
classify our FI runs as follows:

� True Run: An FI experiment in which the erroneous value has
been masked by the CPU core and does not propagate to the
output of the CPU. This run is similar to the golden run.
� Faulty Run: An FI experiment in which the injected fault prop-

agates to the CPU core and is written back to the DL1 cache.
� Failed Run: An FI experiment in which the simulation termi-

nates before it reaches the maximum number of instructions
specified (100 M in our experiments) due to propagation of
erroneous value to the main memory. For example, a failed
run may occur while reading data from an invalid address with
no actual data in this address.

Based on the above descriptions, we have defined the vulnera-
bility factor according to FI experiments as below:

VFFI ¼
Faulty Runsþ Failed Runs

True Runsþ Faulty Runsþ Failed Runs
� 100 ð24Þ

The results of SFI experiments for WT configuration are re-
ported in Table 2. As presented in this table, the vulnerability factor
according to SFI experiments is, on average 6.2%. Among the
benchmark programs, mesa and galgel(2) are most and least vul-
nerable to the injected fault, respectively.

In Fig. 17, we report the results of SFI experiments for the WT
configuration. The vulnerability factor obtained according to SFI
experiments have been calculated with 95% confidence level. The
sampling error is equal to Z1�a=2

ffi
pð1� pÞ=n

p
[49]. In this equation,

p and n are the vulnerability factor based on SFI experiments and
the number of FI experiments, respectively [49]. The other param-
eter, Z1�a=2, is the confidence level coefficient in our study, a ¼ 95%

and Z = 1.96).
For the sake of accuracy, we have performed 1000 fault injec-

tion experiments to allow n to be large enough, resulting in a sam-
pling error of 0.015. To achieve smaller error intervals, one would
require at least 10�more SFI experiments which need significantly
more computation power in the experiments. In Fig. 17, we report
FImin and FImax according to this sampling error. In this figure, all
VFs have been normalized to the maximum VF for each application

 0

 30

 60

 90

 120

 150

 180

 210

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

mesa
applu

vpr
gcc-166

crafty
AVG

SV
F

A
cc

ur
ac

y
Im

pr
ov

m
en

t

WB WT

(%
)

Fig. 16. Accuracy improvment of SVF model compared to AVF modeling technique
for both write-back and write-through policies.

Table 2
Number of true, faulty, and failed runs and vulnerability factor in SFI experiments.

Benchmark True runs Failed runs Faulty runs VFFIð%Þ

gzip(1) 934 0 66 6.6
gzip(2) 949 0 51 5.1
mcf(1) 984 1 15 1.6
mcf(2) 990 3 7 1
galgel(1) 995 0 5 0.5
galgel(2) 995 1 4 0.5
bzip2(1) 864 1 135 13.6
bzip2(2) 877 0 123 12.3
equake(1) 963 12 25 3.7
equake(2) 978 4 18 2.2
mesa 858 5 137 14.2
applu 864 0 136 13.6
Average 937.58 2.25 60.16 6.24

 0

 0.2

 0.4

 0.6

 0.8

 1

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

mesa
applu

AVG

V
F

(N
or

m
al

iz
ed

)

FI-min FI-max SVF CVF AVF

Fig. 17. Comparison of SFI (FI-min/FI-max), SVF, CVF, and AVF in a DL1 cache with write-through policy (normalized to the maximum VF for each application program).

H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021 1019

Author's personal copy

program. FImin and FImax are equal to VFFI � Z1�a=2

ffi
pð1� pÞ=n

p
, and

VFFI þ Z1�a=2
ffi
pð1� pÞ=n

p
, respectively. Compared to the results of

AVF, the SVF estimations computed by the CEDAR model mostly
lies in ½FIMIN; FIMAX � interval, verifying our proposed SVF modeling
results. As reported in this figure, the SVF results are within FI
intervals for all benchmarks except gzip(1) and bzip (2). For these
two benchmarks, both AVFs and SVFs are out of the FI interval. But
as shown in Fig. 17, even in these two cases, SVFs are much closer
to FI intervals as compared to AVFs. As illustrated in Fig. 17, the
AVF results do not lie in the error estimation interval in most cases
and also in the average case. We can conclude that by considering
the IOD of the CPU core and read frequency in AVF technique we
can enhance the accuracy of this model. Note as stated earlier,
the results provided in Fig. 17 have been normalized to the maxi-
mum VF for each application program. The actual VFs (i.e., non-
normalized numbers) are reported in Fig. 18.

In Fig. 19, we also report the results of SFI experiments for the
WB configuration. Similar to the WT cache experiments, the vul-
nerability factor obtained according to SFI experiments have been
calculated with 95% confidence level. The VFs reported in this fig-
ure have been normalized to the maximum VF for each application
program. The results reported in Fig. 19 demonstrate that both AVF
and the CEDAR model provide accurate VFs. This can be explained
by the fact that replacement vulnerability contributes the most to
the overall vulnerability in WB caches as studied in previous works
[23,50]. Replacement vulnerability, classified as WPL and WRPL in
the previous work (see Section 6), does not depend on the IOD fac-
tor. In other words, WB caches contain dirty blocks whose vulner-
ability is often not affected by IOD. As such, previous vulnerability
modeling techniques such as AVF provide relatively accurate VFs
for WB caches despite the fact that they overlook the IOD factor.
The main contribution of the CEDAR model is to provide accurate
VFs for WT caches, where overlooking the IOD factor can lead to
significant inaccuracy. Note here we have used selective bench-
mark circuits whose program outputs are deterministic. Those

benchmark programs that produce non-deterministic results can-
not be verified by FI experiments and as such, they have been ex-
cluded from our experiments.

10. Conclusions

In this paper, we proposed an analytical vulnerability modeling
technique, called CEDAR, to accurately estimate the System-level
Vulnerability Factor of data-path components in an advanced
microprocessor. In CEDAR, we took into account the number of
read operations from the block during its life time in our computa-
tions. To do this, we proposed to use the input-to-output derating
factor of the components in which the block is fed as the input. As a
case study, we extracted the IOD of the DL1 cache for different con-
figurations. Based on our investigations, IOD is mainly application
dependent rather than configuration dependent. In addition, we
extracted the vulnerability of the cache for WT and WB configura-
tions using the CEDAR model as well as the previously well known
proposed models. We have also performed Statistical Fault Injection
experiment to verify the CEDAR model. Our experimental results
through comparison showed that CEDAR is about 91% and 5% more
accurate for WT and WB configurations, respectively as compared
to the previously proposed analytical techniques.

References

[1] Baumann RC. Soft errors in advanced computer systems. IEEE Des Test Comput
2005;22(3):258–66.

[2] Shazli SZ, Abdul-Aziz M, Tahoori MB, Kaeli DR. A field analysis of system-level
effects of soft errors occurring in microprocessors used in information systems.
In: IEEE international test conference; October 2008. p. 1–10.

[3] Tahoori MB, Parulkar I, Alexandrescu D, Granlund K, Silburt A, Vinnakota B.
Panel: reliability of data centers: hardware vs. software. In: IEEE/ACM
international conference on design, automation and test in Europe
conference (DATE); 2010. p. 1620.

[4] Baumann RC. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Trans Device Mater Reliab 2005;5(3):305–16.

 0

 4

 8

 12

 16

 20

 24

gzip (1)

gzip (2)

mcf (1)

mcf (2)

galgel (1)

galgel (2)

bzip2 (1)

bzip2 (2)

equake (1)

equake (2)

mesa
applu

AVG

V
F

(%
)

FI-min FI-max SVF CVF AVF

Fig. 18. Comparison of SFI (FI-min/FI-max), SVF, CVF, and AVF in a DL1 cache with write-through policy (non-normalized VFs).

 0.6

 0.7

 0.8

 0.9

 1

equake (1) equake (2) mcf (1) mcf (2) galgel (1) galgel (2) Average

V
F

(N
or

m
al

iz
ed

)

FI-min FI-max SVF CVF AVF

Fig. 19. Comparison of SFI (FI-min/FI-max), SVF, CVF, and AVF in a DL1 cache with write-back policy (normalized to the maximum VF for each application program).

1020 H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021

Author's personal copy

[5] Faure F, Velazco R, Violante M, Rebaudengo M, Sonza Reorda M. Impact of data
cache memory on the single event upset-induced error rate of
microprocessors. IEEE Trans Nucl Sci 2003;50(6):2101–6.

[6] Hwang SH, Choi GS. On-chip cache memory resilience. In: International
symposium on high-assurance systems engineering; November 1998. p. 240–
7.

[7] Kim S, Somani AK. Soft error sensitivity characterization for microprocessor
dependability enhancement strategy. In: International conference on
dependable systems and networks (DSN); 2002.

[8] Rebaudengo M, Reorda MS, Violante M. An accurate analysis of the effects of
soft errors in the instruction and date caches of a pipelined microprocessor. In:
IEEE/ACM international conference on design, automation and test in Europe
(DATE); 2003. p. 602–7.

[9] Farazmand DKN, Ubal R, Kaeli D. Statistical fault injection-based AVF analysis
of a GPU architecure. In: IEEE workshop on silicon errors in logic; 2012.

[10] Biswas A, Racunas P, Cheveresan R, Emer J, Mukherjee SS, Rangan R. Computing
architectural vulnerability factors for address-based structures. In: International
symposium on computer architecture (ISCA); 2005. p. 532–43.

[11] Asadi H, Sridharan V, Tahoori MB, Kaeli D. Balancing performance and
reliability in the memory hierarchy. In: IEEE international symposium on
performance analysis of systems and software (ISPASS); March 2005. p. 269–79.

[12] Haghdoost A, Asadi H, Baniasadi A. Using input-to-output masking for system-
level vulnerability estimation in high-performance processors. In: The 15th
CSI symposium on computer architecture and digital systems; September
2010. p. 91–8.

[13] Haghdoost A, Asadi H, Baniasadi A. System-level vulnerability estimation for
data caches. In: IEEE 16th pacific rim international symposium on dependable
computing (PRDC); 2010. p. 157–64.

[14] Mukherjee SS, Weaver C, Emer J, Reinhardt SK, Austin T. A systematic
methodology to compute the architectural vulnerability factors for a high-
performance microprocessor. In: Annual IEEE/ACM international symposium
on micro-architecture (MICRO); 2003. p. 29–40.

[15] Mukherjee S. Architecture design for soft errors. Morgan Kaufmann Publishers
Inc.; 2008.

[16] Kim S, Somani AK. Area efficient architectures for information integrity in
cache memories. In: International symposium on computer architecture
(ISCA); May 1999. p. 246–55

[17] Saleh AM, Serrano JJ, Patel JH. Reliability of scrubbing recovery-techniques for
memory systems. IEEE Trans Reliab 1990;39(1):114–22.

[18] Li Man-Lap, Ramachandran Pradeep, Karpuzcu Ulya R, Sastry Hari Siva Kumar,
Adve Sarita V. Accurate microarchitecture-level fault modeling for studying
hardware faults. In: International symposium on high-performance computer
architecture (HPCA); February 2009. p. 105–16.

[19] Ramachandran P, Kudva P. Statistical fault injection. In: International
conference on dependable systems and networks (DSN); 2008.

[20] Li X, Adve SV, Pradip B, Rivers JA. Softarch: an architecture-level tool for
modeling and analyzing soft errors. In: International conference on
dependable systems and networks (DSN); June–July 2005. p. 496–505.

[21] Somani AK, Trivedi KS. A cache error propagation model. In: Pacific rim
international symposium on fault-tolerant systems (PRDC); 1997. p. 15–21.

[22] Weaver C, Emer J, Mukherjee SS, Reinhardt SK. Techniques to reduce the soft
error rate of a high-performance microprocessor. In: International symposium
on computer architecture (ISCA); June 2004. p. 264–75.

[23] Wang Shuai, Hu Jie, Ziavras SG. On the characterization and optimization of
on-chip cache reliability against soft errors. IEEE Trans Comput 2009;58(9).

[24] Tang L, Wang S, Hu J, Hu XS. Characterizing the L1 data cache’s vulnerability to
transient errors in chip-multiprocessors. In: IEEE computer society annual
symposium on VLSI (ISVLSI); 2011. p. 266–71.

[25] Sridharan V, Kaeli DR. Eliminating microarchitectural dependency from
architectural vulnerability. In: High performance computer architecture
(HPCA); 2009. p. 117–28.

[26] Sridharan V, Kaeli DR. Using hardware vulnerability factors to enhance AVF
analysis. In: International symposium on computer architecture (ISCA); 2010.

[27] Duan L, Peng L, Li B. Predicting architectural vulnerability on multithreaded
processors under resource contention and sharing. IEEE Trans Depend Secure
Comput 2013;10(2):114–27.

[28] Li X, Adve SV. Architecture-level soft error analysis: examining the limits of
common assumptions. In: International conference on dependable systems
and networks (DSN); 2007.

[29] Wang Nicholas J, Mahesri Aqeel, Patel Sanjay J. Examining ace analysis
reliability estimates using fault-injection. In: International symposium on
computer architecture (ISCA); 2007. p. 460–9.

[30] Biswas A, Racunas P, Emer J, Mukherjee Shubhendu. Computing accurate AVFs
using ACE analysis on performance models: a rebuttal. IEEE Comput Archit Lett
2007;7(2):21–4.

[31] Costenaro E, Evans A, Alexandrescu D, Chen L, Tahoori M, Nicolaidis M.
Towards a hierarchical and scalable approach for modeling the effects of SETs.
In: IEEE workshop on silicon errors in logic-system effects (SELSE); 2013.

[32] Evans A, Alexandrescu D, Costenaro E, Chen Liang. Hierarchical RTL-based
combinatorial SER estimation. In: IEEE international on-line testing
symposium (IOLTS); 2013. p. 139–44.

[33] Dixit A, Wood Alan. The impact of new technology on soft error rates. In: IEEE
international reliability physics symposium (IRPS); 2011. p. 5B.4.1–5B.4.7.

[34] Bacha Anys, Teodorescu Radu. Dynamic reduction of voltage margins by
leveraging on-chip ECC in Itanium II processors. In: Proceedings of
international symposium on computer architecture (ISCA). ACM; 2013. p.
297–307.

[35] Intel Itanium processor 9300 series and 9500 series. <http://www.intel.com/
content/dam/www/public/us/en/documents/datasheets/itanium-9300-9500-
datasheet.pdf>.

[36] POWER7 system RAS key aspects of power systems reliability, availability, and
serviceability. <http://www-07.ibm.com/tw/imc/seminar/download/2010/
POWER7_RAS_Whitepaper.pdf>.

[37] Gold Brian T, Ferdman Michael, Falsafi Babak, Mai Ken. Mitigating multi-bit
soft errors in L1 caches using last-store prediction; 2007.

[38] Szafaryn LG, Meyer BH, Skadron K. Evaluating overheads of multibit soft-error
protection in the processor core. MICRO, IEEE 2013;33(4):56–65.

[39] Kim Jangwoo, Hardavellas N, Mai Ken, Falsafi B, Hoe JC. Multi-bit error tolerant
caches using two-dimensional error coding. In: IEEE/ACM international
symposium on microarchitecture, MICRO; 2007. p. 197–209.

[40] Slayman CW. Cache and memory error detection, correction, and reduction
techniques for terrestrial servers and workstations. IEEE Trans Device Mater
Reliab 2005;5(3):397–404.

[41] Maiz J, Hareland S, Zhang K, Armstrong P. Characterization of multi-bit soft
error events in advanced SRAMs. In: IEEE international electron devices
meeting. IEDM Technical Digest; 2003. p. 21.4.1–21.4.4.

[42] Lee Ikhwan, Basoglu Mehmet, Sullivan Michael, Yoon Doe Hyun, Kaplan Larry,
Erez Mattan. Survey of error and fault detection mechanisms. University of
Texas at Austin; Tech. rep; 2011.

[43] Strukov D. The area and latency tradeoffs of binary bit-parallel BCH decoders
for prospective nanoelectronic memories. In: Fortieth Asilomar conference on
signals, systems and computers. ACSSC; 2006. p. 1183–7.

[44] Desikan R, Burger D, Keckler SW, Austin T. Sim-alpha: a validated, execution-
driven alpha 21264 simulator; 2001.

[45] Fu X, Li T, Fortes J. Sim-soda: a unified framework for architectural level
software reliability analysis. In: Workshop on modeling, benchmarking and
simulation; 2006.

[46] Standard performance evaluation corporation. SPEC CPU2000 benchmarks;
2000. <http://www.specbench.org/cpu2000>.

[47] Kessler R. The alpha 21264 microprocessor. IEEE Micro 1999;19(2):24–36.
[48] Cho Hyungmin, Mirkhani S, Cher Chen-Yong, Abraham JA, Mitra S.

Quantitative evaluation of soft error injection techniques for robust system
design. In: Design automation conference (DAC); 2013. p. 1–10.

[49] Leveugle R, Calvez A, Maistri P, Vanhuawaert P. Statisctical fault injection:
quantified error and confidence. In: IEEE/ACM international conference on
design, automation and test in Europe conference (DATE); 2009. p. 502–6.

[50] Asadi Hossein, Sridharan Vilas, Tahoori Mehdi B, Kaeli David. Vulnerability
analysis of L2 cache elements to single event upsets. In: IEEE/ACM
international conference on design, automation and test in Europe
conference (DATE); 2006. p. 1276–81.

H. Asadi et al. / Microelectronics Reliability 54 (2014) 1009–1021 1021

